Полистиролбетон свойства: Полистеролбетон. Свойства, характеристики, область применения. Строительство коттеджей, домов в Красноярске. ООО ПСК «Стевин»

Автор

Содержание

Полистиролбетон: сфера применения материала

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г 012

Добавить перпендик. оси между Б-Г 012

Добавить перпендик. оси между В-Г 012

Добавить перпендик. оси между Б-В 012

Добавить перпендик. оси между А-Б 012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей 1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши ДвускатнаяПлоская

Материал кровли ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ 1 район - 80 кгс/м22 район - 120 кгс/м23 район - 180 кгс/м24 район - 240 кгс/м25 район - 320 кгс/м26 район - 400 кгс/м27 район - 480 кгс/м28 район - 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов) Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2 90 кг/м2 - для холодного чердака195 кг/м2 - для жилой мансарды

3 этаж

Высота 3-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м м

Материал цоколя Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм

Внутренняя отделка

Общая толщина стяжки, мм Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм

Распределение нагрузок на стены

Коэффициент запаса 11.11.21.31.41.5

Полистиролбетон – альтернатива традиционным материалам

Полистиролбетон – это бетон с добавлением вспененного полистирола. Хотя этот материал относится к категории ячеистых бетонов, он отличается от них своими свойствами.

К преимуществам полистиролбетона можно отнести широкую сферу применения, обусловленную возможностью предусматривать плотность изготавливаемой продукции в вариативном диапазоне.

Плотность полистиролбетона снижают за счет добавления наполнителя с пористой структурой – вспененного полистирола. Когда нужно получить полистиролбетон высокой плотности, увеличивают добавление кремнеземистого компонента. Варьируя плотность материала, получают основу для теплоизоляции и возведения строений (марки D150 и D600). Необходимые конструктивные элементы, как правило, производятся по технологии литья в металлоформы.

В зависимости от плотности этот тип бетона выпускается как теплоизолятор с низким значением показателя плотности или в качестве конструкционного – с высоким. Вес кубометра наиболее легкой версии полистиролбетона около 150 кг, чего не скажешь о газо- и пенобетоне.

Согласно ГОСТ Р 51263-2012, полистиролбетон состоит из разных видов портландцемента, кремнеземистых наполнителей, вспененного полистирола (пенопласта), модификаторов, пластификаторов, ускорителей отвердевания смеси.

Чем хорош полистиролбетон?

Бетон с наполнителем успешно применяется, как в России, так и на Западе. Но до недавнего времени применение именно этого типа бетона было менее распространено. Сейчас отмечается повышение спроса на полистиролбетон за счет несомненных достоинств этого стройматериала:

1. Более простая и низкая по материалоемкости технология производства (по сравнению с изготовлением прочих видов легких бетонов), потому выпуск бетона с наполнителем из полистирола стоит дешевле. Экономится около 70% раствора, необходимого для других типов подобной продукции. Полистиролбетон имеет лучшие теплотехнические свойства и представляет собой серьезного конкурента газобетону.

2. Низкая теплопроводность полистиролбетона обуславливает значительную экономию на отоплении зданий.

3. Жесткие требования, предъявляемые в строительстве к фактору энергосбережения, служат причиной разделения материалов на теплоизоляционные и несущие механические нагрузки. По этой причине полистиролбетон особенно примечателен и пользуется спросом.

4. Свойства материала благоприятствуют отливу крупных блоков, в значительной мере снижающих трудоемкость кладки стен. К тому же благодаря легкому весу при строительстве нет нужды использовать тяжелую спецтехнику. Штучные изделия из полистирола удобны при обработке, так как хорошо пилятся, сверлятся, подлежат отделке с помощью гвоздей без затруднений.

5. При устройстве конструкций элементы соединяются между собой тем же клеевым составом, что и пеноблоки. Поэтому кладка из полистиролбетона не содержит швов толще 4 мм, что исключает образование мостиков холода.

6. Полистиролбетон ценится также за высокую пожарную безопасность, так как относится к группе трудногорючих материалов.

7. Стройматериал устойчив к низким температурам, экологичен. Как утверждают производители, срок службы сооружений из блоков с полистиролом достигает 100 лет.

8. Полистиролбетон не является благоприятной средой для развития микроорганизмов, жизнедеятельности насекомых и мелких грызунов.

9. В помещениях строений, возведенных с использованием полистиролбетона, наблюдается хороший микроклимат и шумозащита. Первый фактор обеспечивается присущей материалу паропроницаемости и гидроизоляционным свойствам.

Теплопроводность и паропроницаемость полистиролбетона

Значения теплопроводности и паропроницаемости полистиролбетона даны в таблице в зависимости от его плотности. Рассмотрены марки  полистиролбетона с плотностью от 150 до 600 кг/м3.

Теплопроводность полистиролбетона указана, как в сухом состоянии при температуре от -20 до 50°С, так и с учетом влажности. Следует отметить, что влажный полистиролбетон более теплопроводный, чем сухой. Теплопроводность полистиролбетона увеличивается с ростом его плотности.

Паропроницаемость полистиролбетона зависит от его плотности. Чем более плотен этот тип бетона, тем ниже его паропроницаемость.

Применение полистиролбетона

Полистиролбетон применяется для возведения перегородок, сборных структур, плит перекрытий и ограждающих конструкций. Весьма ценится материал при надстройке сооружений, тем более если вес добавляемой системы – решающая характеристика.

Явные достоинства полистиролбетона сделали его применение востребованным при устройстве крыш, полов в качестве тепло- и звукоизоляционного материала. Это также отличный вариант, когда необходим наполнитель для нивелирования пустот в кладке из кирпича и прочих конструкциях. В том числе там, где предъявляются повышенные требования к звукоизоляции.

Стены из полистиролбетона рекомендуется сооружать толщиной 30 см. Как заверяют изготовители, блоки не подвержены усадке. Значит, новые стены можно штукатурить без опасения, что покрытие быстро потрескается. Перед отделкой поверхность обрабатывается грунтовкой-бетонконтактом для увеличения адгезии.

Источник:
Полистиролбетон. Технические условия ГОСТ Р 51263-2012. М.: «Стандартинформ», 2014 — 24 с.

Полистиролбетон - технология изготовления полистиролбетона | Состав, рецептура


Готовые комплекты оборудования для производства полистиролбетона
До 80 м3 в смену | До 50 м3 в смену | До 30 м3 в смену

Технология изготовления полистиролбетона

Легкий бетон с заполнителем из пенополистирола - известный под названием полистиролбетон, представляет собой легкий бетон с минеральным вяжущим, поры которого образованы частицами вспененного пенополистирола, используемого в качестве заполнителя. Исключительно малая объемная плотность частиц вспененного пластика позволяет производить легкий бетон с объемной массой, диапазон которой может быть выбран в соответствии с требованиями конкретной области применения, и при этом бетон имеет соответственно широкий диапазон характеристик.

Легкий бетон с заполнителем из пенополистирола (полистиролбетон), теплоизоляционные штукатурки на основе пенополистиролбетона известны в течение длительного времени. В то время, как полистиролбетон известен не менее 25 лет на нашем рынке, а на западном - более 40 лет, до настоящего времени ожидания, относительно объема использования полистиролбетона оправдались только в некоторых областях применения. Однако в промышленности строительных материалов наблюдается рост интереса к полистиролбетону, указывающий на некоторые изменения в этом отношении, вызванные главным образом следующими причинами:

  • полистиролбетон стал серьезной альтернативой пенобетона и газобетона, из-за более широкой области применения, простоты изготовления и значительно лучших характеристик материала
  • требования по теплоизоляции зданий становятся значительно более жесткими, вследствие этого стало необходимым функциональное разделение строительных материалов на теплоизоляционные и несущую нагрузку, и эти материалы должны соответствующим образом сочетаться в элементах зданий. В этом отношении интересные решения предлагает использование легкого бетона с заполнителем из пенополистирола (полистиролбетона).

В настоящей статье рассматривается текущее состояние технологий производства полистиролбетона, уделяя должное внимание использованию переработанного полистирола, а также недавно разработанных систем на основе полистиролбетона.

Описание полистиролбетона

Легкий бетон с пенополистирольным заполнителем входит в группу чрезвычайно легких бетонов, которые производятся с использование пористых заполнителей, обычно имеющих малую прочность зерен. Решающим фактором для прочностных свойств является структура затвердевшей цементной пасты, окружающей частицы заполнителей из вспененного пластика, и влияющий на массу бетона. Кроме того, важна форма и размер зерен, а также структура поверхности используемых пенополистирольных заполнителей. В отличие от минеральных заполнителей, дозировка пенополистирольных заполнителей задается не по массе, а по объему. Таким образом, имеется возможность точно задать объем пор и, благодаря этому, объемную массу полистиролбетона, и производить полистиролбетон, имеющим структуру с закрытыми порами. Посредством выбора объемной массы бетона можно воздействовать на характеристики полистиролбетона, чтобы они лучше соответствовали конкретным требованиям. В свете сегодняшних требований представляет интерес полистиролбетон, объемная масса которого находиться в нижнем диапазоне (< 600 кг/м3). В этом случае сочетание <теплоизолирующего материала> и <бетона> в одном материале предлагает строителям оптимальную комбинацию несущих свойств, звукоизоляции, термоизоляции и огнезащиты. Уже несколько лет после изобретения пенополистиролбетона, названного Styropor (1951), компания BASF провела первые ориентировочные испытания по использованию пенополистирола в качестве заполнителя для производства полистиролбетона (стиропорбетона). Так как высокая стоимость данного сырья первоначально не позволила рентабельно использовать его в качестве легкого заполнителя, в конце 1967 года начались новые исследования, и их интенсивность стала постепенно увеличиваться. К этому времени легкие заполнители из пенополистирола стали интересной альтернативой легким минеральным заполнителям, и даже не смотря на их цену, стал наблюдаться растущий интерес к новым строительным изделиям из полистиролбетона. Чтобы создать необходимые предпосылки для их выхода на рынок, компания BASF предприняла следующие меры:

  • разработка рецептур различных полистиролбетонных смесей, позволяющих воспроизводить их на практике
  • подтверждение всех важных характеристик строительного материала испытаниями, проведенными официальными организациями
  • разработка и распространение способов приготовления и укладки
  • выполнение и оценка практических испытаний с целью подтверждения успешности применения
  • помощь и технические консультации для производителей материалов в отношении разработки производственных систем.

Все эти меры пройдены в нашей стране и есть все предпосылки для активного применения полистиролбетона. В отличие от легких бетонов с минеральными заполнителями, пенобетонов, газобетонов, в случае полистиролбетона имеется возможность производства легкого бетона с объемной массой менее 200 кг/м3, и соответственно хорошими теплоизоляционными характеристиками. Вследствие этого дальнейшее развитие сконцентрировано на производстве полистиролбетона, попадающего в этот низший диапазон объемных масс, и в частности на улучшение свойств легкого бетона с пенополистирольным заполнителем, технологии производства и на разработке строительных систем с применением полистиролбетона. В качестве заполнителя полистиролбетона используется пенополистирол с объемной плотностью 10-25 кг/м3, которая не оказывает влияния на конечную прочность легкого бетона. Размер зерен вспененных частиц пенополистирола находиться в диапазоне 0,5-3,5 мм, что позволяет получать мелкопористый скелет бетона и используется сырьевой материал с размером частиц от 0,2 до 1,0 мм. Легкий пенополистирольный заполнитель обладает следующими характерными свойствами:

  • чрезвычайно малая объемная масса
  • хорошая теплоизоляция вспененных частиц, благодаря которой практически отсутствует поглощение воды
  • сферическая форма, являющаяся предпочтительной с точки зрения статических нагрузок.

Однако, в диапазоне очень низких объемных плотностей гидрофобные свойства легких пенополистирольных заполнителей с закрытыми порами могут оказывать неблагоприятное влияние, так как малая прочность сцепления между цементным тестом и поверхностью частиц может привести к расслаиванию полистиролбетона во время приготовления и укладки. В первые годы практического применения, этому эффекту противодействовали введением добавок, улучшающих прочность сцепления. По этому пути идут ряд производителей, в основном пытаясь увеличить продажи добавок, так как западные производители и некоторые отечественные, применяют специальные марки пенополистирола с крупнопористой поверхностью частиц или специальные устройства, позволяющие без возражений укладывать бетон, не имеющий таких добавок.

