Высота подколонника фундамента: Геометрические размеры фундаментов — Строительные СНИПы, ГОСТы, сметы, ЕНиР,

Автор

Содержание

Геометрические размеры фундаментов — Строительные СНИПы, ГОСТы, сметы, ЕНиР,

4.3. Монолитные фундаменты рекомендуется проектировать ступенчатого типа, плитная часть которых имеет от одной до трех ступеней.
4.4. Все размеры фундамента следует принимать кратными 300 мм (3 М в соответствии с ГОСТ 23478-79) из условия их изготовления с применением инвентарной щитовой опалубки.
При соответствующем обосновании в случае массового применения или для отдельных индивидуальных фундаментов разрешается принимать размеры, кратные 100 мм в соответствии с ГОСТ 23477-79.
4.5. При центральной нагрузке подошву фундамента следует принимать квадратной.
При внецентренной нагрузке, соответствующей основному варианту нагружения, подошву рекомендуется принимать прямоугольной с соотношением сторон не менее 0,6.
4.6. Высота фундамента h назначается с учетом глубины заложения подошвы и уровня обреза фундамента. Обрез фундамента железобетонных колонн зданий следует принимать, как правило, на отметке 0,15 для обеспечения условий выполнения работ нулевого цикла.
4.7. Рекомендуемые размеры сечений подколонников, высот фундаментов и плитной части, а также подошвы приведены в табл. 4.

Таблица 4

Эскиз фундаментаР И С У Н О К
Модульные размеры фундамента, м, при модуле, равном 0,3
соответственно hplподошвыподколонника

h

hpl
h1 
h2 
h3 

 

квадратной 

b □ l

 

прямоугольной 

b □ l

подрядовые колонны
bcf□ lcf
под колонны в температурных швах bcf□ lcf
1,50,30,31,5□1,51,5□1,80,6□0,60,6□1,8
1,80,60,30,31,8□1,81,8□2,10,6□0,90,9□2,1
2,10,90,30,30,32,1□2,11,8□2,40,9□0,91,2□2,1
2,41,20,30,30,62,4□2,42,1□2,70,9□1,21,5□2,1
2,71,50,30,60,62,7□2,72,4□3,00,9□1,51,8□2,1
3,01,80,60,60,63,0□3,02,7□3,31,2□1,22,1□2,1
3,63,6□3,63,0□3,61,2□1,52,1□2,4
4,24,2□4,23,3□3,91,2□1,82,1□2,7
Далее с4,8□4,83,6□4,21,2□2,1
5,4□5,43,9□4,51,2□2,4
шагом 
0,3 м 
или 
0,6 м 
4,2□4,81,2□2,7
4,5□5,1
4,8□5,4
5,1□5,7
5,4□6,0


4. 8. Сопряжение фундамента с колонной выполняется монолитным для фундаментов под монолитные колонны (черт. 25, а) и стаканным для сборных или монолитных фундаментов под сборные колонны (черт. 25, б, в).




Черт. 25. Сопряжение фундамента с колонной
а — монолитной; б и в — сборной; 1 — колонна; 2 — подколонник; 3 — плитная часть фундамента

4.9. Стакан под двухветвевые колонны с расстоянием между наружными гранями ветвей не более 2400 мм выполняется общим под обе ветви, с расстоянием более 2400 мм — раздельно под каждую ветвь. Под колонны в температурных швах также рекомендуется выполнять раздельные стаканы.
Размеры стакана для колони следует назначать из условия обеспечения необходимой глубины заделки колонны в фундамент и обеспечения зазоров, равных 75 мм по верху и 50 мм по низу стакана с каждой стороны колонны (см. черт. 25).
4.10. Глубина стакана dp принимается на 50 мм больше глубины заделки колонны dс, которая назначается из следующих условий:
для типовых колонн — по данным рабочей документации;
для индивидуальных прямоугольных колонн — по табл. 5, но не менее, чем по условиям заделки рабочей арматуры колонн, указанным в табл. 6;
для двухветвевых колонн:
при ld □ 1,2 м dc = 0,5 + 0,33 ld , (109)

но не более 1,2 м,
где ld — ширина двухветвевой колонны по наружным граням;
при ld < 1,2 м как для прямоугольных колонн, с бульшим размером сечения lc, равно:
lc = ld [1 — 0,8 (ld — 0,9)] , (110)
но во всех случаях не менее величин, указанных в табл. 6 и не более 1,2 м.

Таблица 5

Отношение толщины стенки стакана к высоте верхнего уступа фундамента t/hcfГлубина заделки колонн
прямоугольного сечения dc
при эксцентриситете продольной силы
или глубине стакана t/dp (см. черт. 7)e0□ 2lce0□ 2lc
□ 0,5lclc
□ 0,5lclc + 0,33 (lc — 2t)(e0/lc — 2) ,
причем lc□ dc□ 1,4 lc

Таблица 6

Класс рабочей арматуры
Колонна 
Глубина заделки рабочей арматуры dс при проектном классе бетона

В15В20
А-IIIПрямоугольного сечения30d (18d)

25d (15d)

Двухветвевая35d (18d)

30d (15d)

A-II

Прямоугольного сечения

25d (15d)

20d (10d)

 

Двухветвевая30d (15d)

25d (10d)

П р и м е ч а н и я: 1. d — диаметр рабочей арматуры.
2. Значения в скобках относятся к глубине заделки сжатой рабочей арматуры.
3. Длина заделки может быть уменьшена в случаях:
а) неполного использования расчетного сечения арматуры длину заделки допускается принимать lanN/RsAs , но не менее чем для стержней в сжатой зоне, где N — усилие, которое должно быть воспринято анкеруемыми растянутыми стержнями, а RsAs — усилие, которое может быть воспринято;
б) приварки к концам рабочих стержней анкерных стержней или шайб (черт. 26).


Черт. 26. Детали анкеровки рабочей арматуры
а — анкеровка дополнительным стержнем; б — анкеровка шайбой
При этом шайбы должны рассчитываться на усилие, равное

N = 15dan Rs As / la / (111)

4.11. Глубину заделки двухветвевых колонн необходимо проверять также по анкеровке растянутой ветви колонны в стакане фундамента.
Глубину заделки растянутой ветви двухветвевой колонны в стакане необходимо проверять по плоскостям контакта бетона замоноличивания:
с бетонной поверхностью стакана — по формуле

dc □ Np / □[2 (ld + 0,1) + hc□ bc□] Ran□□ ; (112)

с бетонной поверхностью ветви колонны — по формуле

dc □ Np / 2 (bc□ + hc□) Ran□□ . (113)

В формулах (112), (113):
dc — глубина заделки двухветвевой колонны, м;
Np — усилие растяжения в ветви колонны, тс;
hc□, bc□ — размеры сечения растянутой ветви, м;
Ran□, Ran□□ — величина сцепления бетона, принимаемая по табл. 7, тс/м2.

Таблица 7

 
Опалубка 
Величина сцепления по плоскостям контакта бетона замоноличивания с бетоном
стенок стакана Ranветви колонны Ran□□
Деревянная0,35 Rbt0,40 Rbt
Металлическая0,18 Rbt0,20 Rbt

П р и м е ч а н и е. Величина Rbt относится к бетону замоноличивания.
4.12. Минимальную толщину стенок неармированного стакана поверху следует принимать не менее 0,75 высоты верхней ступени (подколонника) фундамента или 0,75 глубины стакана dp и не менее 200 мм.
В фундаментах с армированной стаканной частью толщина стенок стакана определяется расчетом по пп. 2.34, 2.35 и принимается не менее величин, указанных в табл. 8.

Таблица 8

Толщина стенок стакана t, мм
Направление усилияколонны прямоугольного сечения с эксцентриситетом продольной силыдвухветвевой
колонны
e0□ 2lce0□ 2lc
В плоскости изгибающего момента0,2 lc, но не менее 1500,3 lc, но не менее 1500,2 ld, но не менее 150
Из плоскости изгибающего момента150150150

4.13. Толщину дна стакана фундаментов следует принимать не менее 200 мм.
4.14. Для опирания фундаментных балок на фундаментах следует предусматривать столбчатые набетонки, которые выполняются на готовом фундаменте. Крепление набетонок к фундаменту рекомендуется осуществлять за счет сцепления бетона с предварительно подготовленной поверхностью бетона фундамента (насечки) или приваркой анкеров к закладным изделиям, или с помощью выпусков арматуры, предусмотренных в теле фундамента (при отношении высоты набетонки к ее меньшему размеру в плане □ 15).