Отходы пенополистирола в качестве легкого заполнителя

В Германии в настоящее время для изготовления упаковочных материалов ежегодно используется около 40 000 тонн сырья для производства пенополистирола, из которого получается пенополистирол в объеме до 2 млн.м3. Эти упаковочные материалы содержат 98% воздуха, не содержат ни в каких количествах фторхлоруглеводов, и могут подвергаться переработке для того, чтобы вновь послужить какой либо разумной цели. В наше стране тоже достаточное количество отходов, а с развитием промышленности и ростом производства изделий остро встает вопрос переработки упаковки. В этой связи были разработаны системы для вторичной переработки пенополистирола, позволяющие обеспечить полную утилизацию использованных упаковочных материалов, получаемых от промышленных, торговых предприятий и от частных потребителей. В настоящей статье мы рассматриваем только применение отходов полистирола в легких бетонах. Мелкозернистый <измельченный материал>, изготавливаемый из отходов производства пенополистирольной упаковки, пригоден для использования при производстве строительных материалов: в качестве порообразующего вещества при производстве блоков, панелей, и в качестве легкого заполнителя для производства легкого бетона (полистиролбетона).
Для использования измельченного пенополистирола в качестве легкого заполнителя требуется выполнение определенных требований с целью предотвращения снижения качества бетона. В том, что касается размеров и формы зерен, различия между <измельченным материалом> и свежеиспеченными частицами пенополистирола должны быть настолько малы, насколько это возможно:

  • большая часть зерен должна иметь круглую форму
  • большая часть зерен должна иметь размеры, находящиеся в диапазоне от 0,5 мм до 4,0 мм
  • в измельченном материале должны отсутствовать очень мелкие частицы.

Эти требования к качеству могут быть удовлетворены при соблюдении следующих условий:

  • использованием соответствующих дробилок с отделением частиц пенополистирола в тачках, в которых они сплавились между собой, так что первоначальная сферическая форма зерен в очень большой степени сохраняется
  • размер частиц гранул пенополистирола, используемого для производства упаковочных материалов, обычно соответствует размеру, требующемуся для легкого пенополистирольного заполнителя, изготовленного из <свежего материала>, это достижимо при помощи использования соответствующих сит в дробилке. В настоящее время такой подготовленный <измельченный материал> предлагается некоторыми западными производителями упаковочных материалов по цене от 12 до 25 евро, что намного ниже уровня цен за свежевспененный легкий пенополистирольный заполнитель.

На российском рынке тоже присутствует <измельченный материал>, к сожалению редко удовлетворяющий вышеперечисленным требованиям. Полученные в результате 28-дневных испытаний значения прочности при сжатии и при изгибе, в каждом случае представляют собой средние значения для трех образцов. Испытания на прочность при сжатии проводились на кубах с длиной ребра 20 см, а испытания на прочность при изгибе - на брусках 70*15*15 см. Прочность при сжатии образцов полистиролбетона, изготовленных с использованием пенополистирола из <измельченного материала> - прежде всего в нижней части диапазона объемных масс полистиролбетона примерно на 40 % ниже, чем у полистиролбетона, изготовленного с использованием частиц свежего вспененного пенополистирола. Прочность на растяжение при изгибе обоих вариантов полистиролбетона в пределах указанного диапазона объемных масс находится примерно на одном уровне. Использование пенополистирола из <измельченного материала>, по сравнению со вспененным пенополистиролом не влияет на теплопроводность, так как она в первую очередь зависит от объемной массы полистиролбетона. Использование пенополистирола из <измельченного материала> не оказывает отрицательного влияния на требования к качеству, такие, как поглощение воды, морозостойкость, огнестойкость и т. п.

Технология производства полистиролбетона

Этот раздел относится к специальным выводам по технологии производства полистиролбетона от 200 до 600 кг/м3 (сухая объемная масса), обладающего хорошими теплоизоляционными свойствами и имеющего малую массу.

В отличие от легкого бетона с пенополистирольным заполнителем, имеющего плотность более 600 кг/м3, в данном случае требуется рассмотреть некоторые специальные особенности, которые оказывают существенное влияние на однородность смеси, удобоукладываемость и подачу полистиролбетона, а также на тенденцию к трещинообразованию и от усадки и расслоения.

Решающее влияние на свойства свежего полистиролбетона оказывает то, что очень большую часть его объема составляют частицы пенополистирола. В диапазоне объемной массы меньше 600 кг/м3 количество цементного раствора недостаточно, для того чтобы полностью заполнить объем <пазух> легкого заполнителя. Без внесения соответствующих добавок полистиролбетон в этом диапазоне объемной плотности можно укладывать и уплотнять только с большим трудом из-за его в основном несвязного характера.

Добавление большого количества воды будет вести к уменьшению прочности при сжатии и усилению тенденции к трещинообразованию от усадки и расслоению.

Чтобы узнать, как можно улучшить удобоукладываемость и уплотняемость полистиролбетона, производились испытания с внесением различных добавок. В результате оказалось, что наибольшие преимущества обеспечивают добавки, содержащие воздухововлекающие компоненты, а также компоненты для стабилизации и разжижжения полистиролбетонной смеси. При помощи создания очень маленьких сферических воздушных пузырей (с диаметром до 0,3 мм) объем цементного раствора увеличивается и уменьшается различие в плотности между цементным раствором и легким пенополистиролбетонным заполнением. Смесь приобретает пластичную вязкую консистенцию. Благодаря этому предотвращается всплытие пенополистирольного заполнителя даже в случае интенсивного виброуплотнения и удобоукладываемость свежего полистиролбетона значительно улучшается. Особое положение занимают белковые пенообразователи, используемые при механическом производстве воздушных пен. Они характеризуются очень стабильной структурой пены. Подвижность и великолепная адгезия этих воздушных пен оказывает исключительно благоприятное воздействие на удобоукладываемость полистиролбетона даже в случае относительно малых водоцементных отношений.

Эластичные пенополистирольные заполнители и относительно высокая пропорция воздушных пузырей не могут противодействовать усадке затвердевшего цементного теста. Однако влияние излишне большой усадки во время схватывания и тенденцию к образованию трещин можно уменьшить, поддерживая полистиролбетон влажным в течение достаточно длительного времени. На практике очень эффективным оказалось добавление в смесь совместимых с цементом армирующих волокон. Армирующие волокна в затвердевшем скелете из цементного теста в полистролбетоне принимают на себя напряжения, возникающие при растягивающей усадке и изменения температуры во время схватывания и твердения полистиролбетона, уменьшая тем самым тенденцию к образованию трещин, и значительно увеличивая прочность на растяжение при изгибе. Пена добавляется в смеситель во время приготовления смеси, для чего используется пеногенератор. Для приготовления полистиролбетона пригодны обычные смесители с принудительным перемешиванием. Гравитационные бетоносмесители пригодны только условно. Для получения качественной смеси компоненты закладываются в определенной последовательности. Время перемешивания должно составлять примерно 2 минуты. Объемная дозировка пенополистирольного гравия может изменяться в определенных пределах в зависимости от того, используется свежий вспененный материал или <измельченный материал>.

 

плюсы и минусы, отзывы специалистов и владельцев домов

У такого стройматериала, как полистиролбетон плюсы и минусы рекомендуется внимательно изучить, прежде чем его приобретать. Качество изделий нужно исследовать по внешним данным, на разрезе и по прилагаемым документам. Чтобы в дальнейшем не было сожалений, что выбрали именно полистиролбетон, следует почитать отзывы специалистов и частных строителей. Далее в статье будет описано, для чего применяются полистирольные полистиролбетонные блоки, их плюсы и минусы.

Какие основные свойства у полистиролбетонных изделий? Материал обладает теплоизоляционными качествами, которые определяются шариками полистирола и конструкционными за них отвечает цементно-песчаная составляющая.

В каких случаях выбираем полистиролбетон для строительства

Изучив характеристики плюсы и минусы полистиролбетонного материала можно приступать к строительным работам. Сферы применения:

  • При постройках многоэтажных домов. Легкие блоки способствуют снижению нагрузки на фундаментное основание, соответственно и уменьшается уровень усадки. Процесс монтажных работ упрощен за счет величины блоков.
  • В строительстве частного дома, коттеджа. При помощи полистиролбетонных панелей создают долговечные и эстетически привлекательные сооружения.
  • Теплоизоляция и звукоизоляция зданий и помещений.
  • Легкий бетонный материал позволяет возводить из него надстройки дополнительных этажей, не создавая при этом нагрузки на фундаментную часть.
  • Полистиролбетон подходит для реставрации зданий.
  • Применяется в судостроении для конструирования пола с наклонным слоем. Качества устойчивости позволяют материалу выдерживать линейные нагрузки и служить длительный срок без возникших изъянов.

Нельзя использовать блоки сомнительного, кустарного производства. Некачественный строительный материал может повлечь за собой существенные проблемы, которые исправить будет трудно.

Достоинства

  1. Полистиролбетонные изделия являются самыми доступными утеплителями по цене среди аналогичных товаров. Необходимости в дополнительном утеплении пенопластом и минеральной ватой нет.
  2. Блоки обладают низкой теплопроводностью, что существенно снизит расходы в сезон отопления. Благодаря минимальным швам, которые образуются при укладке, обеспечивается надежная звукоизоляция и теплоизоляция. Шумоизоляция полистиролбетона по отзывам потребителей указана при толщине стены 100 мм составляет проникновение звуков не больше 37 ДБ. Обычно применяют клеевой состав, предназначенный для пенобетонных изделий и керамической плитки.
  3. Стройматериал можно использовать как самостоятельный конструкционный материал, который не нуждается в утеплении.
  4. Если приготовить самостоятельно полистиролбетонную смесь, то в качестве достоинства будет выступать несложность замеса и низкие показатели материалоемкости, что позволит снизить потребность в растворе приблизительно на 70%.
  5. Процесс монтажа будет не сложным, за счет массивности и легкости изделий, так как весит один блок 22 кг при габаритах равным 17 кирпичам. Данное положительное качество позволит без проблем транспортировать и выгружать на строительном объекте стройматериалы.
  6. Повышенная устойчивость к агрессивным условиям окружающей среды. Материалу не страшны влага, морозы, плесень, грибок, высокие температуры.
  7. Полистиролбетон имеет такие преимущества, которые повышают до 100 лет срок эксплуатации изделий. Материал используют в широкой сфере применения.
  8. Изделия обладают экологической и санитарно-гигиенической безопасностью.
  9. Поверхность материала легко обрабатывать без затруднений при внешних и внутренних отделочных работах.

Недостатки

Минусы полистиролбетона возникают в связи с тем, что в состав конструкции блоков входит цементно-песчаный компонент. Пенополистиролбетонные блоки имеют плюсы, а также минусы:

  1. Недостаточная прочность монтажа крепежных элементов. Например, чтобы вмонтировать дюбели и анкеры потребуется делать предварительную заливку бетонного раствора марки не менее М 150 в зоны планируемого применения. В противном случае вмонтированный в поверхность дюбель или саморез можно вытащить без проблем рукой. Для полистиролбетона продаются специальные более длинные дюбели и анкера.
  2. Показатели низкой плотности затрудняет установку окон и дверей, вследствие чего в процессе эксплуатации материал ведет и просаживается фурнитура. Например, изделия, неправильно вмонтированные в стены из полистиролбетонных блоков, через некоторое время расшатываются при частом использовании.
  3. Когда в блоках содержится низкое содержание гранул из полистирола, это означает, что основными свойствами в изделии будет обладать не полистирол, а бетонная составляющая часть. Если шарики имеют низкую адгезию по отношению к бетонной части. Соответственно элементы будут плохо соединены между собой и будут выпадать на сколах. Прочность таких изделий будет низкой. По этой причине следует у производителей просить предъявить сертификаты качества.
  4. Полистиролбетон нужно оштукатуривать как внутри, так и снаружи, а отзывы владельцев гласят, что у этого материала низкое сцепление со штукатуркой и требуется дополнительная обработка поверхностей стен. Рекомендованная толщина штукатурного слоя – снаружи 1.5 см и минимум 2 см внутри помещений.
  5. Сооружения, построенные из полистиролбетонных смесей, обладают высокими показателями усадки – в 3 раза превышает показатели газобетонных и пенобетонных конструкций – 1 миллиметр на 1 м2.
  6. Материал не устойчив к перепадам высоких температурных показателей, огнестойкость низкая. Также нет устойчивости к органическим растворителям – бензин или ацетон будет способствовать разрушениям и утрате свойств самих изделий.
  7. Полистиролбетонные элементы входят в группу Г1 по горючести, это означает, что они не обладают горючестью и не обладают огнестойкостью. При воздействиях высоких температур происходит следующее: гранулы из полистирола начинают разрушаться и терять свои теплоизоляционные свойства, а бетонный каркас не дает блоку разрушиться полностью, при этом теряются теплоизоляционные и прочностные качества. Отзывы владельцев и профессионалов рекомендуют принимать всевозможные меры противопожарной безопасности. А именно, произвести облицовку полистиролбетонных поверхностей негорючими материалами и нанести на них слой штукатурки.
  8. Отзывы отрицательные указывают на следующее: заводы изготовители указывают число 100 допустимых заморозок. На самом деле уже после 20 таких воздействий, когда полистиролбетон намокнет, а потом замерзнет и растает, это очень повлияет на прочность материала, который начнет рушиться. Решением проблемы является вариант утепления снаружи или нанести слой штукатурки и после произвести окрашивание.
  9. Свойства низкой паропроницаемости выводит этот стройматериал на последнее место в сравнении с газобетонными или пенобетонными блоками. В помещении, построенном из полистиролбетона, возникает определенный микроклимат и влажность. Соответственно стены не дышат, и паропроницаемость не заменит вентиляцию. Мастера рекомендуют заранее предусматривать вентиляционные шахты для уменьшения лишней влаги в воздухе и для нормализации микроклимата. Если строятся многослойные стены, есть риск появления конденсата водяных испарений между слоями в эксплуатационных условиях при смене погодных условий.

Допускается изготовление полистиролбетона в домашних условиях. Для этого понадобится вода, вяжущее вещество и наполнитель.

Отзывы специалистов и застройщиков

Такой стройматериал, как полистиролбетон обладает отличными теплоизоляционными качествами, отзывы экспертов указывают что здания, построенные по этой методике в Сибирской области способны сохранять тепло без дополнительного монтажа утеплительных материалов.

Дом, возведенный из полистиролбетона, выглядит красиво, из блоков можно возводить различные архитектурно-дизайнерские проекты.

Если сравнивать бетонную кладку с кирпичной, полистиролбетонный вариант получается вдвое дешевле. Полистиролбетонные блоки, предназначенные для стен, по отзывам опытных строителей должны составлять не менее 37.5 см, при такой толщине не потребуется дополнительный теплоизоляционный материал.

Продается полистиролбетон в мешках по 50 кг, отзывы потребителей – когда, товар расфасован в упаковках это удобно при расчетах нужного количества строительного материала.

Основным недостатком для потребителя является повышенная хрупкость полистиролбетонных изделий, когда возникает потребность в установке различных бытовых агрегатов. Для такого варианта следует проложить армированные прутки по всей длине перегородки.

Блоки из полистиролбетона относятся к легким бетонам, положительные отзывы потребителей указывают на практичность и удобство монтажных работ. Из такого стройматериала возводят многоэтажные постройки, частные дома, различные хозяйственные здания. При грамотном выборе полистиролбетонные конструкции будут служить не одно десятилетие.

Советы по выбору стройматериала:

  • Перед покупкой товара, рекомендуется обратить внимание на завод-изготовитель, который должен иметь сертификат качества.
  • Если есть такая возможность, посетите и оцените уже готовую постройку из аналогичного материала.
  • Изделия не должны иметь лишних пустот. При срезе должны быть видны гранулы в большом количестве.
  • Полистиролбетонные блоки при соединении друг с другом не должны иметь большие зазоры. Размеры и срезы должны быть одинаковыми и ровными.
  • Вес изделия и его плотность должна соответствовать всем требованиям. В противоположном варианте, если вес маленький – это свидетельствует о низкой прочности, а при слишком большом весе в состав входит большое количество лишнего цементного раствора.

назначение, виды, плюсы и минусы

Дата: 23 мая 2017

Просмотров: 2755

Коментариев: 0

Постоянное увеличение стоимости энергоносителей вызывает у людей желание максимально уменьшить их потребление и сэкономить финансовые ресурсы. Для этого в строительной отрасли ведется постоянный поиск материалов, обеспечивающих возможность снижения затрат на отопление жилых и производственных помещений. Перечень этих материалов, который регулярно расширяется, сравнительно недавно дополнил полистиролбетон.

Он создан в результате научных исследователей строителей, внедривших в структуру холодного и массивного бетона полимерные гранулы шарообразной формы. Введение гранулированного полистирола позволило в конце прошлого века получить принципиально новый состав, который является теплым и отличается малым весом.

Однако, несмотря на уникальные свойства и высокие эксплуатационные характеристики, материал, основой которого является полистирол, тогда не получил широкого распространения. В настоящее время полистиролбетон производится промышленным путем в значительных объемах. Многие строители отдают ему свое предпочтение. Рассмотрим детально характеристики, сделавшие полистиролбетон довольно популярным.

Легкий бетон с заполнителем из пенополистирола (полистиролбетон), теплоизоляционные штукатурки на основе пенополистиролбетона известны в течение длительного времени

Что такое полистиролбетон

Являясь разновидностью облегченных бетонов, полистиролбетон представляет собой теплоизоляционный состав, состоящий из следующих компонентов:

  • Портландцемента марки М400.
  • Мелкого кварцевого песка.
  • Гранулированного полистирола.
  • Воды.
  • Специальных добавок, способствующих вовлечению воздуха в смесь.

Полистиролбетонные блоки представляют серьезную альтернативу применяемым в строительстве материалам, успешно конкурируют с ними:

  • по прочностным характеристикам – с распространенным обычным бетоном;
  • по способности сохранять тепло – с газонаполненным бетоном;
  • по легкости механической обработки – с древесиной.

Композитный материал, обеспечивающий повышенную теплоизоляцию стен, в зависимости от области применения может иметь различную структуру:

  1. Плотную, характеризующуюся небольшим количеством пор, уменьшенной фракцией наполнителя.
  2. Среднепористую, отличающуюся равномерной концентрацией воздушных полостей и полистирольных гранул среднего размера.
  3. Крупноячеистую, для которой свойственны воздушные ячейки увеличенного размера, а также крупная фракция наполнителя.

Изменение плотности полистиролбетона влияет на эксплуатационные характеристики, сферу использования.

Легкий бетон с пенополистирольным заполнителем входит в группу чрезвычайно легких бетонов, которые производятся с использование пористых заполнителей

Полистиролбетон – использование материала

Технология изготовления определяет область использования материала. Полистиролбетон делится на следующие виды:

  1. Конструкционный материал, применяемый в виде готовой продукции.
  2. Теплоизоляционный состав, используемый в наливном виде.

Конструкционный полистиролбетон, воспринимаемый значительные нагрузки, применяется для возведения:

  • капитальных стен, основой которых являются пенополистирольные блоки;
  • ограждающих конструкций перегородок, применяемых в частном строительстве.

Теплоизоляционный состав, заливаемый в жидком виде, обеспечивает надежную звуковую и тепловую изоляцию:

  1. Перекрытий между этажами.
  2. Потолков помещений.
  3. Чердачного пространства и кровли.
  4. Полов.

Для использования измельченного пенополистирола в качестве легкого заполнителя требуется выполнение определенных требований с целью предотвращения снижения качества бетона

Состав используется для заливки:

  • конструкций каркасного типа со стационарной опалубкой;
  • напольного покрытия по плитам из армированного бетона;
  • стяжки теплоизоляционного назначения для обогреваемых и промышленных полов;
  • заполнения полостей сборно-монолитных конструкций.

Полистиролбетоновые изделия – разновидности

На основе полистирола изготавливают следующие виды бетонных изделий:

  • Полистиролбетонные блоки. Наиболее востребованы для постройки стен изделия размером 30х38х58,8 см и 18,8х30х58,8 см.
  • Перегородочные элементы. Пенополистирольные блоки размером 92х30х58,8 см и 92х60х58,8 см используются для возведения перегородок.
  • Перемычки. На основе состава плотностью 0,6 т/м3, усиленного стальной арматурой, производятся перемычки длиной 1,5–4,5 м для дверных и оконных проемов. Они выполняют теплоизолирующую функцию и, одновременно, являются несущими элементами.

Пенополистиролбетонные блоки — плюсы и минусы

Полистиролбетон обладает следующими достоинствами:

  • повышенными энергосберегающими свойствами. Отпадает необходимость использования дополнительного утеплителя;

Самое очевидное — полистиролбетон теплее и легче полнотелого керамического и тем более силикатного кирпича, а так же — обыкновенного бетона

  • высоким уровнем звукоизоляции. Отсутствует потребность дополнительной звуковой изоляции помещений;
  • стойкостью к воздействию агрессивных факторов. Материал устойчив к химическим веществам, а также развитию грибка и плесени;
  • устойчивостью к воздействию нагрузок. В результате ударных и вибрационных факторов массив сохраняет целостность;
  • простотой механической обработки. Резка и штробление материала легко осуществляется механическим путем с помощью бытового инструмента;
  • длительным ресурсом эксплуатации. Для повышения срока службы поверхность следует защитить от воздействия внешней среды;
  • возможностью заливки в качестве стяжки. Установка напольного покрытия может осуществляться непосредственно на полистиролбетонную поверхность, что облегчает работы;
  • экологической чистотой. Состав абсолютно безвреден, не выделяет вредных веществ при эксплуатации.

Наряду с достоинствами, у полистиролбетона имеются и отрицательные стороны:

  1. Пониженная несущая способность, свойственная определенным видам изделия из полистиролбетона.
  2. Увеличенная стоимость, которую имеют полистиролбетонные блоки.
  3. Уменьшенная морозостойкость, вызванная расширением проникающей в неоштукатуренный материал влаги при отрицательной температуре.
  4. Необходимость обязательной штукатурки полистирольной поверхности, связанная с разрушением под воздействием ультрафиолета полистирольного наполнителя.
  5. Затрудненный монтаж крепежных элементов, которые недостаточно надежно держатся в массиве.

Отзывы о материале достаточно противоречивы. Большинство застройщиков отмечает высокие теплосберегающие характеристики материала. Некоторые сталкиваются с проблемами кладки и штукатурки. Они жалуются на повышенную усадку, составляющую до двух миллиметров на каждый метр кладки, недостаточное сцепление со штукатурным составом.

Тщательно взвесив достоинства и недостатки материала можно уверенно утверждать, что оптимальной сферой использования являются не капитальные строения, а постройки хозяйственного, бытового и технического назначения.

Заключение

Предлагая альтернативный вариант для бетона, в ряде ситуаций можно рекомендовать полистиролбетон, который обладает высокими эксплуатационными характеристиками, а также обеспечивает благоприятный тепловой режим помещения. Расширенная область применения материала позволяет использовать его для решения широкого круга строительных задач.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Полистиролбетон или газобетон что лучше для строительства дома

Полистиролбетон - сравнение с газобетоном

Полистиролбетон считается более дешевым заменителем газобетона, также как и пенобетон. Ранее мы уже рассматривали факты, свидетельствующие о существенных различиях газобетона и пенобетона.

Как и в случае с пенобетоном, «слабое место» полистиролбетона также является следствием достаточно примитивного процесса его производства — бетонная масса механически перемешивается с полистирольными гранулами, для лучшего сцепления гранул и цемента в смесь добавляют поверхностно-активные материалы (ПАВ).

Наличие полистирола, а также ПАВ, превращают блоки в горючий материал (Г1). Как следствие, помещение, построенное из полистиролбетона, требует дополнительных огнезащитных мероприятий (более толстый слой штукатурки, специальная пропитка и т. д.). Относящийся к негорючим материалам газобетон, позволяет избежать этих затрат.

Те же искусственные добавки в блоки полистиролбетона не лучшим образом сказываются на его экологичности. Независимо от условий производства, транспортировки, монтажа и эксплуатации пенополистирол выделяет в окружающую среду до 25 ядовитых соединений — продуктов деструкции полистирола, концентрация которых в производственных, жилых и других помещениях в отдельных случаях может существенно превышать установленные для этих веществ предельно-допустимую концентрацию. Для сравнения, газобетон полностью природный материал, «искусственный камень», при его производстве используется только натуральное минеральное сырье.

Полистирол недолговечен как в чистом виде, так и в бетоне. Наблюдения показывают, что через 10-15 лет теплотехнические характеристики стены из полистиролбетона резко снижаются, что ведет к необходимости выполнять работы по дополнительному утеплению. Газобетон же со временем не теряет своих ни прочностных, ни теплотехнических качеств. Реальная практика его использования показывает — дом, построенный из газобетона в течение многих десятилетий останется таким же теплым, как после строительства.

Как и пенобетон, полистиролбетон, часто производится на кустарном оборудовании. Следствием этого являются разные линейные размеры блоков, их усадка в процессе строительства и эксплуатации здания. Также впоследствии велика вероятность испорченной отделки. Для сравнения: компания «Байкальский газобетон» реализует продукцию, соответствующую ГОСТ 31359-2007, произведенную по современным технологиям на немецком оборудовании. Усадка материала в процессе строительства и эксплуатации здания исключена ввиду использования автоклавирования.

Казалось бы, хорошие теплоизолирующие свойства полистиролбетона обеспечиваются равномерно распределенными по объему блоков шариками полистирола. Однако возможность кустарного производства, а, как следствие — излишне свободный подход к рецептуре и отсутствие контроля характеристик выпускаемой продукции приводят к существенному снижению качества полистиролбетона. Кроме того, цифры точных замеров свидетельствуют — коэффициент теплопроводности идеально изготовленного блока полистиролбетона при равновесной влажности равен 0,16 при плотности 500 кг/м³. Коэффициент теплопроводности газобетона при равновесной влажности равен 0,141 при плотности 500 кг/м³, что позволяет выдержать минимальную толщину ограждающей стены. Кроме того, вспененным пластмассам присуща низкая паропроницаемость, что не способствует созданию комфортного микроклимата в помещении. Газобетон выводит лишнюю влагу из помещения наружу, создавая эффект «дышащих» стен.

Напоследок стоит учитывать тот факт, что полистиролбетон слабо изучен именно как строительный материал — на уровне авторитетных научно-исследовательских организаций. А потому большинства указываемых в рекламных материалах положительных свойств полистиролбетонов остается лишь на совести маркетологов.

Ниже приведена таблица сравнения полистеролбетона с газобетоном:

По сравнению с полистиролбетоном

В статье «Отличия пенобетона от газобетона» вы можете узнать, что такое пенобетон и чем он отличается от газобетонных блоков.