Фундаменты под колонны (ЭКН, КНС, 1-2-3 Ф, БК, ФЖ, СФ)

Типовые конструкции фундаментов запроектированы для условий выполнения работ нулевого цикла до монтажа колонн; верх подколонников принят на 150 мм ниже отметки чистого пола здания.

Фундаменты могут быть применены для грунтов с расчетным сопротивлением от 1,5 до 6 кгс/см2. Они состоят из плитной части и подколонника, в котором имеется стакан для заделки сборной колонны. Плитная часть и подколонник имеют вертикальные грани; их унифицированные размеры кратны 300 мм и зависят от несущей способности фундамента, глубины его заложения, размеров поперечного сечения колонн.

Фундаменты выполняют из бетона марки М150 либо М 200 в зависимости от результатов расчета фундамента на продавливание. Арматура принята в виде плоских сварных сеток из стали классов А-I, А-II, А-III. Защитный слой бетона до арматуры плитной части должен быть равен 35 мм, что требует обязательного устройства под подошвой слоя подготовки толщиной 100 мм из бетона марки М 50. Плитная часть фундаментов имеет ступенчатую форму, количество ступеней – не более трех и зависит от размеров подошвы, поперечного сечения подколонника.

Для подбора типового фундамента необходимо иметь исходные данные, определяемые при разработке конкретного проекта здания:

  • расстояние между поперечными температурными швами;
  • высота здания до низа стропильных конструкций;
  • размеры поперечного сечения колонны и глубина её заделки в стакане подколонника;
  • глубина заложения фундамента;
  • расчетные значения характеристик грунтов.

Марка фундамента под колонны состоит из буквенных и цифровых индексов. Первый буквенный индекс обозначает вид конструкции, второй индекс соответствует типу подколонника; первый и второй цифровые индексы обозначают типоразмер фундамента в зависимости от размера подошвы и высоты фундамента соответственно.

Наша компания рада предложить Вам фундаменты под колонны (ЭКН, КНС, 1-2-3 Ф, БК, ФЖ, СФ) всех типоразмеров. Подробности уточняйте у наших специалистов по телефону 8 (495) 642-43-87.

Характеристики фундаментов под колонны

МаркаВес 1
шт., т
Штук на
1 а/м

Длина,

мм

Ширина,

мм

Высота,

мм

Объем,

м3

1. Подколонники
РС 1364-86; ТУ 400-1-6-89
ЭКН 7-70,92270070010300,32
ЭКН 7-90,92270070010300,32
2. Башмаки под колонны
РС 1366-90; РС 1365-91
БК 6-12-9п2,58120012008000,98
КНС — 20,63370070010300,21
КНС — 40,63370070010300,21
3. Фундаменты под колонны сечением 300 х 300 мм
ГОСТ 24022-80
1Ф 7.9-50,542
700
9005500,19
1Ф 8.6-50,5428006005500,19
1Ф 9.9-10,9229009006500,36
1Ф 9.9-50,7269009005500,29
1Ф 12.12-11,414120012006500,55
1Ф 12.12-21,414120012006500,56
2Ф 15.15-2
1,910150015006500,77
3Ф 15. 15-11,910150015006500,77
3Ф 18.18-23,46180018009001,34
ГОСТ 24476-80; Серия 1.020-1/83
1Ф 12.8-11,910120012007500,75
1Ф 12.8-21,910
1200
12007500,75
1Ф 12.8-31,910120012007500,75
1Ф 15.8-12,58150015007501,00
1Ф 15.8-22,58150015007501,00
1Ф 15.8-32,58150015007501,00
1Ф 15.9-13,26150015009001,30
1Ф 18.8-13,56180018007501,40
1Ф 18.8-23,56180018007501,40
1Ф 18. 9-14,34180018009001,70
1Ф 18.9-24,34180018009001,70
1Ф 18.9-34,34 180018009001,70
1Ф 21.8-14,54210021007501,80
1Ф 21.8-24,54210021007501,80
1Ф 21.9-15,54210021009002,20
Серия ИИ-04-01
Ф 13-33,261300130010501,27
Ф 17-34,2
5
1700170010501,67
4. Фундаменты под колонны сечением 400 х 400 мм
ГОСТ 24476-80; Серия 1.020-1/83
2Ф 12.9-12,19120012009000,83
2Ф 12.9-22,19120012009000,83
2Ф 15. 9-13,06150015009001,20
2Ф 15.9-23,06150015009001,20
2Ф 18.9-14,05180018009001,60
2Ф 18.9-24,05180018009001,60
2Ф 18.9-34,05180018009001,60
2Ф 18.11-14,541800180010501,80
2Ф 21.9-1
5,3
4210021009002,10
2Ф 21.9-25,34210021009002,10
2Ф 21.9-35,34210021009002,10
2Ф 21.11-15,832100210010502,30
Серия 1.020-1/87
Ф 12.9-12,19120012009000,83
Ф 12. 9-22,19120012009000,83
Ф 15.9-13,06150015009001,20
Ф 15.9-23,06150015009001,20
Ф 15.9-33,06150015009001,20
Ф 18.9-14,04180018009001,60
Ф 18.9-24,04180018009001,60
Ф 18.9-34,04180018009001,60
Ф 18.11-14,541800180010501,80
Ф 21.9-15,34210021009002,10
Ф 21.9-25,34210021009002,10
Ф 21.9-35,34210021009002,10
Ф 21. 11-15,832100210010502,30
Серия ИИ-04-01
Ф 13-43,161300130010501,22
БК 13-43,161300130010501,22
Ф 17-44,051700170010501,62
Ф 21-45,442100210010502,14
5. Фундаменты под колонны сечением от 300 х 300 мм до 200 х 500 мм (А№71159-С)
ФЖ — 1м1,81190090017500,72
ФЖ — 15м-16,732100210017502,68
ФЖ — 15м-26,732100210017502,68
ФЖ — 16м-14,941700170017501,95
ФЖ — 16м-24,941700170017501,95
ФЖ — 17м-18,121900250017503,22
ФЖ — 17м-28,121900250017503,22
ФЖ — 18м-19,522500250017503,78
ФЖ — 18м-29,522500250017503,78
6. Прочие фундаменты
Фундаменты под полурамы
Серия 1.812-1-2
Ф 18.9-152,87180090015001,12
Ф 18.15-122,671800120015001,04
Ф 18.15-153,261800150015001,28
Ф 24.15-154,152400150015001,66
Фундаменты рекламных щитов
ФБР — 15,24140032004502,08
ФБР — 26,73180032004502,67
ФБР — 37,43200032004502,97
ФБР — 48,22220032004503,27
ФБР — 58,92240032004503,56
Фундаменты под рамные опоры
ФМ — 47,322800190015002,92
ФМ — 56,632500180015002,64
Фундаменты садовых домиков
ФП-4
ФП-5
Прочие фундаменты
СФК-131,5130013005500,58
СФК-101,010001005500,41
2Фр4,2524002400750
Ф-14,251500150015001,68

Столбчатый фундамент: особенности конструкции, армирования, бетонирования

Для легких каркасных сооружений (например, навес для машины, беседка и т. п.) использование ленточного фундамента нецелесообразно. Значительный шаг опор формирует местные точечные нагрузки, для восприятия которых лучше подходит столбчатый фундамент. В народе его называют «пятками». Этот тип фундаментов так же часто применяют для домов малой этажности в тех случаях, когда цокольная часть (подполье) выполняется вентилируемой путём возведения стен по балкам ростверка.

Расположение, конструкция и гидроизоляция столбчатого фундамента

В связи с тем, что такой тип фундаментов наиболее приспособлен для точечных нагрузок, его размещают под стойками (колоннами) а так же в местах концентрации нагрузок – в углах и местах пересечения балок ростверка. При существенных пролётах (определяется расчётом) по длине балок выполняются дополнительные фундаменты, в противном случае понадобятся чрезмерно мощные балки.

Столбчатый фундамент в классическом варианте состоит из нижней части (подошвы) и верхней (подколонника, иногда говорят «стакан»). Подошва представляет собой, по сути, плитный фундамент небольшого размера. Подколонник – это просто столб, опертый на подошву. В том случае, если он внутри полый, его называют «стаканом». Полый вариант предназначен для зачеканки колонны (стойки) внутри стакана. На полнотелый подколонник стойка или балка ростверка опирается сверху посредством анкерных болтов или закладной детали.