Вы не можете выбрать материал для строительства? Статья «Из чего постороить дом?» поможет вам в выборе подходящего материала.


Полистиролбетон – свойства и особенности

Полистиролбетон – это лёгкий многокомпонентный материал, широко использующийся в частном строительстве. Каковы его свойства? Где применяют такую продукцию? Как правильно сделать бетон с пенопластовой крошкой? Об этом вы прочитаете в статье.

Полистирол как основа лёгкого бетона

Содержание статьи:

Полистирол – это термопластический полимер с линейной структурой, представляющий собой искусственный органический материал, получаемый из винилбензола путем полимеризации.

Внешне выглядит как жёсткая, но хрупкая, субстанция белого оттенка шарообразной формы. Она имеет невысокую механическую прочность, слабую химическую стойкость. В то же время соединение инертно в отношении разбавленных кислот, щелочей и спиртов. Вещество растворяется в бензине, ацетоне, сложных эфирах, сероуглероде, сохраняет стабильность в воде.

Читайте также: про строительство и ремонт.

Продукция легко окрашивается, прессуется, формуется, склеивается и обрабатывается механически. Низкое влагопоглощение, оптимизированные диэлектрические свойства и хорошая морозостойкость позволяет использовать полистирол в различных сферах промышленности.

Термопластические свойства продукция демонстрирует при температурах свыше 90 градусов Цельсия, а при 300 градусах происходит разложение соединения с выделением мономеров.

Полистиролбетон – основные сведения

Полистиролбетон представляет собой классическую разновидность ячеистой группы строительных материалов, относящиеся к лёгким типом продукции. Не применяется для напряженных и ответственных конструкций, фундаментов, перекрытий, железобетонных изделий и так далее. Основная сфера использования – комплексная теплоизоляция, вторичные бетонные работы, производство блоков, заменяющих кирпич, керамзитобетон иные изделия, применяющиеся для возведения внутренних стен.

Полистиролбетон состоит из следующих компонентов:

Вяжущее вещество. Базис продукции, объединяющий сыпучие ингредиенты на основе реакции гидратации с водой. Используется портландцемент, гипс или шлакопортландцемент.Заполнитель. Создает внутренний каркас, обеспечивает объем, распределяет напряжения. Используется вспененный гранулированный полистирол. В классическом рецепте не применяются крупнозернистые заполнители (щебень), а единой наборной массой является только термопластичный полимер линейной структуры.Вода. Смачивает сухие ингредиенты и путем гидратации на основе химической реакции с цементом образуют единую пластичную массу. В процессе застывания и окаменения последней, происходит выведение жидкости из смеси от периферических зон к центральной части.Химические добавки. Широко применяются пластификаторы, воздухововлекающие соединения, ускорители твердения.

В современной строительной практике используется две основные разновидности материала:

Продукция на стандартном пенополистироле. В качестве базиса применяются гранулы сферической формы с диаметром 2-5 миллиметров.Материал на дробленом экструдированном пенополистироле. Долговечен, экологически чист, обладает повышенной плотностью. Базисное сырье не изготовляется в промышленных масштабах, выступая преимущественно отходами ряда производств.

Преимущества и недостатки бетона с пенопластовой крошкой

Основные преимущества:

Небольшая масса. Продукция легче силикатов и керамики, обыкновенного бетона или известнякового аналога.Нормальная теплопроводность. Это показатель близок к идентичным свойствам керамзитобетона, при этом паропроницаемость существенно выше.Слабое впитывание влаги. Продукция долго сохраняет теплофизические свойства из-за инертности к воздействию внешней влаги, поскольку коэффициент максимального впитывания жидкости не превышает 4 процентов.Достаточная прочность на изгиб. Бетон с пенопластовой крошкой имеет лучшие показатели среди всех типов ячеистых материалов, что позволяет, безопасно перевозить продукцию, обрабатывать её использовать в качестве конструкционно-изоляционного базиса.Полноценная морозостойкость. Выдерживает до 50 циклов заморозки/разморозки.Лёгкая работа с материалом. После заливки полистиролбетона по истечению 1 часа можно снимать внешнюю опалубку, что в десятки раз ускоряет строительные работы или формовку блоков.Огнестойкость. При пожаре полная деструкция заполнителя внутри структуры легкого бетона не приводит к снижению прочностных свойств материала, что обеспечивает базовую защиту от обрушений стен, изоляционных плит, легких перекрытий, ограждающих конструкций и так далее.

Типичные недостатки характерны для всех типов легких ячеистых бетонов, в том числе и полистиролбетона:

Невысокая прочность, не позволяющая использовать материал для ответственных строительных работ, возведения конструкций с умеренными и тяжелыми физическими штатными нагрузками.Невозможность прямого использования в качестве внешней отделки. Для защиты от агрессивных факторов окружающей среды нужно дополнительно обрабатывать поверхности материала пропитками, эпоксидными красками или аналогичными материалами.Сложности с приготовлением. В рамках смешивания компонентов лёгкого бетона обязательно используется ряд специальных добавок.

Пропорции приготовления полистиролбетона

Существует множество рецептов приготовления базовой смеси. Отдельные «специалисты» рекомендуют вносить в него щебень, шлаки и иные крупнозернистые заполнители. Однако получившаяся продукция будет обладать недостатками, как классических бетонов, так и ячеистых аналогов, что в конечном итоге на фоне общего удорожания компонентов является нерациональным применением ингредиентов.

В домашних условиях, для нужд частного строительства обычно делают полистиролбетон плотностью Д350 или Д1200. Первый применяется как самонесущая теплоизоляция. Второй – в качестве базисного конструкционного материала.

Расход материалов для приготовления 1 кубометра теплоизоляционного самонесущего бетона на пластиковой крошке:

740 килограмм цемента;Один кубометр полистирола;220 литров воды.

Типовая пропорция для изготовления конструкционно-теплоизоляционного типа продукции с плотностью 1 тонна/кубометр:

1 часть цемента марки М400;2,5 части песка;4,5 части дробленого пенопласта.

Оптимальное водоцементное отношение в последнем случае – 0,6-0,7.

Расход материалов для приготовления одного кубометра конструкционного полистиролбетона:

625 килограмм цемента марки М400;415 килограмм песка;0,8 кубометра полистирола;185 литров воды.

В рамках процедуры замешивания компонентов следует обязательно вносить добавки, позволяющие сформировать особые свойства продукции и облегчить основное мероприятие. Чтобы пенопластовые шарики легко смачивались водой и проявляли адгезивные свойства, следует применять омыленную древесную смолу с расходом 1-2 процентах от массы цемента. Помимо этого вещества возможно использование суперпластификаторов, акриловых полимеров, бутадиен-стирольного латекса, поливинилацетата, карбоксиметилцеллюлозы.

Замешиваются компоненты в ёмкости подходящих размеров. Простая схема:

Объедините песок с цементом и химические добавки, перемешав все ингредиенты в однородную массу.Порциями по 5 литров залейте воду, вымешивая раствор и не допуская его растворения, формирования комков.Добавьте в пластичную массу полистирол и тщательно перемешайте в течение 15-20 минут до равномерного распределения заполнителя по структуре смеси.

Готовую продукцию используйте в течение 30-40 минут.

Заключение

Бетон с пенопластовой крошкой используется в частном строительстве для теплоизоляции и ряда внутренних вторичных работ. При приготовлении смеси следует тщательно соблюдать пропорции, использовать необходимые добавки.

Источник

СВОЙСТВА ЛЕГКОГО ПЕНОПОЛИСТИРОЛБЕТОНА, АРМИРОВАННОГО СТАЛЬНЫМ ВОЛОКНОМ

Пенополистирол (EPS) - легкий, малопрочный материал с хорошими энергопоглощающими характеристиками. Однако из-за небольшого веса шариков из пенополистирола и их гидрофобной поверхности бетон из пенополистирола склонен к расслоению во время заливки, что приводит к плохой обрабатываемости и прочности. В этой статье для изготовления пенополистирола был использован метод предварительного смешивания, аналогичный технологии «обертывания песком».Также были исследованы его механические свойства. Исследование, представленное в статье, показало, что пенополистирол-бетон с плотностью 800-1800 кг / м3 и прочностью на сжатие 10-25 МПа можно получить, частично заменив крупный и мелкий заполнитель шариками из пенополистирола. Мелкодисперсный микрокремнезем значительно улучшил связь между шариками пенополистирола и цементной пастой и увеличил прочность на сжатие пенополистирола. Кроме того, добавление стальной фибры значительно улучшило усадку при высыхании.

  • Наличие:
  • Корпоративных авторов:

    Эльзевир

    The Boulevard, Langford Lane
    Kidlington, Оксфорд Великобритания OX5 1 ГБ
  • Авторов:
  • Дата публикации: 2004-7

Язык

Информация для СМИ

Предмет / указатель терминов

Информация для подачи

  • Регистрационный номер: 00983066
  • Тип записи: Публикация
  • Файлы: TRIS
  • Дата создания: 8 декабря 2004 г. 00:00

Влияние размеров и расположения пенополистирола (EPS) на свойства легкого бетона

  • 1.

    Mindess S, Young JF, Darwin D (2002) Concrete, 2nd edn. Прентис Холл, Нью-Йорк

    Google Scholar

  • 2.

    Невилл AM (2012) Свойства бетона. Wiley, Чичестер

    Google Scholar

  • 3.

    Нараянан Н., Рамамурти К. (2000) Структура и свойства пенобетона: обзор. Cem Concr Compos 22: 321–329

    Статья Google Scholar

  • 4.

    Terzic A, Pezo L, Mitic V, Radojevic Z (2015) Влияние свойств заполнителей на основе искусственной летучей золы на характеристики легкого бетона. Ceram Int 41: 2714–2726

    Артикул Google Scholar

  • 5.

    Коцкал Н.Ю., Озтуран Т. (2011) Характеристики легких агрегатов летучей золы, произведенных с использованием различных связующих и термической обработки. Cem Concr Compos 33: 61–67

    Статья Google Scholar

  • 6.

    Коланджело Ф., Мессина Ф., Чоффи Р. (2015) Переработка летучей золы ТБО посредством цементирующего двухступенчатого гранулирования с холодным связыванием: технологическая оценка производства легких искусственных заполнителей. J Hazard Mater 299: 181–191

    Статья Google Scholar

  • 7.

    Sales A, Souza FR, Santos WN, Zimer AM, Almeida FCR (2010) Легкий композитный бетон, полученный из шлама водоочистки и опилок: термические свойства и потенциальное применение.Constr Build Mater 24: 2446–2453

    Статья Google Scholar

  • 8.

    Chabannes M, Benezet J-C, Clerc L, Garcia-Diaz E (2014) Использование рисовой шелухи-сырца в качестве естественного заполнителя в легком изоляционном бетоне: инновационное применение. Constr Build Mater 70: 428–438

    Статья Google Scholar

  • 9.

    Chung SY, Abd Elrahman M, Sikora P, Rucinska T, Horszczaruk E, Stephan D, Stephan D (2017) Оценка влияния измельченных и вспененных заполнителей отработанного стекла на свойства материала легкого бетона с использованием изображения -основанные подходы.Материалы 10: 1354

    Артикул Google Scholar

  • 10.

    Mo KH, Ling T-C, Alengaram UJ, Yap SP, Yuen CW (2017) Обзор использования дополнительных вяжущих материалов в легком заполненном бетоне. Constr Build Mater 139: 403–418

    Статья Google Scholar

  • 11.

    Bouvard D, Chaix JM, Dendievel R, Fazekas A, Letang JM, Peix G, Quenard D (2007) Характеристика и моделирование микроструктуры и свойств легкого бетона EPS.Cem Concr Res 37: 1666–1673

    Статья Google Scholar

  • 12.

    Милл К., Рой Р.Л., Саб К., Боулай С. (2007a) Поведение идеализированного легкого бетона из пенополистирола на сжатие: размерные эффекты и режим разрушения. Mech Mater 36: 1031–1046

    Артикул Google Scholar

  • 13.

    Печче М., Черони Ф., Биббо Ф.А., Асьерно С. (2015) Поведение соединения стали и бетона легкого бетона с пенополистиролом (EPS).Mater Struct 48: 139–152

    Статья Google Scholar

  • 14.

    Sayadi AA, Tapia JV, Neitzert TR, Clifton GC (2016) Влияние частиц пенополистирола (EPS) на огнестойкость, теплопроводность и прочность на сжатие пенобетона. Constr Build Mater 112: 716–724

    Статья Google Scholar

  • 15.

    Бабу Д.С., Бабу К.Г., Ви Т.Х. (2005) Свойства легких бетонов из пенополистирольных заполнителей, содержащих летучую золу.Cem Concr Res 35: 1218–1223

    Статья Google Scholar

  • 16.

    Бабу Д.С., Бабу К.Г., Ви Т.Х. (2006) Влияние размера заполнителя полистирола на характеристики прочности и миграции влаги легкого бетона. Cem Concr Compos 28: 520–527

    Статья Google Scholar

  • 17.

    Кан А., Демирбога Р. (2009) Новый материал для производства легкого бетона. Cem Concr Compos 31: 489–495

    Статья Google Scholar

  • 18.

    Sadrmomtazi A, Sobhani J, Mirgozar MA, Najimi M (2012) Свойства многопрочного пенополистирольного бетона, содержащего микрокремнезем и золу рисовой шелухи. Constr Build Mater 35: 211–219

    Статья Google Scholar

  • 19.

    Милед К., Саб К., Рой Р.Л. (2007b) Влияние размера частиц на прочность на сжатие легкого бетона EPS: экспериментальное исследование и моделирование. Mech Mater 39: 222–240

    Артикул Google Scholar

  • 20.

    Лю Н., Чен Б. (2014) Экспериментальное исследование влияния размера частиц пенополистирола на механические свойства легкого бетона из пенополистирола. Constr Build Mater 68: 227–232

    Статья Google Scholar

  • 21.

    Цуй К., Хуанг К., Ли Д., Цюань С., Ли Х (2016) Зависимость напряжения от деформации при осевом сжатии для бетона из пенополистирола. Constr Build Mater 105: 377–383

    Статья Google Scholar

  • 22.

    Schackow A, Effting C, Folgueras MV, Guths S, Mendes GA (2014) Механические и термические свойства легких бетонов с вермикулитом и пенополистиролом с использованием воздухововлекающих добавок. Constr Build Mater 57: 190–197

    Статья Google Scholar

  • 23.

    Chung S-Y, Elrahman MA, Stephan D, Kamm PH (2016b) Исследование характеристик и откликов образцов изоляционного цементного теста с твердыми телами Aer с использованием рентгеновской микрокомпьютерной томографии.Constr Build Mater 118: 204–215

    Статья Google Scholar

  • 24.

    Дори Р.А., Йоманс Дж. А., Смит П.А. (2002) Влияние кластеризации пор на механические свойства керамики. J Eur Ceram Soc 22: 403–409

    Статья Google Scholar

  • 25.

    Wong RCK, Chau KT (2005) Оценка пространственного распределения воздушных пустот и агрегатов в бетоне при одноосном сжатии с использованием компьютерной томографии.Cem Concr Res 35: 1566–1576

    Статья Google Scholar

  • 26.

    Chung S-Y, Elrahman MA, Stephan D (2016a) Исследование влияния анизотропных пор на свойства изоляционного бетона с использованием компьютерной томографии и вероятностных методов. Energy Build 125: 122–129

    Статья Google Scholar

  • 27.

    Лу Б., Торквато С. (1992) Функция линейного пути для случайных неоднородных материалов.Phys Rev A 45: 922–929

    Статья Google Scholar

  • 28.

    ISO 22007-2: 2015 (2015) Пластмассы - определение теплопроводности и температуропроводности - часть 2: метод переходного плоского источника тепла (Hot Disk)

  • 29.

    EN 12390-4: 2000 ( 2000) Испытания затвердевшего бетона - часть 4: прочность на сжатие; спецификация для испытательных машин

  • 30.

    ABAQUS (2013) Версия 6.13. Системы Dassault.Потакет, Род-Айленд

  • 31.

    Incropera FP, Девитт Д.П., Бергман Т.Л., Лавин А.С. (2006) Основы тепломассопереноса. Уайли, Нью-Йорк

    Google Scholar

  • 32.

    Jankowiak T, Lodygowski T (2008) Идентификация параметров определяющей модели пластичности повреждений бетона. Найдено Civ Environ Eng 6: 53–69

    Google Scholar

  • 33.

    Kmiecik P, Kaminski M (2011) Моделирование железобетонных и композитных конструкций с учетом снижения прочности бетона.Arch Civ Mech Eng 11: 623–636

    Статья Google Scholar

  • 34.

    Jones MR (2001) Пенобетон для структурного использования. В кн .: Материалы однодневного семинара по пенобетону: свойства, применение и последние технологические разработки. Университет Лафборо

  • 35.

    Ramamurthy K, Nambiar EKK, Ranjani GIS (2009) Классификация исследований свойств пенобетона. Cem Concr Compos 31: 388–396

    Статья Google Scholar

  • 36.

    Сингх Х., Гокхале А.М., Тамирисакандала С., Либерман С.И. (2008) Расчеты линейного распределения вероятностей траектории на основе изображений для представления микроструктуры. Mater Sci Eng A 474: 104–111

    Статья Google Scholar

  • 37.

    Тевари А., Гокхале AM, Споварт Дж. Э., Miracle DB (2004) Количественная характеристика пространственной кластеризации в трехмерных микроструктурах с использованием двухточечных корреляционных функций. Acta Mater 52: 307–319

    Статья Google Scholar

  • 38.

    Torquato S, Beasley JD, Chiew YC (1988) Двухточечная кластерная функция для перколяции континуума. J Chem Phys 88: 6540–6547

    MathSciNet Статья Google Scholar

  • 39.

    Torquato S (2002) Случайные гетерогенные материалы. Спрингер, Нью-Йорк

    Бронировать Google Scholar

  • 40.

    Bogas JA, Gomes A, Pereira MFC (2012) Самоуплотняющийся легкий бетон, произведенный с использованием керамзитового заполнителя.Constr Build Mater 35: 1013–1022

    Статья Google Scholar

  • 41.

    Ким Х.К., Хван Э.А., Ли Х.К. (2012) Воздействие метакаолина на легкий бетон в зависимости от типа мелкого заполнителя. Constr Build Mater 36: 719–726

    Статья Google Scholar

  • 42.

    Mo KH, Alengaram UJ, Visintin P, Goh SH, Jumaat MZ (2015) Влияние легкого заполнителя на свойства сцепления бетона с различными классами прочности.Constr Build Mater 84: 377–386

    Статья Google Scholar

  • Прочность модифицированного пенополистиролбетона после динамического циклического нагружения

    EPS-бетон был получен путем смешивания пенополистирольных сфер (EPS), полимерной эмульсии и загустителя с матричным бетоном, и этот бетон имел хорошие характеристики поглощения энергии вибрации. Основываясь на экспериментальных данных, полученных при объемном соотношении EPS 0%, 20%, 30% и 40% путем замены матрицы или крупного заполнителя, оба стиля дизайна имели почти одинаковую прочность на сжатие.Применяя частоту 5 Гц, 50000 или 100000 раз, циклическую нагрузку 40 кН, 50 кН и 60 кН, показано, что чем больше был размер включений, тем ниже была бы прочность на сжатие пенополистирола; чем больше была приложенная динамическая циклическая нагрузка, тем более очевидным было изменение прочности на сжатие. Между тем, прочность бетона из пенополистирола не претерпела явных изменений после испытания на долговечность. Результаты этого исследования имели практическое значение для использования бетона EPS в некоторых долгосрочных циклических динамических нагрузках.

    1. Введение

    Поскольку легкий бетон из пенополистирола (EPS) обладает характеристиками легкости, поглощения энергии и сохранения тепла, он используется во многих конкретных отраслях строительной отрасли, таких как высотные здания, плавучие морские платформы и большие сооружения. размерный и длиннопролетный бетон [1, 2]. Легкий бетон (LWC) не загрязняет окружающую среду, поскольку при производстве частиц EPS потребляется мало энергии, а частицы не имеют яда и вреда.Бетон EPS обладает характеристиками экономии, защиты окружающей среды и энергосбережения, что соответствует концепции дизайна современного строительного материала.

    В 1970-х Кук [3] поместил частицы EPS в бетон и провел исследования. Систематические исследования начались в 1990-х годах; Французский ученый получил взаимосвязь между прочностью легкого бетона и пористостью, добавив в бетон различные пропорции частиц EPS [4]. Бетон EPS был произведен путем замены частично нормальных заполнителей в бетоне; конкретная стадия смешивания зависела от требований плотности и уровней прочности.Зависимость между прочностью и широким диапазоном плотности пенополистирола может быть получена путем изменения масштаба смеси частиц пенополистирола [1, 4–8]. Также проводились исследования, посвященные влиянию размера частиц пенополистирола на прочность бетона на сжатие [9, 10]. Латекс бутадиен-стирольного каучука (SBR) был применен в бетоне EPS в качестве полимерной добавки Ченом и Лю [11], чтобы улучшить однородность частицы EPS в LWC и убедиться, что частица не будет плавать во время вибрации бетона.Бабу и др. [12] увеличили прочность за счет добавления летучей золы в бетон из пенополистирола и улучшили начальную прочность за счет добавления микрокремнезема в бетон из пенополистирола [13]. С введением метода предварительного смешивания, использованного для изготовления EPS-бетона Ченом и Лю [14], он позволил избежать сегрегации частиц EPS в заполнителе во время заливки. Лаалаи и Саб [15] проверили формулу трансформации среди образцов разного размера.

    Бетон из пенополистирола считается энергопоглощающим материалом для защиты подземных военных сооружений и некоторых специфических конструкций, которые подвергаются длительным циклическим нагрузкам.Между тем, к нему предъявляются требования по прочности и долговечности пенополистирола. Основная цель данной статьи - количественно оценить влияние размера включений пенополистирола на прочность на сжатие, улучшить прочность и удобоукладываемость бетона из пенополистирола путем смешивания трех добавок. Прочность бетона EPS была получена путем сравнения между образцами до и после приложения циклической нагрузки 40 кН, 50 кН и 60 кН в течение 50000 или 10000 раз.

    2. Материалы и принципы конструирования смесей

    Испытательные образцы были изготовлены из того же типа, что и для очень высокопрочного бетона, и частицы пенополистирола заняли место части бетона или крупного заполнителя.

    (1) Цемент. Изготовлен из цемента CEM I 52,5.

    (2) Мелкий заполнитель. Изготовлен из окатанного речного песка с модулем крупности 2,85.

    (3) Крупный заполнитель. Это гравий диаметром от 4 до 20 мм.

    (4) частицы EPS. EPS частицы представляют собой частицы пенополистирола в виде сфер с диапазоном диаметров 1–3 мм и плотностью 20 кг / м 3 , который показан на Рисунке 1.


    (5) Кремнеземная пыль. Поскольку дисперсность микрокремнезема очень низкая, она составляет около 80–100 по сравнению с обычным цементом, и он используется в бетоне для заполнения пор между гранулами цемента, а гидратные продукты подобны цементу в воде; другая смесь будет скреплена гелем. Соотношение компонентов микрокремнезема обсуждается К. Г. Бабу и Д. С. Бабу [13].

    (6) Примесь. Суперпластификатор на основе поликарбоксилата был использован для улучшения удобоукладываемости и прочности на сжатие пенополистирола, а соотношение компонентов смеси соответствует результатам Miled et al.[4]. Частицы пенополистирольных сфер представляют собой гидрофобный материал, чрезвычайно легкий с плотностью всего 12–20 кг / м 3 , который может вызвать сегрегацию при смешивании и создать неоднородность пенополистирола, что приведет к снижению прочности на сжатие.

    Есть два пути решения этой проблемы: один - усилить связь между частицами EPS и агрегатами путем преобразования частиц EPS из гидрофобного материала в гидрофильный материал, а другой - улучшить вязкость бетона EPS.Чтобы максимально улучшить прочность на сжатие пенополистирола, образец был изготовлен с использованием обоих методов. В смесь добавляли полимерную эмульсию для увеличения вязкости; соотношение между прочностью на сжатие и соотношением компонентов смеси показано на фиг. 2. Эфир гидроксипропилцеллюлозы использовался для контроля консистенции и водоудерживающей способности бетонной суспензии; соотношение между прочностью на сжатие и соотношением компонентов смеси показано на рисунке 3. Эти две добавки могут гарантировать, что частицы пенополистирола не разделятся во время вибрации бетона.



    (7) Метод смешивания. Из-за гидрофобного материала частиц EPS, удобоукладываемость и долговечность бетона EPS были плохими во время процесса смешивания [16]. Действительно, после многократного перемешивания для изготовления пенополистирола был использован метод перемешивания, аналогичный технике «обертывания песком». Во-первых, он затянул частицы EPS и 1/3 воды и 1/2 эмульсии полимера в бункер для смешивания. После перемешивания в течение одной минуты он поместил гравий в бункер для смешивания, затем перемешивал его в течение одной минуты и, наконец, втянул все другие агрегаты в бункер для смешивания и перемешивал их в течение двух минут.Метод смешивания обеспечит удобоукладываемость и однородность пенополистирола.

    3. Испытание на прочность при сжатии

    Кубики из пенополистирола размером 100 мм были использованы для изучения прочности на сжатие после хранения в лабораторных условиях в течение 28 дней. Водоцементное соотношение является важным показателем, влияющим на прочность на сжатие. Взаимосвязь между водоцементным соотношением и прочностью на сжатие показана на рисунке 4. Прочность на сжатие значительно снижается, когда водоцементное соотношение установлено на 0.36, потому что частицы пенополистирола состоят из гидрофобного материала, и удобоукладываемость падает при увеличении водоцементного отношения. Прочность на сжатие незначительно изменяется при увеличении водоцементного отношения с 0,32 до 0,34, учитывая экономику применительно к практическому проектированию, водоцементное отношение в этой статье установлено на 0,32.