Связь между подошвой и подколонником жёсткая, обеспечивается арматурными стержнями, заведенными в тело подошвы.

Общий вид столбчатого фундамента.

Для такого типа фундаментов применяется только горизонтальная гидроизоляция в уровне верха подколонника. Её выполняют обычно из двух слоёв рулонного гидроизолирующего материала – рубероид, плотная плёнка и т.п.

Монтаж выше располагаемых конструкций, осуществляется с помощью замоноличенных в подколоннике анкерных болтов, либо закладных деталей.

Общий вид закладной детали. Установки стальной стойки на неё выполняется сваркой.

Фундаментные болты. После замоноличивания болтов в теле фундамента крепление конструкций осуществляется с помощью гаек с шайбами.

Размеры и армирование столбчатого фундамента

Армирование подошв столбачатых фундаментов выполняется арматурными сетками. Расчёт армирования производится по схеме консоли, воспринимающей отпор грунта. В большинстве случаев частного строительства расчётные диаметры получаются незначительными, на уровне 5-6мм. При этом существуют общие нормативные рекомендации по армированию фундаментов, не допускающие применения для таких конструкций рабочей арматуры с диаметром менее 12мм. Поэтому для легких сооружений можно порекомендовать армирование подошвы столбчатого фундамента сетками из арматуры диаметром 12мм класса A-III (А400 по новой классификации) с ячейкой 200х200мм. Толщина подошвы обычно принимается как у фундаментной ленты, то есть 300мм.

Типология армирования подколонника идентичная колонне. Как минимум по одному арматурному стержню по углам, объединяемым в пространственный каркас хомутами, расположенными горизонтально. Для лёгких сооружений расчётом можно пренебречь, приняв четыре стержня диаметром 12мм класса A-III (А400) с поперечным армированием хомутами из диаметра 6мм А-I (А240) с шагом 400-600мм по высоте. Размеры поперечного сечения подколонника должны обеспечить возможность монтажа стойки (колонны). В частном строительстве широко применяется размер 400х400мм.

При незначительных нагрузках подколонную часть выполняют кирпичной кладкой. При этом весьма желательно заанкерить в подошву хотя бы один арматурный стержень (например, по центру столба-подколонника), который при выполнении кладки будет расположен в вертикальном кладочном шве.

Размеры подошвы столбчатого фундамента зависят от нагрузок и несущей способности грунта. В частном строительстве чаще всего можно встретить размеры в пределах 600х600…1500х1500мм.

Армирование столбчатого фундамента.

В некоторых случаях размеры в плане подколонника и подошвы могут совпадать. Кроме того, для упрощения выполнения работ по бетонированию подколонник не редко делают круглого сечения, используя для опалубки асбестоцементные или пластиковые трубы достаточно большого диаметра.

Столбчатые фундаменты с круглыми подколонниками и деревянным ростверком для дома с вентилируемым цоколем.

Глубина заложения и марка бетона для столбчатого фундамента

Глубина заложения для всех видов фундаментов принимается не менее глубины промерзания грунта. В случае столбчатых фундаментов в частном строительстве в виду незначительных нагрузок и небольших размеров в плане особо острым является вопрос возможности уменьшения глубины заложения такого фундамента. Действующие строительные нормы для не отапливаемых зданий (ссоружений) допускают уменьшение глубины заложения при строительстве на скальных грунтах, а также в случае исключения возможности морозного пучения.

При строительстве на обычных (не скальных) грунтах для исключения возможности пучения выполняется отрывка грунта на всю ту же пресловутую глубину промерзания. Далее производится засыпка с послойным уплотнением (толщина слоя обычно принимается равной 200мм) песком или песчано-гравийной смесью до желаемой отметки заглубления фундамента.

Чрезмерное уменьшение глубины заложения фундамента может быть опасным. Легкие сооружения в виде навесов могут быть опрокинуты шквальным ветром. К основным противоопрокидывающим мероприятиям относят именно заглубление фундамента – чем больше грунта обратной засыпке находится на верхней грани подошвы фундамента, тем устойчивее конструкция. Выбор класса и марки бетона для фундаментов приведен в этой статье.

устройство, особенности, виды и технология монтажа

На чтение 7 мин. Просмотров 34 Опубликовано Обновлено

При обустройстве оснований для построек принимают во внимание их полную стоимость и способность нести массу здания. Разновидностью столбчатых оснований является фундамент стаканного типа, который относят к быстровозводимым и надёжным.

Область применения

Фундаментный стакан

Сборные железобетонные фундаменты стаканного типа изготавливают из тяжёлого бетона.

Конструкция применяется в многоэтажном каркасно-панельном строительстве общественных зданий, при возведении производственных и вспомогательных помещений, промышленных предприятий. На таких фундаментах строят мосты, подземные автостоянки, склады, ангары.

Возможно применение в несейсмических и сейсмически-опасных регионах. Допускается монтаж на грунтах неагрессивной, слабо- или среднеагрессивной среде.

Не предназначены фундаментные стаканы для установки на вечномёрзлых, просадочных и насыпных (подрабатываемых) грунтах.

Конструкция стаканного фундамента

Все стаканные основания состоят из двух частей.

Опорная базовая плита толщиной не меньше 250 мм может состоять из нескольких ступеней, образующих монолитную конструкцию пирамидальной или конусной формы. Плита воспринимает вертикальные нагрузки от колонн, на которых собирают здание.

Подколонник пирамидальной или квадратной формы имеет полость, в которую устанавливают колонны. В сборе основание похоже на стакан, от чего произошло название.

Высота подколонника может быть увеличена в зависимости от возможной нагрузки и конфигурации здания.

Весь объём стакана армируют стальными прутьями и арматурной сеткой.

Плюсы и минусы стаканных фундаментов

Столбчатый фундамент стаканного типа имеет ряд преимуществ:

  • гарантированное заводским исполнением соблюдение геометрических размеров согласно чертежам;
  • прочность бетона, изготовленного в заводских условиях, проверка качества с помощью заводских лабораторий;
  • быстрый монтаж основания;
  • минимум подготовительных земляных работ, не требующих затратной разработки грунта;
  • стройку начинают без ожидания набора бетоном прочности;
  • установка на большинстве типов грунтов;
  • длительный срок эксплуатации при защите от агрессивного влияния влаги;
  • возможность создания любых по размерам и геометрии распределённых фундаментов.

К недостаткам, которые ограничивают использование фундаментных стаканов под колонну в частном строительстве, относят высокую стоимость, сложность транспортировки и необходимость большой свободной площади для монтажных работ.

Нормативы изготовления

При изготовлении заводом должны соблюдаться ГОСТ 24476-80 для стандартных изделий.

ГОСТ 24022-80 применим для сельскохозяйственных одноэтажных зданий, где может понадобиться усиление конструкции.

Технические требования

Фундаменты изготавливают в стальных формах для обеспечения точной геометрии.

Марка бетона не может быть ниже, чем М200. Марку М300 применяют, если такое требование установлено проектом. Фактическая и отпускная прочность бетона при отгрузке не должна быть менее 70% от расчётной, а для зимнего периода не менее 90%.

Морозостойкость выбирают исходя из климатических условий района использования.

Армирование бетона проводят согласно чертежам, указанных в приложении к ГОСТ. Арматура применяется гладкая горячекатаная с классом металла не ниже А-I, либо периодического профиля из стали класса Ас-II. В регионах, где температура опускается ниже 40°С применяют только класс Ас-II c маркой стали 10-ГТ.

Толщина защитного слоя 50 мм с отклонением не более +10 мм и -5 мм. Защитный слой — это расстояние от внешней поверхности конструкции до ближайшей к ней арматуры в сетке.

Каждое место пересечения обязательно соединяют сваркой — скрутки вязальной проволокой не допускаются.

Отклонения размеров стаканов от чертежей не должно превышать 16 мм в горизонтальной и 10 мм в вертикальной плоскости.

Соединение колонны и фундамента

Бетонные колонны устанавливают в полость и укрепляют, выравнивая в вертикальной плоскости. Промежуток между столбом и стенками стакана заливают бетоном, марки не ниже М200.

Стальные колонны приваривают к выпущенной из стенок арматуре, свободные полости также заливают цементным раствором. Возможно крепление анкерными болтами.

Размеры

Стандартные геометрические размеры стаканов под колонны указаны в таблице, размещённой в ГОСТ. Критически важными являются размеры подошвы, которые могут быть от 1200х1200 до 2100х2100 мм. От площади зависит несущая способность всего фундамента.

В отдельных случаях ГОСТ допускает минимальный размер основания плиты 900х900 мм.

Высота всей конструкции варьируется от 750 до 1050 мм, из которых минимум треть приходится на толщину опорной плиты.

Методы классификации и обозначение изделий

Стаканные фундаменты различают по нескольким признакам.

  • 1Ф предназначен под колонны-стойки с геометрическими размерами 300х300м.
  • 2Ф — фундамент под колонны 400х400 мм.

В зависимости от толщины стен и возможной нагрузки фундаменты делят на 3 типа.

Первый предназначен для возведения стен толщиной до 250 мм включительно, а второй для кладки толще 250 мм. Третий тип предназначен для особо тяжёлых конструкций и предусматривается проектом.

Кроме того, различают два типа в зависимости от эксплуатации в агрессивных средах: Н — нормальной проницаемости, П — пониженной проницаемости.

Маркировка

Обозначение фундамента выполняют краской на боковой поверхности конструкции. Маркировка состоит из одной или двух буквенно-цифровых групп, разделённых дефисом.

В первой группе, согласно ГОСТ, указывают размеры подошвы и высоту изделия в дециметрах, которые округляют до целых цифр.

Вторая группа раскрывает несущую способность, а также тип проницаемости, если фундамент предназначен для размещения в агрессивных средах.

Примеры обозначений:

  1. 1Ф13.8-1. Фундамент для колонны 300х300 мм с размером подошвы 1300х1300 мм, высотой 800 мм. Несущая способность 1 группы для стен толщиной до 250 мм.
  2. 2Ф20.9-2П. Поперечный размер колонны 400х400 мм, подошва 2000х2000, высота 900 мм. Возможно строительство стен толще 250 мм, использован бетон пониженной проницаемости.

Этапы монтажа

Фундаменты стаканного типа предъявляют повышенные требования к механическому составу грунта. Вечномёрзлые, насыпные и проседающие земли непригодны, так как под полной массой здания возможны проседания и разрушение всего строения. Подвижки также возможны на пучинистых грунтах в зимний период.

Перед выбором типа фундамента проводят геологические изыскания, в которых кроме прочности определяют гидрологическое состояние, минимальный и максимальный уровень грунтовых вод по данным многолетних наблюдений.

При необходимости местность осушают, изготавливают дренаж. От высоты залегания воды зависит возможность углубления в грунт.

При положительном решении об использовании стаканного фундамента приступают к предварительным мероприятиям.

Подготовка к монтажу

Подготовка участка к строительству

Участок строительства очищают от строительного мусора и всей растительности, деревья выкорчёвывают с корнем. Проводят планировку местности с помощью бульдозеров. Если проектом предусмотрен котлован, проводят выработку грунта тяжёлыми экскаваторами. Помимо общего, может быть вырыт котлован по периметру здания или для каждого стакана по отдельности.

Уплотняющая подсыпка, если она предусмотрена проектом, должна выступать за пределы опорной плиты на 300 мм с каждой стороны. Исходя из этого проводят выборку грунта.

По окончании выборки земли дно котлована выравнивают и трамбуют с помощью механических средств.

На грунтах, склонных к проседанию, устраивают уплотняющую подушку из щебня мелкой фракции и песка. Вначале насыпают слой щебня, который трамбуют с помощью механических приспособлений или навесного оборудования на строительные механизмы. Следующий слой — песок. После проливки водой песчаную подушку трамбуют аналогично щебёночной.

Следующий этап – разметка мест установки фундаментов. С помощью обносочных досок, шнура (проволоки 2 мм) и отвеса отмечают точную точку установки блоков. Далее с помощью размерного шаблона на грунте вымеряют положение боковых сторон фундаментов. Для удобства установки фундамента в грунт забивают колышки, которые соединяют бечёвкой.

Горизонтальный уровень всех оснований выравнивают с помощью нивелира. Уровень должен быть близким к идеальному — при необходимости подсыпают подушку.

Монтажные работы

Установку проводят с помощью тяжёлой строительной техники, так как масса блоков может быть от 1,5 до 5,8 т.

К монтажу допускаются работники, прошедшие обучение и имеющие разрешения на работу с подъёмными механизмами.

  1. Проверяют состояние и исправляют при необходимости монтажные петли. Краской наносят положение сторон согласно проекту.
  2. Строповку выполняют двумя или четырьмя крюками с зависимости от массы изделия.
  3. После подъёма, нижнюю часть опорной плиты очищают от налипшего грунта.
  4. Точную ориентацию фундамента проводят вручную на высоте 15–20 см от земли.
  5. Окончательная корректировка проводится ломами после опускания блока на землю.
  6. Перед засыпкой грунта проводят защиту фундамента от влаги. Используют клеевой метод или обмазку специальными составами.
  7. После установки всех стаканов начинают монтаж колонн.

Фундаменты стаканного типа активно применяют в промышленном и гражданском строительстве. Конструкция позволяет сократить время на монтаж оснований и сразу после этого начать строительство. Заводское изготовление блоков гарантирует их прочность и геометрические размеры, что ускоряет монтаж и способствует устойчивости строения.

Классификация фундаментов промышленных зданий » Строительный портал

При возведении фундаментов промышленных зданий учитываются не только механические и физические свойства грунтов основания, но и инженерно-геологические процессы.

Размер фундамента промышленного здания определяют, исходя из следующих факторов.

Среднее давление от расчетных нагрузок на фудамент не превышает расчетного давления на грунт.

Расчетное значение абсолютных осадок и их разностей между разными фундаментами сооружения не превышает предельные значения по нормам проектирования.

Обычно план фундамента промышленного здания по контуру в упрощенной форме повторяет план надфундаментных частей здания. В связи с этим фундаменты промышленных зданий могут отличаться друг от друга конструктивными формами.

Фундамент массивных сооружений (к ним относятся монументы, мостовые опоры) выполняется отдельным массивом.

Фундамент опор (например, колонн) может быть устроен отдельно под каждую колонну (это одиночный или столбовой фундамент) или быть общим для нескольких и иметь вид лент (ленточный фундамент) или плит.

Фундамент стен (стеновой фундамент) может быть устроен отдельными фундаментными столбами, перекрытыми балкой, или подземными стенками, которые повторяют план стен по периметру.

Какие материалы используются для возведения фундамента.

Для устройства фундамента широко применяется бетон, железобетон, бутобетон, кирпичная, каменная или бутовая кладка. Бетон, бутобетон и каменная кладка используются преимущественно в конструкциях жестких фундаментов. Целесообразность использования железобетона определяется наличием скалывающих или растягивающих напряжений в конструкции фундамента. По этой причине железобетон оптимален для возведения гибкого фундамента или сооружения конструкций сборных фундаментов.

Фундамент под железобетонные сборные колонны.

Для сборных железобетонных колонн используются монолитные или сборные железобетонные фундаменты.

Монолитные фундаменты обладают симметричной ступенчатой формой и имеют две или три прямоугольные ступени с подколонником, где размещается стакан для колонны. Для компенсации возможных неточностей в размерах фундамента после его распалубки дно стакана обычно располагают ниже отметки низа колонны примерно на 50 мм.

Сборные фундаменты обычно состоят из железобетонного блока-стакана или обычного блока стаканного типа, под которым располагаются опорные плиты.

Отметка верха подколонника при проектировании фундамента располагается на уровне 0,150 м – это уровень планировочной отметки земли. Сам фундамент может иметь высоту от 1,2 до 3 метров с шагом 300 мм – это соответствует максимально глубине заложения подошвы фундамента – 3,150 метров. При этом высота фундамента может быть изменена за счет высоты подколонника.

Если есть необходимость более глубокого заложения фундамента, под ним располагают бетонную или песчаную подушку. Фундаменты зданий с подвалами обычно закладывают ниже пола подвала за счет увеличенной высоты подколонника.

Фундаменты под стальные колонны.

Для стальных колонн используются монолитные железобетонные фундаменты.

Используемые для таких фундаментов сплошные (без стаканов) подколонники снабжаются анкерными болтами, чтобы закрепить башмак колонны. Верх подколонника располагается таким образом, чтобы башмак колонны и концы болтов находились под полом. Для этого верх фундамента отмечается на уровне 0,4-1,0 метра в зависимости от типа башмака.