    Чтобы наблюдать влияние объемного отношения частиц пенополистирола на прочность на сжатие, образцы бетона из пенополистирола различной плотности были изготовлены в соответствии с таблицей 1.

    3 3 542 9

    Объемная доля пенополистирола% Тип конструкции Соотношение вода /
    цемент%
    Цемент
    кг / м 3
    Речной песок
    кг / м32 3
    Гравий
    кг / м 3
    Вода
    кг / м 3
    Пары кремнезема
    кг / м 3
    Суперпластификатор
    кг / м 3
    Полимерная эмульсия 6 кг / м гидроксипропилцеллюлоза
    кг / м 3

    0 Без замены 32 538
    1152
    8.07 8.07 2.69

    0,2 Заменить бетон 32 430 434 922 922 922 922 2,152

    0,2 Только замена гравия 32 538 542 662 172 26.9 8.07 8.07 2,69

    0,3 Заменить бетон 32 375 380 808 380 808 808 808 808 808 1,875

    0,3 Только замена гравия 32 538 542 662 172 26.9 8,07 8,07 2,69

    0,4 ​​ Заменить бетон 32 323 325 691 103 325 691 1,614

    0,4 ​​ Только замена гравия 32 538 542 172 172 26.9 8,07 8,07 2,69

    Объемный коэффициент EPS, рассматриваемый здесь как пористость бетона, определялся по следующей формуле [4]: ​​где - плотности матрицы и и - плотности пенополистирола и частиц пенополистирола, соответственно.

    Три образца были изготовлены в соответствии с каждым стилем дизайна, и каждое значение было указано, потому что пористость и прочность на сжатие образцов незначительно различаются.Влияние пористости на прочность на сжатие легкого бетона из пенополистирола показано на рисунках 5 и 6.



    Минимальная и максимальная прочность на сжатие бетона из пенополистирола с конструкцией частиц пенополистирола, заменяющих бетон в возрасте 28 дней, составила 18,05 и 40,31 МПа; Между тем, минимальная и максимальная прочность на сжатие составляла 16,23 и 40,07 МПа в соответствии со стилем конструкции частиц пенополистирола, заменяющих крупнозернистый заполнитель из рисунков 5 и 6. Было обнаружено, что объемное соотношение пенополистирола оказало наиболее значительное влияние на прочность на сжатие заменяющего пенополистирола. бетон или крупный заполнитель и увеличение объема пенополистирола и снижение прочности на сжатие.

    Согласно результатам испытаний, прочность на сжатие двух стилей конструкции в основном совпадала, но пористость пенополистирола отличалась от показанных на рисунках 5 и 6. С учетом экономии в практической инженерии стоимость замены частиц пенополистирола бетон был меньше, а прочность на сжатие в этом стиле дизайна была такой же, как у частиц EPS, заменяющих крупный заполнитель. Таким образом, основное внимание в данной статье уделяется изучению механических свойств пенополистирола с частицами пенополистирола, заменяющими бетон.

    Посредством анализа экспоненциальной подгонки полученные эмпирические зависимости могут быть записаны в виде где представляют прочность на сжатие (МПа) через 28 дней. Коэффициент корреляции предложенной связи составляет 0,989, что указывает на значительную корреляцию.

    Режим отказа. Различное соотношение объема частиц пенополистирола имело другой вид разрушения, что показано на рисунке 7. После испытания прочности на сжатие матрица разрушилась, и масштаб трещины был меньше вместе с увеличением объемного отношения частиц пенополистирола.Это явление было вызвано характеристиками поглощения энергии частицами пенополистирола, и внешний вид оставался неизменным, даже если бетон из пенополистирола подвергался разрушению.


    4. Долговечность бетона из пенополистирола

    Бетон из пенополистирола обладает характеристиками виброустойчивости и поглощения энергии, которые могут использоваться в гражданском строительстве на основе циклической нагрузки для снижения вибрации системы. Тем не менее, очень важно проверить долговечность пенополистирола с вибрационными свойствами, поскольку приложение вибрационной нагрузки часто сопровождается характеристикой низкой прочности.В этой статье качественно анализируется влияние объемного отношения пенополистирола, продолжительности циклов вибрации и вибрационной нагрузки на долговечность бетона из пенополистирола при испытании на циклическую нагрузку.

    Циклическое динамическое испытание на вибрацию использовало испытательную систему на усталость с электрогидравлическим сервоприводом 370,50 MTS, показанную на Рисунке 8, которая имела нагрузочную способность 500 кН и динамический ход 150 мм, а данные испытаний можно было отображать в реальном времени и сохранять в компьютере. Объемный коэффициент EPS составлял 0%, 20%, 30% и 40%, время цикла вибрации составляло 50000 и 100000, вибрационная нагрузка составляла 60 кН, 50 кН и 40 кН, а частота вибрации составляла 5 Гц; синусоида была принята для моделирования процесса вибрации.


    4.1. 50000-кратное испытание на прочность

    После 50 тысяч циклических нагрузочных испытаний бетон будет проходить испытание на прочность; значение прочности на сжатие до и после циклического нагружения показано на рисунках 9–11.




    Прочность на сжатие бетона без частиц пенополистирола снизилась в разной степени после испытания на долговечность, и чем больше прикладываемая циклическая нагрузка, тем очевиднее снижение прочности бетона.Прочность на сжатие бетона с объемной долей частиц EPS (20% EPS) была меньше, чем раньше, в то время как прочность на сжатие 30% и 40% EPS бетона увеличивается в разной степени при приложении циклической нагрузки 40 кН, в основном из-за циклической нагрузки. привело к сжатию частиц пенополистирола и небольшому уплотнению бетона из пенополистирола при приложении нагрузки; Таким образом, прочность на сжатие 30% и 40% EPS бетона была выше, чем до испытания на долговечность. При приложении нагрузки от 40 кН до 50 кН и, наконец, до 60 кН, влияние циклической нагрузки на долговечность пенополистирола становилось все более очевидным; Между тем, чем больше объемное соотношение частиц EPS, тем меньше будет изменение прочности на сжатие после 50000 циклических нагрузок.

    4.2. 100000-кратное испытание на долговечность

    Поскольку 100000-кратное циклическое динамическое испытание требует длительного времени, в исследовании использовался пенополистирольный бетон с объемным соотношением частиц 0% и 30% в качестве примера, применяя синусоидальную циклическую нагрузку 50 кН 100000 раз на пенополистирол-бетон; прочность на сжатие до и после испытания на долговечность, как показано на рисунке 12.


    Изменение прочности на сжатие матрицы было очевидным после 100000 раз динамической вибрационной нагрузки, как показано на рисунке 12, в то время как прочность на сжатие составляла 30%. У пенополистирола снизилась прочность по сравнению с прочностью после 50000-кратного циклического динамического вибрационного нагружения, но это снижение было небольшим; Таким образом, можно сделать вывод, что бетон из пенополистирола - это материал с хорошей прочностью.

    5. Выводы

    Бетон EPS имеет преимущества небольшой плотности, теплоизоляции и хороших сейсмических характеристик. Таким образом, исследование новых бетонных материалов имеет большое значение при изучении современных конструкционных материалов и практической инженерии. Экспериментальные исследования были проведены на трех типах EPS-бетона с EPS-бетоном с объемным соотношением частиц от 0% до 40% с целью подтверждения наличия влияния внутреннего содержания частиц на прочность на сжатие и долговечность EPS-бетона.Выводы делаются следующим образом: (1) Для увеличения прочности на сжатие полимерная эмульсия смешивается с бетонным раствором, который связывает вместе другие смеси, и обсуждается взаимосвязь между ее соотношением смешивания и прочностью на сжатие. Гидроксипропилцеллюлоза смешивается с пенополистиролом для улучшения удобоукладываемости раствора, и изучается влияние его соотношения смешивания на прочность бетона на сжатие. (2) Прочность на сжатие двух типов пенополистирола, в котором бетон заменяется или только гравий, замененный частицами EPS, был в основном идентичным; Результат показал, что прочность на сжатие двух стилей дизайна в основном совпадала.Прочность на сжатие пенополистирола заметно снизилась с увеличением объемного отношения частиц пенополистирола; кривая уменьшения была похожа на кривую экспоненциального типа. (3) Значение приложения динамической циклической нагрузки оказало большое влияние на прочность на сжатие после испытания на долговечность. Прочность на сжатие бетона из пенополистирола с объемным соотношением частиц 40% была увеличена после приложения циклической динамической нагрузки 40 кН и 50 кН, а другое соотношение объема частиц из пенополистирола в бетоне было уменьшено после испытания на долговечность; Между тем, степень снижения прочности на сжатие была обратно пропорциональна объемному соотношению частиц EPS.Кроме того, чем больше была приложенная динамическая циклическая нагрузка, тем больше был бы разрыв прочности на сжатие между до и после испытания на долговечность. Прочность на сжатие EPS-бетона с объемным соотношением частиц 0% и 30% упадет, когда динамическая циклическая нагрузка будет приложена 100000 раз, а снижение прочности на сжатие матрицы будет намного больше, чем объемное соотношение частиц EPS-бетона 30% по сравнению с применением динамическая вибрационная нагрузка 50000 раз. (4) Результаты испытаний на долговечность показали, что легкий бетон из пенополистирола имеет хорошую долговечность и очень хорошо используется в практической инженерии, которая имеет определенные сейсмические требования и прикладывает циклическую нагрузку.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

    Полистиролбетон: универсальная альтернатива для строительства

    Область применения композитных материалов в строительстве и машиностроении в последние годы расширилась благодаря диверсификации химической промышленности. Полимеры и другие пластмассы стали более широко использоваться в качестве традиционных заменителей заполнителей в бетонном строительстве.Это расширение приводит к добавлению определенных термических и механических свойств в различные композитные бетоны. В частности, полистиролбетон (Epscrete) стал появляться в Интернете благодаря своим уникальным свойствам. Смешивание полистирольного композита почти такое же, как и при смешивании традиционного бетона, за исключением замены более крупных заполнителей измельченными гранулами полистирола.

    Полистирол используется в мягкой пенопластовой изоляции, а также во многих сферах применения в коммерческой упаковке.После использования по прямому назначению химическое вещество становится невероятно трудным для вторичной переработки, а из-за его гидрофобной природы и низкой плотности оно может вызвать проблемы в традиционных условиях захоронения отходов. С точки зрения экологии, переработка полистирола в бетон позволяет избежать попадания этого материала на свалки.

    Одной из основных причин того, что бетон становится все популярнее, являются его впечатляющие теплоизоляционные свойства. Что касается верхнего предела, некоторые смеси композита могут достигать значения R выше 7.8–8,2 в соответствии с испытаниями ORNL, совпадающими или даже превосходящими другие альтернативы изоляции. Помимо полезных изоляционных свойств, бетон, который традиционно изготавливается в виде блоков различных форм, может выдерживать свой вес при строительстве небольших размеров. Используемый в наружных стенах, материал может значительно уменьшить или устранить необходимость в традиционных методах внутренней изоляции.

    [Источник изображения: Wikimedia ]

    Производственный процесс также прост, за исключением необходимости работать в хорошо вентилируемом помещении во время смешивания и измельчения полистирола.Отходы пены измельчаются в мелкие гранулы (номинальный диаметр в значительной степени зависит от применения), затем смешиваются с частью добавляемой воды. Это сделано для уменьшения сцепления между частицами и облегчения перемешивания. Дозированными добавками в смеситель добавляют воду, полистирол, портландцемент и кварцевый песок. Пропорции смеси различаются в зависимости от производителя, но можно ожидать, что они будут соответствовать стандартным пропорциям.

    Готовый блок из полистирола, соответствующий по размерам стандартному шлакоблоку, может весить до 10 раз меньше.Благодаря упругой природе пенополистирола, композит может выдерживать значительные растягивающие напряжения по сравнению с обычным бетоном на заполнителях. Хотя буйность не является традиционным свойством для бетона и не используется в промышленности, этот композит действительно плавучий. Однако для погружения требуется очень небольшая нагрузка, поэтому он не используется при строительстве морских или плавучих пирсов.

    Применяемый в основном для изготовления сборных железобетонных изделий, композит также может быть отлит в монолитные формы на месте.Опалубка по-прежнему требуется, но опора для нее не обязательно должна быть такой прочной из-за небольшого веса и плотности литой конструкции. Одним из преимуществ использования этого материала является то, что он не требует виброуплотнения или других методов уплотнения на месте во время заливки.