Если необходимо заглубить фундамент на 4 метра и более могут применяться сборные железобетонные подколонники. Нижний конец таких подколонников закрепляется в стакане фундамента, а верхний конец с анкерными болтами служит для крепления стальной колонны.

Под смежные колонные фундамент всегда устраивают общим.

Фундаменты под стены.

Фундаменты под стены могут быть ленточными, столбчатыми или свайными.

1. Ленточные фундаменты под стены.

Ленточный фундамент обычно устраивают под кирпичные и блочные стены – несущие или самонесущие. Различают сборные и монолитные ленточные фундаменты. При устройстве сборных фундаментов используются бетонные или железобетонные блоки. Блочные фундаменты могут быть устроены либо из стеновых прямоугольных блоков, либо из блоков-подушек.

Стеновые блоки изготавливаются сплошными и с несквозными пустотами, арматура при их изготовлении не используется.

Блок-подушки применяют с целью увеличения ширины подошвы фундамента. Различают сплошные и прерывистые фундаменты из блок-подушек. Конструкция прерывистых фундаментов позволяет сократить расход материала и уменьшить затраты труда.

Если сооружение возводится на сильно просадочных или сжимаемых грунтах, при устройстве фундаментных подушек используют армированный шов, а поверх фундамента – армированный пояс. Эта мера позволяет увеличить жесткость фундамента и предупредить возникновение трещин при осадке здания.

2. Столбчатые фундаменты.

Столбчатые фундаменты устраиваются при прочных основаниях при условии небольшой нагрузки на них. Опоры такого фундамента под несущими стенами располагаются в углах, в местах пересечения и примыкания стен. Отдельно стоящие опоры при этом скрепляют между собой фундаментными железобетонными балками, которые берут на себя нагрузку от стен.

3. Свайные фундаменты.

Устройство свайных фундаментов целесообразно при слабых грунтах, если они залегают на большую глубину. Могут использоваться деревянные, стальные, бетонные или железобетонные сваи.

Железобетонные сваи подразделяются на монолитные и сборные. Широкое распространение получили сборные железобетонные сваи.

Бетонные сваи изготавливаются монолитными, могут иметь разный диаметр и глубину заложения.

Стальные сваи выполняются из труб, швеллеров и двутавров. Используются достаточно редко.

Деревянные сваи изготавливаются из хвойных пород дерева.

Преимущества свай перед другими видами фундамента: уменьшение осадки, сокращение объемов земляных работ, уменьшение сроков и стоимости строительства.

Конструкция фундаментов промышленных зданий — Favorit-TK.ru

Конструкция фундаментов промышленных зданий
По способу возведения фундаменты промышленных зданий делят на монолитные и сборные.
Под колонны каркасного здания  устраивают, как правило, столбчатые фундаменты с подколонниками стаканного типа, а стены опирают  на фундаментные балки. Ленточные и сплошные фундаменты предусматривают  редко, как правило, на слабых, просадочных грунтах и при больших ударных нагрузках на грунт технологического оборудования.

Унифицированные монолитные железобетонные фундаменты имеют ступенчатую  форму с подколонником стаканного типа для заделки колонн. 
Сборные фундаменты экономичнее монолитных, но на них больше расходуется стали. Более легкими и экономичными по расходу стали, являются сборные фундаменты ребристой или пустотной конструкции.
При близком расположении уровня грунтовых вод (УГВ) и при слабых грунтах устраивают свайные фундаменты. Наиболее распространены железобетонные сваи круглого и квадратного сечений. По верху сваи связывают монолитным или сборным железобетонным ростверком, который служит одновременно подколонником.
Подколонник устанавливают на плиту по слою цементно-песчаного раствора. При действии на фундамент изгибающего момента соединение подколонника с плитой усиливают сваркой закладных элементов, а места сварки заделывают бетоном.
Ступени плиты всех фундаментов имеют единую унифицированную высоту 300 мм или 450 мм.
В верхней части подколонника устроен стакан для установки в него колонны. Дно стакана располагают на 50 мм ниже проектной отметки низа колонны для того, чтобы компенсировать подливкой раствора неточности в размерах и заложении фундаментов.
Колонны с фундаментом соединяют различными способами. В основном с помощью бетона. Для обеспечения жесткого закрепления колонны в стакане фундамента на боковых поверхностях железобетонной колонны устраивают горизонтальные бороздки. Зазор между гранями колонны и стенками стакана поверху составляет 75 мм, а по низу стакана  50 мм (рис.2).
Обрез фундамента под железобетонные колонны располагают на отметке -0.15 м, под стальные колонны – на отметках -0.7 м или -1.0 м.
Фундаменты под смежные колонны в температурных швах делаются общими, независимо от числа колонн в узле. Для каждой сборной железобетонной колонны в этом случае устраивают отдельный стакан.
Монолитные фундаменты железобетонных
колонн  в местах устройства деформационных швов
В фундаментах под стальные колонны подколонник делают сплошным (без стакана) с анкерными болтами.
а) колонны постоянного сечения;
б) колонны двухветвевые (сквозного сечения)
Стены каркасных зданий    опирают на фундаментные балки, укладываемые между подколонниками фундаментов на бетонные столбики необходимой высоты, бетонируемые на уступах фундаментов. Фундаментные балки имеют тавровое или трапецеидальное поперечное сечение. Номинальная  длина их составляет  6 и 12 м. Конструктивная длина фундаментных балок выбирается в зависимости от ширины подколонника и местоположения балок. Верхняя грань балок располагается на 30 мм ниже уровня чистого пола.
Сечения фундаментных балок
Фундаментные балки устанавливают на подливку из цементно-песчаного раствора толщиной 20 мм. Этим раствором заполняют  зазоры между торцами балок и стенками подколонников. По балкам для гидроизоляции стен укладывают 1-2 слоя рулонного водонепроницаемого материала на мастике. Во избежание деформации балок вследствие пучения грунтов снизу и с боков балок предусматривают подсыпку из шлака, песка или кирпичного щебня. 
Устройство фундаментных балок промышленных зданий

Железобетонный фундамент — виды

При отсутствии агрессивных грунтовых вод железобетонный фундамент, находящийся в земле, не подвергается коррозии и долговечен. Это обстоятельство привело к широкому применению железобетона в качестве материала для фундаментов, чему способствует также относительно высокая прочность железобетона (по сравнению с бетоном или бутовой кладкой) и возможность воспринятая им растягивающих усилий.

В силу этого железобетонные фундаменты получаются значительно более легкими, чем бетонные или бутовые. В случае необходимости (при относительно слабых грунтах) сплошных фундаментов железобетонную конструкцию следует рассматривать как единственно рациональное решение.

Отдельные фундаменты под колонны могут быть весьма разнообразными по конструкции и применяемому материалу в зависимости от величины нагрузки, характера ее приложения (эксцентричность), допускаемого напряжения на грунт и конъюнктурных условий.

При грунтах средней (2,0—3,5 кг /см2) и высокой (4,0—5,0 кг /см2) прочности и небольшом эксцентриситете рекомендуется применять массивные бутовые или бетонные фундаменты.

В массивных фундаментах высота назначается таким образом, чтобы при требуемой площади основания обеспечить минимальный угол распространения давления, принятый для данного материала. В этом случае предполагают, что фундамент на изгиб не работает (растягивающие напряжения отсутствуют), и расчет ограничивается определением размеров основания.

Бетонные фундаменты

Для бетонных фундаментов (рис. 33) угол распространения давления а ~ 56°, что соответствует откосу 1,5 : 1. Бетонные фундаменты не армируются понизу. В некоторых случаях укладывается арматура сверху фундамента под колонной. Бетон применяется марки R28 = 90 кг /см2; наружные поверхности фундамента могут быть выполнены в виде плоскости или ступеней. Последний тип хотя и требует несколько большего расхода бетона, имеет преимущество в виде простоты производства работ.

В тех же условиях более рациональным является бетонный фундамент при устройстве железобетонного подколонника (рис. 34). Наличие подколонника дает возможность применять для всей массы фундамента материал пониженного качества, как то: бетон марки R28 = 65 — 45 кг/см2 или бутобетон.

При этом принимают tga = 1,75 : 1.

Точно так же устраиваются фундаменты из бута, где угол распространения давления a = 63°30′ (tga = 2:1). Высота каждой ступени из бутовой кладки должна быть не менее 40 см для обеспечения хорошего качества работы. Размеры, подошвы подколонника определяют в зависимости от допускаемого напряжения на материал фундамента. Высота подколонника назначается из условия а = 45°.

Снизу подколонник армируется конструктивно сеткой из стержня диаметром 8—10 мм с шагом 20 см. В случае значительного эксцентриситета внешней силы при средних и слабых грунтах рекомендуется переходить к применению железобетонных фундаментов.

Железобетонные фундаменты

Железобетонные фундаменты имеют значительно меньшую высоту и во многих случаях экономичнее бетонных или бутовых. Сплошные (безреберные) железобетонные фундаменты могут быть пирамидальными (рис. 36) или ступенчатыми (рис. 37).

Плоский фундамент (рис. 35) требует сравнительно небольшого расхода бетона, но невыгоден как по количеству арматуры, так и в особенности по ее сложности. Чтобы избежать применения косых стержней и хомутов, увеличивают общую высоту фундамента, назначая ее из условий продавливания по периметру колонны. Армирование ограничивается нижней сеткой.

Наибольшее распространение в практике строительства получили фундаменты ступенчатого типа (рис. 37), которые требуют сравнительно небольшого расхода материалов при простоте производства работ. Количество ступеней такого фундамента зависит от его высоты и равно 1—3.

Ребристые фундаменты (рис. 38) значительно легче описанных выше, но в виду сложности выполнения применяются редко. Фундаменты под сборные колонны выполняются из железобетона пирамидальными или ступенчатыми с устройством «стакана», куда устанавливается колонна с последующей заливкой швов (рис. 38а).

В случае сравнительно частого расположения колонн, значительной нагрузки или слабых грунтов фундаменты проектируют ленточными (рис. 39), перекрестно-ленточными (рис. 40) или сплошными плитными (рис. 41).

Ленточные фундаменты под колонны могут быть в поперечном сечении тавровыми (рис. 39) или трапецоида льными. На один фундамент опираются две или более колонн. Край фундамента должен быть выпущен в виде консоли для достижения одинакового напряжения на грунт на краях и в середине. В случае невозможности устройства консоли под крайней колонной следует устраивать уширение (рис. 42).

Ленточный фундамент работает, как балка, лежащая на сплошном упругом основании. Нагрузка от колонн принимается приложенной в виде сосредоточенных грузов и моментов. Метод расчета ленточных фундаментов зависит от параметра λ = α l, где

Здесь l — половина длины ленты, b — ширина ленты, Ко — коэффициент постели. При λ < 0,50 фундамент рассматривают как жесткую балку и напряжения на грунт определяют, как для массивных фундаментов. Армирование ленточных фундаментов в продольном направлении аналогично армированию неразрезных балок (рис. 43).

В поперечном направлении консольные выступы армируются на усилия, вызываемые отпором грунта, но во всяком случае диаметр не менее 10 мм через 20 см. Если площадь опирания на грунт ленточных фундаментов оказывается недостаточной, то переходят к перекрестным ленточным фундаментам, конструкция которых в основном аналогична вышеописанным.

Наконец при особо слабых грунтах или при концентрации большой нагрузки на сравнительно небольшой площади (башни, силосы и пр.) применяют фундаменты в виде сплошной плиты. Конструктивно сплошной железобетонный фундамент напоминает опрокинутое перекрытие — ребристое (рис. 41) или безбалочное (рис. 44).

Под железобетонными фундаментами следует устраивать увеличенный защитный слой (подготовку), толщина которого выбирается в зависимости от влажности грунта: для сухих грунтов 3—4 см, для влажных 4—6 см и мокрых 10 см. Железобетонные фундаменты могут применяться также и для сплошных стен при слабых грунтах. Здесь в железобетоне выполняется только нижняя часть фундамента для возможности передачи нагрузки на большую площадь при малой высоте. Кроме того железобетонные фундаменты применяются для подпорных стен, набережных, силосов и других сооружений.

Страница не найдена для depth_of_foundation

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *

Страница не найдена для процедуры_конструкции_фундамента

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *

Страница не найдена для foundation_excavation_precautions

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *

Высота фундамента

Этот простой чертеж показывает, что фундамент должен быть на 18 дюймов выше, чем самая высокая точка уклона на участке в пределах 10 футов от фундамента. Авторские права 2018 Тим Картер

Высота фундамента TIPS

Знали ли мертвые строители лучшую высоту фундамента?

Если бы мы могли вызвать в воображении духов нескольких строителей нестандартных домов, которые умерли около 100 лет назад, я боюсь, они были бы очень разочарованы.

Без сомнения, они качали головами, когда смотрели на дом за домом в современных пригородах многих городов, у которых вершина фундамента была чуть выше последнего уровня почвы, окружающей каждый дом.

Более того, мы можем даже услышать, как они бормочут: «О чем думал этот строитель …»

История, легенды и мифы

Вы читали J.R.R. Книга Толкина Властелин колец ? По нему был снят отличный трехсерийный фильм.

В начале этого фильма есть захватывающая цитата из Дж.Книга Р.Р. Толкина:

«И некоторые вещи, о которых нельзя было забывать, были потеряны. История стала легендой. Легенда превратилась в миф. И на две с половиной тысячи лет кольцо исчезло из всех знаний».

Вы можете многое узнать о жизни и о том, как строить замки, выдерживающие огонь дракона, посмотрев этот фильм. Отличная история любви тоже. НАЖМИТЕ СЕЙЧАС, ЧТОБЫ ЗАКАЗАТЬ ФИЛЬМ В ЛЮБОМ ФОРМАТЕ.

По большей части это то, что произошло со знанием высоты фундамента.Кто знает, возможно, я буду последним оплотом этого самородка строительного золота.

НАЖМИТЕ ЗДЕСЬ, чтобы получить БЕСПЛАТНЫЕ И БЫСТРЫЕ СТАВКИ от местных строителей. Покажите им эту колонку.

В строительстве есть много вещей, которые строители и перестройщики уносят в могилу. Это прискорбно, потому что большинство из них не тратят время на то, чтобы записывать то, что они знают, для будущих поколений.

Интернет с комментариями на страницах и видео помогает замедлить потерю информации, но проблема заключается в том, что большая часть информации неверна, неполна или написана так плохо, что вы не можете понять, о чем говорится.

Когда мне следует поговорить с моим строителем о высоте фундамента?

Если вы находитесь на стадии планирования строительства нового дома и / или разговариваете с различными строителями по индивидуальному проекту о новом доме, вам нужно поговорить о высоте фундамента. В этой теме просто рассматривается расстояние от верха фундамента до готовой отметки, которая соприкасается с фундаментом и почвой в пределах 10 футов от фундамента.

Сейчас это может показаться вам неважным, но как только вы переедете и несколько дней идет сильный дождь, вам захочется, чтобы высота фундамента была чуть выше «Насколько большой будет моя кухня?» в вашей десятке желаний.

Какая идеальная высота фундамента?

Посмотрите на рисунок ниже, который я сделал. Дно зеленой канавы должно быть примерно в десяти футах от стены фундамента вашего дома.

Я сделал этот рисунок. Вы можете увидеть фундаментную стену с типичным подоконником и перекрытием перекрытия. Красная линия — это участок до появления экскаватора. Верх основания должен заканчиваться на 18 дюймов НАД красной линией. Используйте грязь из ямы, чтобы создать откос в сторону от фундамента.(C) Авторские права 2017 Тим Картер ВСЕ ПРАВА ЗАЩИЩЕНЫ

Насколько умны были старые строители?

Меня постоянно поражает интеллект многих старых строителей, ушедших из этого мира. Действительно жаль, что строители не «строят их так, как раньше».

Объезжайте старые районы вашего города, и вы, несомненно, увидите дома, где уровень первого этажа находится на высоте двух или даже трех футов от земли за пределами дома. Часто в этих домах есть ступеньки, ведущие к входной двери.У них часто есть эффектные веранды, где можно сидеть и смотреть на великолепный район.

НАЖМИТЕ ЗДЕСЬ, чтобы получить БЕСПЛАТНЫЕ И БЫСТРЫЕ СТАВКИ от местных строителей. Покажите им эту колонку.

Почему фундамент старых домов был выше из-под земли?