    По мере развития строительной отрасли строительные материалы станут более экологичными, а инженеры получат возможность выбирать механические и химические свойства желаемого материала.Вместо того, чтобы обходить доступные материалы, в процессе строительства будут доступны различные композитные структурные компоненты.

    http://interestingengineering.com/what-a-civil-engineer-does/

    Физико-механические свойства объемного легкого бетона с шариками из пенополистирола (EPS) и мягкой морской глиной

    Abstract

    Физические и механические свойства легкого насыпного наполнителя с содержанием гранул цемента и пенополистирола (EPS) при различных ограничивающих давлениях важны для строительства и геотехнических применений.В этом исследовании сначала был изготовлен легкий объемный наполнитель из сингапурской морской глины, обычного портландцемента и пенополистирола. Затем с помощью трехосных испытаний неуплотненного и недренированного (UU) материала было исследовано влияние содержания шариков пенополистирола, содержания цемента, времени отверждения и ограничивающего давления на массовую плотность, поведение при напряжении и деформации и прочность на сжатие этого легкого насыпного наполнителя. В этих испытаниях массовые отношения шариков EPS к сухой глине (E / S) составляли 0%, 0,5%, 1%, 2% и 4%, а массовые отношения цемента к сухой глине (C / S) составляли 10%. % и 15%.В-третьих, серия трехосных испытаний UU была проведена при ограничивающем давлении 0 кПа, 50 кПа, 100 кПа и 150 кПа после трех дней отверждения, семи дней отверждения и 28 дней отверждения. Результаты показывают, что массовая плотность этого легкого объемного наполнителя в основном контролировалась соотношением E / S. Его массовая плотность снизилась на 55,6% для отношения C / S 10% и 54,9% для отношения C / S 15%, когда отношение E / S увеличилось с 0% до 4% после трех дней отверждения. Разрушение от сдвига легче происходило в образцах с более высоким содержанием цемента и более низким ограничивающим давлением.Связь между прочностью на сжатие и массовой плотностью или деформацией разрушения можно количественно оценить с помощью степенной функции. Увеличение содержания цемента и уменьшение содержания шариков пенополистирола увеличит массовую плотность и прочность на сжатие этого легкого насыпного наполнителя. Прочность на сжатие в зависимости от времени отверждения может быть выражена логарифмической функцией с подходящим коэффициентом корреляции в диапазоне от 0,83 до 0,97 для пяти ограничивающих давлений. Эти эмпирические формулы будут полезны для оценки физико-механических свойств легких бетонов в инженерных целях.

    Ключевые слова: легкий бетон, мягкая морская глина, шарики из пенополистирола, поведение напряжения-деформации, характер разрушения, прочность на сжатие

    1. Введение

    Большое количество мягких морских глин было извлечено из строительных проектов в прибрежных районах. области. Эти извлеченные мягкие морские глины не подходят непосредственно в качестве строительных материалов из-за высокого содержания воды, высокой сжимаемости, низкой несущей способности, низкой жесткости, низкой проницаемости и низкой прочности на сдвиг [1,2,3,4].Однако эти глины могут использоваться в качестве экологически чистых строительных материалов после того, как их механические свойства будут изменены портландцементом или другими вяжущими материалами [5,6,7,8,9,10,11]. Смесь воздушной пены, натуральной глины и цемента называется «легкая цементная глина» или «воздушно-цементная смешанная глина». Легкая цементная глина широко используется в транспортных инфраструктурах, таких как строительство набережных, аэропорта, облицовки каналов, строительства мостов и подземного строительства [12,13,14,15,16,17].Таким образом, использование этих мягких морских глин связано с экологической проблемой для устойчивого развития гражданского строительства.

    Легкие цементно-глинистые материалы привлекают все больше внимания в гражданском строительстве. Horpibulsuk et al. [18] сообщили о процессе производства легкой цементированной глины. Их процесс следующий: сначала в глину добавляют воду, чтобы получить глиняную мутную пасту. Глиняная мутная паста смешивается с портландцементом в смесительной камере. Затем смесь цементной глины переносится в установку для смешивания воздушной пены и смешивается с воздушной пеной для получения легкой цементной глины с высокой удобоукладываемостью и низкой плотностью.Воздушная пена увеличивает поровое пространство и снижает удельный вес и прочность этой мягкой глины.

    Шарики из пенополистирола (EPS) широко используются в качестве заполнителей строительных материалов при строительстве высотных зданий и длиннопролетных мостов, где собственный вес элемента конструкции становится важной нагрузкой [19,20]. Ли и др. [21] исследовали композитную многослойную плиту из бетона со сверхвысокими характеристиками и шариков из пенополистирола. Они также исследовали возможности применения таких многослойных панелей в высотных зданиях.Кроме того, шарики из пенополистирола имеют низкую плотность и высокую сжимаемость. Они часто используются в качестве заполняющих материалов в сейсмостойких амортизаторах, таких как материалы для засыпки подпорных стен и материалы для заполнения траншей [21,22,23,24]. Эти легкие заполняющие материалы могут использоваться в качестве буферного слоя для снижения динамических нагрузок на грунт при сейсмическом воздействии жестких фундаментов и подпорных стен. Батерст и Зарнани [23] и Гао и др. [25] провели серию испытаний на вибростоле для изучения сейсмических характеристик блочных геопен EPS.Они обнаружили, что EPS может эффективно снизить сейсмическую нагрузку и увеличение поперечной тяги жесткого фундамента и подпорной стены.

    Переработка пенополистирола в качестве строительного материала может отвечать требованиям экономики и защиты окружающей среды [26], поскольку гранулы пенополистирола трудно разрушаются естественным путем. Fernando et al. [27] исследовали использование механической переработки шариков пенополистирола для изготовления прочных легких панелей в качестве стеновых материалов для зданий и домов. Эти панели можно быстро и легко изготовить и использовать в качестве хороших настенных украшений без штукатурки, что принесет пользу окружающей среде.Гранулы EPS обладают такими преимуществами, как низкая плотность, гидрофобность и теплоизоляция. Они могут соответствовать требованиям к теплоизоляции и иметь легкий вес [28,29,30]. Таким образом, разработка и изготовление этого легкого бетона (цементного грунта) с ожидаемыми механическими свойствами является необходимой темой.

    Физико-механические свойства легких цементных материалов были исследованы при различном содержании цемента и времени выдержки [5,10,13,31,32,33,34,35,36]. Эти свойства включают плотность, гидравлическую проводимость, прочность на сжатие, жесткость, поведение напряжения и деформации и явления рассеяния.Джорджио и Скеррато [35] наблюдали явление рассеяния при одноосных испытаниях на сжатие и предложили микронелинейную трехмерную модель для описания явления рассеяния в бетоне. Horpibulsuk et al. [12,13,18] предложили ключевой параметр V / C пустоты / цемента, который представляет собой отношение объема пустоты к объему цемента. Параметр V / C может отражать комплексное влияние содержания цемента, воздуха и воды на поведение и прочность при напряжении и деформации. Цучида и Тан [5] предложили новую формулу для оценки прочности легкой цементной глины.Их формула подтверждена данными испытаний прочности на сжатие шести легких цементных глин с различным исходным содержанием воды. Hu et al. [37] исследовали механическое поведение мягкой глины при сложных циклических нагрузках. Они обнаружили, что циклическая прочность, циклический модуль и циклическая деформация мягкой глины в значительной степени коррелируют с частотой двунаправленного сдвига и соотношением циклических сдвиговых напряжений. Placidi et al. [38] представили явную эволюцию поля повреждений с нагружением и обсудили новую зависимость коэффициентов жесткости от поля повреждений.В последнее время в целях экономии средств и защиты окружающей среды некоторые промышленные или сельскохозяйственные отходы, такие как шарики EPS [39,40], летучая зола (FA) [9,33], зола биомассы (BA) [2], зола рисовой шелухи [ 10,39], реактивный MgO [11,15,41] и резиновые заполнители [42] смешиваются с легкой цементной глиной в качестве наполнителя для строительства насыпей, аэропортов, облицовки каналов, мостов и подземных угольных шахт [41,43 ]. Например, Wang et al. [11] исследовали уплотнение, механические и микроструктурные характеристики реактивного легковесного MgO-грунта с различными соотношениями вода-почва, временем карбонизации и соотношением MgO-почва.Cheng et al. [9] выполнили изотропные консолидированные дренированные трехосные испытания морской глины, смешанной с зольной смесью цемента (FAC), при ограничивающем давлении от 50 до 350 кПа. Jamsawang et al. [44] исследовали влияние типов волокон на характеристики изгиба цементно-волокнистого песка, сделанного из цемента, песка, волокон и воды. Fantilli и Chiaia [42] исследовали влияние резиновых заполнителей на механические характеристики резинового бетона с помощью испытания на трехточечный изгиб. Поэтому основное внимание уделяется влиянию каждого компонента на физико-механические свойства легкой цементной глины.

    Физические и механические свойства легкой глины на основе пенополистирола важны для успешного применения в строительстве и инженерно-геологической инженерии. Механические свойства легкой глины EPS варьируются в зависимости от свойств глины, свойств EPS, содержания цемента и их массовых соотношений. Юнз и др. [45] проверили физико-механические свойства легкого грунта из пенополистирола с помощью испытаний на неограниченное и трехосное сжатие и дополнительно проанализировали влияние начального содержания воды, соотношения цемента, отношения пенополистирола и давления отверждения на прочность на сжатие легкой глины.Лю и др. [46] изготовили новый легкий пломбировочный материал, смешав шарики из полистирола с предварительной затяжкой (PSPP) с китайской мягкой илистой глиной, цементом и водой. Они обнаружили, что шарики PSPP и цемент являются наиболее эффективным фактором, влияющим на массовую плотность и прочность на сжатие легкой глины EPS. Sadrmomtazi et al. [39] исследовали возможность создания многопрочного легкого бетона, содержащего шарики из вспененного полиэтилена. Они использовали различные пропорции шариков из пенополистирола в качестве замены заполнителя, чтобы уменьшить вес бетона.Они изготовили легкий бетон средней прочности и теплоизоляции. Лю и Чен [19] изучали влияние размера валиков из пенополистирола на механические свойства легкого бетона из пенополистирола. Их результаты показывают, что механические свойства бетона EPS тесно связаны с размером и содержанием шариков EPS. Аллахверди и др. [20] произвел многопрочный активный порошковый бетон зеленого цвета с шариками из пенополистирола в качестве легких заполнителей для снижения статической нагрузки бетонных конструкций, подверженных землетрясениям.Они опробовали новую конструкцию и схему строительства высотных строительных объектов и длиннопролетных мостов. Chung et al. [47] проиллюстрировали влияние размера и способа расположения валиков из пенополистирола на характеристики легкого бетона. Они пришли к выводу, что размер или степень агрегации заполнителей полистирола внутри бетона оказали значительное влияние на характеристики бетона. Эти физико-механические свойства каждого компонента можно использовать для управления и улучшения свойств материала высокопроизводительного пенополистирольного бетона.Предыдущие исследования уделяли больше внимания разработке новых вяжущих материалов, таких как летучая зола, реактивный MgO и т. Д., Которые использовались для улучшения физических и механических характеристик мягкой глины. Однако в нескольких литературных источниках сообщается об изменении деформации и прочности легкой цементной глины в зависимости от содержания цемента и пенополистирола при трехосных испытаниях UU. Легкая цементная мягкая глина, сделанная из шариков EPS и сингапурской морской глины, до сих пор не исследовалась.

    В этом исследовании систематически изучались поведение при напряжении и деформации и прочность на сжатие легкой цементной глины с помощью испытаний на трехосное сжатие UU.Во-первых, было проанализировано влияние массовых соотношений EPS к глине и цемента к глине на массовую плотность легкой цементной глины после трех дней отверждения. Затем были подробно изучены деформационные характеристики легкой цементной глины при различных ограничивающих давлениях, соотношении EPS к глине и цемента к глине после семи дней выдержки. В-третьих, отношения между прочностью на сжатие и деформацией разрушения, массовой плотностью и временем отверждения были выражены соответствующей формулой. Эти эмпирические формулы имеют высокие коэффициенты корреляции и могут обеспечить эффективный инженерный инструмент для прогнозирования прочности легкой цементной глины в инженерных приложениях.

    3. Результаты и обсуждение

    3.1. Массовая плотность

    Массовая плотность и прочность смешанной легкой глины являются ключевыми параметрами для ее применения в строительстве и инженерно-геологической инженерии. Образец через три дня выдержки вынули для измерения его (насыпной) плотности. Масса взвешивалась, и диаметры по верхней, средней и нижней частям, а также высота измерялись штангенциркулем. Объем образца был рассчитан на основе предположения о цилиндрическом образце, а затем массовая плотность была рассчитана путем деления массы массы на объем.Влияние соотношений E / S и C / S на массовую плотность смешанных образцов глины после трех дней отверждения показано на рис. Увеличение отношения C / S образцов может немного увеличить массовую плотность. По сравнению с цементом, содержание шариков пенополистирола оказало гораздо более значительное влияние на массовую плотность образца. Для конкретного отношения C / S, равного 10%, массовая плотность образца составляла 1486 кг / м 3 , когда отношение E / S было равно нулю, в то время как массовая плотность образца составляла всего 660 кг / м 3 , когда E Соотношение / S составило 4%.Для конкретного отношения C / S, равного 15%, массовая плотность образца составляла 1507 кг / м 3 , когда отношение E / S было равно нулю, в то время как массовая плотность образца составляла всего 680 кг / м 3 , когда Соотношение E / S составило 4%. Отношение E / S увеличилось с 0% до 4%, но массовая плотность образца уменьшилась на 55,6% для отношения C / S 10% и 54,9% для отношения C / S 15%, соответственно. Это связано с тем, что шарики из пенополистирола имели гораздо меньший удельный вес, но гораздо больший объем. Весовое отношение шариков EPS к глине (E / S) было всего 0.5–4% с точки зрения массы глины, но объемное отношение шариков EPS к глине составляло от 73% до 582% с точки зрения объема глины. Меньшее количество шариков из пенополистирола и более высокое содержание цемента означают гораздо более высокую массовую плотность легкой глины. Следовательно, отношение E / S для легкой глины было ключевым параметром для контроля массовой плотности легкой глины.