Я твердо верю, что это было сделано по нескольким причинам. Электрооборудование для земляных работ отсутствовало или было доступно. Копать более мелкий фундамент было дешевле.

Это старый каменный фундамент на горе.Пустынный остров в штате Мэн. Обратите внимание, как высоко он над землей. Действительно умный строитель! Авторские права 2018 Тим Картер

Фундаментные стены, выступавшие над уровнем земли, позволяли существовать окнам подвала без современных затопленных полукруглых оконных колодцев. Эти открытые окна могли пропускать больше света и вентиляции в подвал. Грязь, удаленная из котлована, можно аккуратно отделить от дома, чтобы создать прекрасный положительный дренаж.

Произошла ли гниль дерева?

Дождевая вода, пролившаяся на дома, сгнила те, что были близко к земле.Умным строителям не потребовалось много времени, чтобы понять, что если вы держите древесину на высоте примерно 30 дюймов от земли, у вас будет минимальная гниль или ее нет.

Это должно было быть еще одной мотивацией, чтобы фундамент не поднимался из-под земли.

Неужели более новые домашние фонды слишком глубоки?

Но просмотрите новые дома в подразделениях сегодня, и вы редко увидите дома, построенные таким образом. Новый метод лучше?

Я думаю, что это спорно, особенно в свете современных равномерная строительных норм и правил.Коды указывают на высоту фундамента.

Обычно в кодах указывается, что площадь открытого фундамента должна быть как минимум на 4–6 дюймов выше готовой почвы, которая соприкасается с фундаментом. Помните, что это минимальное расстояние.

Строительные нормы и правила представляют собой набор минимальных стандартов. Многие домовладельцы думают как раз наоборот. Строить свой дом в соответствии со стандартами кодов — это все равно что получить 70-процентную оценку за тест.

Что говорится в строительном кодексе?

Кроме того, в кодексе часто указывается, что земля вокруг фундамента должна иметь уклон в сторону от дома.Прочтите этот раздел кодов, и почти всегда будет сказано, что земля должна падать на 6 дюймов по вертикали на первые 10 футов горизонтального расстояния от фундамента. Вы спросите, какое отношение все эти числа имеют к высоте фундамента? Множество!

НАЖМИТЕ ЗДЕСЬ, чтобы получить БЕСПЛАТНЫЕ И БЫСТРЫЕ СТАВКИ от местных строителей. Покажите им эту колонку.

Кто устанавливает высоту земли в новых подразделениях?

Девелопер подразделения устанавливает степень чистоты участков до начала строительства.Слово «степень» относится к уровню всей земли на вашем участке до того, как вы начнете копать яму для фундамента.

Строители должны быть внимательны к этим установленным классам. Хороший строитель определяет самую высокую точку земли рядом с домом и устанавливает вершину фундамента по отношению к этой высокой точке.

Что произойдет, если мой фонд слишком низкий?

Когда новый строитель дома решает установить слишком низкую высоту фундамента, возникают всевозможные проблемы.Земля вокруг дома обычно очень плоская.

Положительный дренаж минимален или может не соответствовать нормативам. Тротуары, ведущие от проездов к входной двери, могут действовать как дамбы, задерживающие движение воды от дома.

Эти тротуары становятся препятствием для создания необходимого положительного дренажа вдали от дома, поскольку они расположены слишком высоко.

Может ли мульча создавать водные дамбы?

Проблема усугубляется, когда появляются ландшафтные дизайнеры. Они часто мульчируют эти участки и создают отрицательный дренаж.Поскольку мульча накапливается, вода в некоторых местах вокруг вашего дома может стекать в фундамент!

Можно подумать, что это все здравый смысл, но чем старше я становлюсь, тем больше я верю, что здравый смысл — это то, чему нужно учить, а не приобретать опытным путем.

Какая самая лучшая высота фундамента?

Обычно я устанавливаю все свои фундаменты на высоте примерно на 18 дюймов выше, чем наивысшая точка уклона в пределах десяти футов от готового фундамента. Это позволило мне создать 12 или более дюймов падения в пределах первых десяти футов горизонтального расстояния.

Он также произвел 6 дюймов открытого фундамента над землей вокруг дома. Помните, вы можете поставить фундамент повыше, чтобы получить больший уклон!

Возможны пологие склоны?

Я бы использовал часть выкопанной почвы, чтобы создать пологие откосы от дома во всех возможных направлениях. При правильном выполнении эти уклоны не мешали уклону, установленному застройщиком.

Дома, построенные таким образом, не кажутся возвышающимися над землей.Они выглядят величественно, поскольку сидят на искусственном возвышении, которое вы создаете из грязи, полученной при рытье фундамента.

Более того, в доме имеется положительный дренаж со всех сторон, так что ливневые дожди не затопляют подвал.

НАЖМИТЕ ЗДЕСЬ, чтобы получить БЕСПЛАТНЫЕ И БЫСТРЫЕ СТАВКИ от местных строителей. Покажите им эту колонку.

Колонка NH001

опор и балок | А-1 Инженерных

Перед использованием обычной плиты на земле или плавучие плитах, фундамент пирса и луча был типичный фундамент построен, чтобы поддерживать дом.До 1950 года, столбчатый фундамент и луч был наиболее экономичным и практичным фундаментом для домов. С развитием бетонного дизайна подрядчики и разработчики начали строить плавучие плиты вместо опор и балок.

Конструкция фундамента из опор и балок

Чтобы понять, как работает фундамент из опор и балок, важно обсудить, как сооружается фундамент и какого уровня производительности ожидать от этого фундамента.Настоящий фундамент для опор и балок состоит из пьедесталов (опор), встроенных в землю и расположенных в среднем от 5 до 6 футов по центру с деревянными балками, поддерживающими балки пола.

Рабочие характеристики опор и балок зависят от двух основных факторов.

Во-первых, структурная целостность деревянной опоры. Поскольку древесина гниет от влаги, для опор принято использовать кедровые столбы. Кедр — это натурально сохранившаяся древесина, которая способна противостоять гниению из-за влаги в течение гораздо более длительного периода времени, чем другие породы древесины.Недавно мы работали над проектом выравнивания 100-летнего дома, который опирался на кедровые опоры и совсем недавно их заменили.

Второй фактор — дренаж. Плохо дренируемые объекты, более вероятно, будут иметь проблемы с фундаментом и движение; независимо от возраста фундамента или дома.

Использование опоры и балочного фундамента

Экономика и архитектура были движущими силами при строительстве плиты на фундаментном фундаменте, в отличие от фундамента из опор и балок.До 1950 года в большинстве домов дерево использовалось в качестве внешней отделки и для полов. Поскольку деревянный каркас считается гибким, внешняя отделка и полы редко трескаются или ломаются. Кстати, характеристики опоры и балочного фундамента были совместимы с отделкой.

Общие проблемы фундамента из опор и балок

Большинство опор и фундаментов с балками, которые имеют проблемы с выравниванием, возникают в результате разрушения опор и их осадки в результате уменьшения массы древесины.По мере того, как древесина гниет, разрушенная часть древесины становится мягкой и создает пустоту между почвой и твердой внутренней древесиной. В результате опора оседает, как и любые деревянные конструкции, которые она поддерживает.

Влага (вода) — вторая и наиболее важная причина проблем с фундаментом из опор и балок. Помимо влаги, разлагающей деревянные пьедесталы, грунт, поддерживающий деревянную опору, имеет тенденцию к набуханию при увеличении количества воды, которую они удерживают. Представьте, что губка высохла и стала жесткой. Когда вы добавляете воду в губку, губка начинает набухать и становится более гибкой. Почвы, как правило, действуют таким же образом.

Причины проблем, влияющих на фундамент опор и балок

На этой фотографии изображена общая проблема с опорой и балочным фундаментом, построенным из дерева или кедра. Да, здание и фундамент действительно перевешиваются. Основная причина листинга — боковая нестабильность (поперечная устойчивость), а также износ и гниение деревянной опоры.В этом конкретном здании не было значительных трещин в стенах или потолке, потому что фундамент сразу рушился равномерно. В этом случае необходим инженер-строитель, чтобы спроектировать новую опору, которая может обеспечить адекватную боковую устойчивость фундамента И обеспечить лучшую долговечность. Кроме того, мусор под зданием помогает укрывать грызунов и позволяет воде скапливаться возле фундамента и вокруг него.

Влага (вода) — вторая и наиболее важная причина проблем с фундаментом из опор и балок.Помимо влаги, разлагающей деревянные пьедесталы, грунт, поддерживающий деревянную опору, имеет тенденцию к набуханию при увеличении количества воды, которую они удерживают. Представьте, что губка высохла и стала жесткой. Когда вы добавляете воду в губку, губка начинает набухать и становится более гибкой. Почвы, как правило, действуют таким же образом. По мере того, как в почву добавляется вода, почва начинает набухать и выталкивает все, что она поддерживает; включить мол и фундамент луча. Очень часто можно найти фундамент для опор и балок, у которых один угол здания намного ниже (более сухая почва) по высоте (или высоте), чем область возле водопроводного крана, водопровода или канализации сломана и пропускает воду в почвы.Сломанные водосточные желоба также добавляют значительное количество воды в почву в концентрированных областях вдоль фундамента. Из-за разлагающихся водой столбов из кедра и набухания почвы в концентрированных областях пол опор и балочного фундамента обычно намного более неровный, чем обычная бетонная плита на уклоне. По этой причине следует избегать отделки штукатуркой и плиткой, которые очень чувствительны к движению фундамента, если владелец не может жить с трещинами, которые возникнут в результате работы фундамента из опор и балок.

Проблемы с влажностью, которые вызывают набухание и усадку почвы, являются основной причиной, по которой строительные нормы и правила не допускают использование традиционных опор и балок.

Стоять высоко: история фундамента небоскреба

Взглядывать с подножия мега-небоскребов, таких как Бурдж-Халифа, здания кажутся невозможным подвигом. Каждый год миллионы туристов стекаются в обсерватории известных зданий, чтобы полюбоваться потрясающими видами.Но, делая селфи в небе, большинство людей не подозревают, что красивые пейзажи уходят корнями глубоко под землю в фундамент здания.

Хотя может показаться, что они стоят на обычном фундаменте, как и любое другое здание, небоскребы требуют хорошо спланированной конструкции, чтобы прикрепить их к земле. Чтобы природные силы не могли их опрокинуть, мегавысокие конструкции нуждаются в низком центре тяжести, который достигается за счет глубокого копания в земле, чтобы найти почву, достаточно прочную, чтобы выдержать вес здания.Для некоторых из самых высоких зданий в мире это означает копание на глубину до 85 метров. Все начинается с поиска коренных пород.

Построен на скале

Под рыхлыми поверхностными отложениями из почвы и песка находится слой литифицированной породы, называемый коренной породой. Уплотненный под давлением, этот твердый слой земли является первым строительным блоком при строительстве прочного фундамента для небоскребов. Без этого здание было бы подвержено перемещению и смещению из-за рыхлого верхнего слоя почвы.

После обследования строительной площадки на состав грунта строительство начинается с рытья котлована. Размер и глубина котлована зависит от того, насколько глубоко залегает коренная порода и сколько подвальных этажей будет в здании. В некоторых областях простой доступ к коренным породам может стать серьезной инженерной проблемой. Например, на месте Всемирного торгового центра в Нью-Йорке коренная порода находится почти на 20 метров ниже поверхности. Поскольку близлежащая река Гудзон пропитывала почву, раскопки до коренной породы были невозможны без затопления участка.

Иногда коренная порода лежит близко к поверхности. В этих обстоятельствах почва на верхней части коренной породы удаляется, и коренная порода выкапывается, чтобы сформировать гладкую поверхность, на которой можно построить фундамент. Затем в скальной породе взрываются или просверливаются опоры и устанавливаются стальные или железобетонные колонны, чтобы закрепить здание.

Когда коренная порода очень глубокая, вертикальные балки, называемые сваями, погружаются в почву до тех пор, пока они не внедряются в коренную породу в качестве опор для закрепления конструкции.После закрепления конструкции готовы противостоять всему, что может бросить в них природа.

Силы природы

Ураганные ветры и сейсмическая активность — две основные причины, по которым небоскребы закрепляются в скальных породах. Древние архитекторы, как и те, что работали над пирамидами, решили эти проблемы, используя широкий фундамент, чтобы распределить вес здания на большей площади. Однако современные мега-высокие здания сталкиваются с ограниченным пространством и уникальными требованиями к дизайну, которые требуют других решений.

Боковые силы ветра и последующее движение системы фундамента могут быть чрезвычайно опасными. На вершине небоскреба ветер может достигать скорости до 100 миль в час. Движение фундаментной системы может вызвать повышенные вертикальные нагрузки на конструкцию, особенно на наружные сваи. В результате при проектировании свай фундамента необходимо учитывать эти силы.

Необходимо проанализировать состояние коренных пород и грунта, чтобы определить выбор конструкции фундамента, включая тип и количество опор несущей способности. В районах с мягкими и плохими грунтовыми условиями для системы фундамента могут потребоваться специальные анкеры для противодействия подъемным силам от ветра или опрокидыванию в результате сейсмических событий. Наряду с другими конструктивными особенностями, такими как демпферы или амортизаторы, прочный фундамент гарантирует, что небоскребы выдержат даже самые сильные штормы и землетрясения.

Фонды мирового уровня

По экологическим или дизайнерским соображениям нет двух одинаковых фундаментов здания.Вот как были заложены фундаменты некоторых зданий мирового класса Samsung C&T.

1. Бурдж-Халифа

Построить небоскреб посреди пустыни — непростая задача. Коррозионная соленая вода, протекающая под землей между почвой, песком и камнями, стала серьезной проблемой для Бурдж-Халифа. Инженеры должны были использовать специальный бетон, который не пропускает соленую воду, и процесс, известный как катодная защита, при котором в бетонное основание добавляется еще один металл, чтобы защитить несущие стальные балки от коррозии, если соленая вода проедает бетон. .

2. Башни Петронас

Знаменитые башни-близнецы планировалось построить на месте бывшего клуба травы Селангора, который представлял собой ровную зеленую землю. Но исследования почвы показали, что эта местность не сможет удержать фундамент из-за неровностей известняковой коренной породы. Чтобы выдержать огромный вес зданий, площадку переместили туда, где скальная порода была глубже, что позволило надежно закрепить здания на грунте не менее 55 метров для каждого фундамента башни.В фундамент было залито 13 200 м 3 бетона — это самый большой объем, когда-либо залитый в строительной отрасли Малайзии на то время.

3. Тайбэй 101

Будучи прибрежным городом, строительство в Тайбэе представляло множество проблем. Экстремальные тайфуны, потенциально сильные землетрясения и сложные подземные условия, включая бездействующую линию разлома, проходящую через строительную площадку, были серьезной проблемой для инженеров.Проект требовал подвала глубиной 21 метр, и после обследования было определено, что для здания потребуются две системы фундамента. Окончательный проект включает в себя защитную стену, называемую диафрагменной стеной, которая окружает башню и торговую площадь вокруг нее, вторую диафрагменную стену, ограничивающую только башню, и железобетонный мат.

Основы общества

Хотя они могут показаться не более чем дырой в земле, революционные методы строительства фундаментов сделали возможными сегодняшние мегаполисы.Позволяя тысячам людей тесно сотрудничать, обмениваться идеями и сотрудничать, наши небоскребы доказали, что если вы хотите достичь новых высот, вы должны сначала копать глубоко.



Размер и размеры бетонной опоры

Итак, как несущая способность грунта соотносится с размером опор? Основание передает нагрузку на почву. Чем ниже несущая способность почвы, тем шире должно быть основание. Если почва очень прочная, то основание даже не обязательно, просто грунта под стеной будет достаточно, чтобы удержать здание.

Таблица размеров опор

Вот минимальная ширина для бетонных или каменных оснований (дюймы):

Несущая способность грунта (фунт / кв. Дюйм)
1,500 2 000 2,500 3 000 3,500 4 000
Традиционная конструкция с деревянным каркасом
1-этажный 16 12 10 8 7 6
2-этажный 19 15 12 10 8 7
3-этажный 22 17 14 11 10 9
4-дюймовая кирпичная облицовка деревянным каркасом или 8-дюймовая пустотелая бетонная кладка
1-этажный 19 15 12 10 8 7
2-этажный 25 19 15 13 11 10
3-этажный 31 23 19 16 13 12
8-дюймовая сплошная или полностью залитая цементная кладка
1-этажный 22 17 13 11 10 9
2-этажный 31 23 19 16 13 12
3-этажный 40 30 24 20 17 15