    Влияние соотношений EPS к глине (E / S) и цемента к глине (C / S) на плотность легкой глины EPS-цемента.

    3.2. Напряжение-деформационное поведение

    С помощью лабораторных испытаний UU-испытаний была получена серия кривых напряжения-деформации для образцов смешанной легкой глины из EPS-цемента.Взаимосвязь между осевым напряжением и осевой деформацией образцов легкой глины из EPS-цемента после семи дней выдержки показана для цементного отношения 10% и для цементного отношения 15%. Хорошо видно, что и отношение E / S, и ограничивающее давление оказали значительное влияние на прочность на сжатие и поведение напряжения-деформации. Для определенного отношения C / S и периода отверждения прочность на сжатие увеличивалась с увеличением ограничивающего давления, но снижалась с увеличением отношения E / S. Когда ограничивающее давление было нулевым, а отношение E / S было низким, каждая кривая напряжение-деформация имела очевидное пиковое напряжение.Когда ограничивающее давление было больше 50 кПа и E / S не равнялось 0%, кривая напряжения-деформации в трехосных испытаниях UU не имела предельного напряжения. С увеличением отношения E / S образец легкой глины разрушился от сдвига до упругопластического разрушения при более высоком ограничивающем давлении. Разрушение при сдвиге наблюдалось для неограниченных образцов (0 кПа) и образцов с более низким отношением E / S (например, EPS = 0%), но с высоким содержанием цемента. Упруго-пластическое разрушение наблюдается для образцов с высоким ограничивающим давлением и высоким отношением E / S.Образец деформируется одноосно вдоль оси максимального главного напряжения без видимой поверхности сдвига. Гранулы пенополистирола из легкой глины обладают высокой сжимаемостью и, таким образом, повышают пластичность образцов. Следовательно, характер разрушения этой легкой глины зависит как от ограничивающего давления, так и от отношения E / S. Кроме того, увеличение содержания цемента может повысить прочность на сжатие легкой глины на основе EPS-цемента.

    Кривые осевого напряжения и осевой деформации легкой глины на основе EPS-цемента с различными ограничивающими давлениями в течение семидневного периода отверждения с долей цемента 10% для всех соотношений EPS ( и ) 0%; ( б ) 0.5%; ( c ) 1,0%; ( d ) 2,0% и ( e ) 4,0%.

    Кривые осевого напряжения и осевой деформации легкой глины на основе EPS-цемента с различным ограничивающим давлением в течение семи дней выдержки при соотношении цемента 15% для всех соотношений EPS ( и ) 0%; ( b ) 0,5%; ( c ) 1,0%; ( d ) 2,0% и ( e ) 4,0%.

    Разрушение при сдвиге для более низкого отношения E / S.

    Упруго-пластическое разрушение для более высокого отношения E / S.

    3.3. Сопротивление прочности при сжатии и деформации разрушения

    Взаимосвязь между прочностью на сжатие qu и деформацией разрушения εf без ограничения давления представлена ​​в. Деформация разрушения εf (%) находилась в диапазоне от 1,3% до 5% и имела обратную зависимость от одноосной прочности qu (кПа). Степенная функция qu = 598,2εf − 1,25 (кПа) соответствовала коэффициенту корреляции R2, равному 0,91. Эта аппроксимирующая кривая согласуется с данными Wang et al. [11] для газированного реактивного отвержденного шлама MgO и летучей золы и Du et al.[50] для глины, загрязненной цинком, обработанной цементом. Следовательно, степенная функция может использоваться для характеристики взаимосвязи между qu и εf легкой глины на основе EPS-цемента.

    Взаимосвязь между прочностью на сжатие и деформацией разрушения без ограничения давления.

    3.4. Предел прочности при сжатии в сравнении с массовой плотностью

    Влияние массовой плотности ρ на прочность на сжатие qu образцов показано при различных ограничивающих давлениях. Прочность на сжатие легкой глины увеличивается примерно линейно с увеличением массовой плотности.Это связано с тем, что более низкая массовая плотность означает больший объем шариков пенополистирола и более низкое содержание цемента в легкой глине. Ослабляется влияние цемента на легкую глину. Корреляция между прочностью на сжатие qu и массовой плотностью ρ лучше всего согласуется со следующей степенной функцией:

    где a1, b1 и c1 - параметры подгонки, qu - в кПа, а ρ - в кг / м 3 .

    Взаимосвязь между прочностью на сжатие и плотностью при различных ограничивающих давлениях: ( a ) 0 кПа; ( b ) 50 кПа; ( c ) 100 кПа и ( d ) 150 кПа.

    Функции фитинга при различных ограничивающих давлениях (0 кПа, 50 кПа, 100 кПа и 150 кПа) показаны на a – d. Соответствующие им коэффициенты корреляции R2 равны 0,83, 0,79, 0,72 и 0,71 соответственно. Эта степенная функция важна для определения или проверки прочности на сжатие на основе массовой плотности EPS-цемента легкой глины в строительстве и инженерно-геологической инженерии.

    3.5. Сопротивление прочности при сжатии и времени отверждения

    показывает влияние времени отверждения на прочность на сжатие легкой глины при различных ограничивающих давлениях, отношение E / S, равное 0.5%, а соотношение C / S - 15%. С увеличением времени отверждения прочность на сжатие легкой глины при различных ограничивающих давлениях увеличивалась в виде логарифмической функции. Прочность на сжатие qu легкой глины без ограничивающего давления составила 207,7 кПа и 339,5 кПа после трех и 28 дней отверждения, соответственно. Прочность на сжатие увеличилась на 64% от трех до 28 дней отверждения. Для других ограничивающих давлений 50 кПа, 100 кПа и 150 кПа прочность на сжатие увеличилась на 22%, 47% и 50% соответственно.Взаимосвязь между прочностью на сжатие qu и временем отверждения D может быть выражена как:

    где a2, b2 и c2 - подгоночные параметры.

    Повышение прочности на сжатие легкой цементной глины с течением времени отверждения при различных ограничивающих давлениях.

    Формулы аппроксимации и коэффициенты корреляции R2 при пяти различных ограничивающих давлениях перечислены в. Можно видеть, что эта логарифмическая функция может хорошо описывать взаимосвязь между qu и D при этих ограничивающих давлениях.Прочность на сжатие составляла 340 кПа и 536 кПа при ограничивающем давлении 0 кПа и 150 кПа, соответственно, что увеличивалось на 58% после 28 дней отверждения. Следовательно, как ограничивающее давление, так и время отверждения имеют важное влияние на прочность на сжатие легкой глины.

    Таблица 3

    Фитинги прочности на сжатие и времени отверждения при различных ограничивающих давлениях.

    Ограничивающее давление (кПа) Уравнение фитинга R2
    0 qu = 115.7 + 67,6ln (D + 1,5) 0,97
    50 qu = 265,1 + 32,1ln (D + 1,5) 0,83
    100 qu = 231,7 + 78,5ln (D + 1,5) 0,94
    150 qu = 239,0 + 89,9ln (D + 1,5) 0,95

    4. Выводы

    Была проведена серия трехосных испытаний UU для исследования физических и механических свойств легкой глины на основе EPS-цемента, таких как массовая плотность, поведение напряжения и деформации, взаимосвязь между прочностью на сжатие и разрушением, массовая плотность и время отверждения.Из этих результатов можно сделать следующие выводы:

    Во-первых, шарики из пенополистирола имели гораздо меньший удельный вес, а соотношение E / S было ключевым фактором для контроля массовой плотности легкой глины на основе цемента из пенополистирола. Массовая плотность легкой глины EPS-цемента уменьшалась с увеличением отношения E / S. Отношение E / S увеличилось с 0% до 4%, массовая плотность легкой глины EPS-цемента после трех дней выдержки снизилась на 55,6% для отношения C / S 10% и 54,9% для отношения C / S 15%, соответственно.

    Во-вторых, увеличение содержания цемента может повысить прочность на сжатие, а соотношение E / S и ограничивающее давление определяют характер разрушения легкой глины на основе EPS-цемента. Разрушение при сдвиге произошло в образце легкой глины без ограничивающего давления и более низкого отношения E / S. Гранулы из пенополистирола были очень сжимаемыми, что увеличивало пластичность образцов. Разрушение при сдвиге изменилось на упругопластическое разрушение с увеличением отношения E / S и ограничивающего давления легкой глины.

    В-третьих, отношения прочности на сжатие qu с деформацией разрушения εf и массовой плотностью ρ легкой глины EPS-цемента можно описать степенными функциями. Высокая прочность на сжатие qu соответствовала меньшей деформации разрушения εf, и соотношение в этом исследовании было qu = 598,2εf − 1,25 (кПа) с R2 = 0,91. Более высокая массовая плотность означает больше цемента и меньшее содержание шариков пенополистирола в образцах и более высокую прочность на сжатие.

    Наконец, время отверждения и ограничивающее давление были важны для прочности на сжатие.Логарифмическая функция может описывать взаимосвязь между прочностью на сжатие qu и временем отверждения D при пяти различных ограничивающих давлениях. Прочность на сжатие увеличилась на 64%, 22%, 47% и 50% для пяти различных ограничивающих давлений (0 кПа, 50 кПа, 100 кПа и 150 кПа) соответственно от трех до 28 дней отверждения.

    IRJET-Запрошенная вами страница не найдена на нашем сайте

    IRJET приглашает статьи из различных инженерных и технологических дисциплин для Тома 8, выпуск 6 (июнь-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 6 , Июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021 г.)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, июнь 2021 г. Публикация продолжается...

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    Свойства пенополистиролбетона, содержащего измельченный доменный гранулированный шлак

    Доктор Йогеш Аггарвал , доцент, и S.Навин Чандер , аспирант, Департамент гражданского строительства. НИТ Курукшетра, Харьяна.

    Введение

    Легкий бетон может быть получен путем полной или частичной замены стандартных заполнителей легковесными заполнителями или введения газообразующих агентов в бетон. Интерес представляет не только уменьшение объема несущих элементов, но и улучшение тепловых свойств по сравнению с обычным бетоном. Достижение с помощью материала как теплоизоляции, так и облегченной несущей конструкции - привлекательная идея.Гранулы из первичного пенополистирола действительно представляют собой такой материал, который можно легко включить с различным содержанием в бетон для производства легкого бетона с широким диапазоном плотности, а также с теплоизоляционными свойствами. Механические свойства такого бетона сильно зависят от количества заполнителя полистирола в смеси. Когда содержание шариков увеличивается, плотность и прочность значительно снижаются. Бабу и Бабу [1,2] изучали прочность и долговечность пенополистирола, содержащего минеральные добавки, такие как микрокремнезем и летучая зола, с плотностью бетона от 550 до 2200 кг / м3, и было обнаружено, что соответствующие результаты по прочности варьируются от 1 до 24. МПа.Аналогичным образом Sadrmomtazi et al. [3] исследовали добавление микрокремнезема и золы рисовой шелухи в сочетании с полипропиленовыми волокнами в пенополистирол для получения плотности в диапазоне от 900 до 1900 кг / м3 с прочностью на сжатие от 3 до 33 МПа. Хотя Xu et al. [4] подтвердили правомерность использования легких кирпичей из пенополистирола, изготовленных из легкого бетона из пенополистирола, было замечено, что механические свойства могут быть улучшены за счет уменьшения размера сфер из пенополистирола. Miled et al. [5] разработали двумерную численную модель для анализа таких размерных эффектов.До настоящего времени не было предпринято никаких попыток включить измельченный гранулированный доменный шлак (GGBS) в качестве добавки в EPS-бетон, поэтому в настоящем исследовании анализируется влияние GGBS на различные свойства EPS-бетона. GGBS получают из шлака, который представляет собой не что иное, как отходы производства как черной, так и цветной металлургии. Два процесса регулируют скорость реакции шлака в начальный период гидратации. Первый - это зарождение и скорость роста гидратных фаз. Затем эти соединения превращаются в гель CSH.Второй - это межфазные взаимодействия или взаимодействия, которые происходят между старыми соединениями и вновь образованными соединениями. Эти соединения или гидраты обычно имеют более гелеобразную структуру, чем продукты из портландцемента. Эти гидраты увеличивают плотность цементного теста. Кроме того, гидратация шлака в присутствии портландцемента сильно зависит от разрушения и растворения стекловидных структур шлака гидроксид-анионами (ОН). Это высвобождение ионов происходит во время гидратации цемента [6].

    Этот раздел статьи доступен только нашим подписчикам. Пожалуйста, нажмите здесь , чтобы подписаться на план подписки для просмотра этой части статьи.

    .

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *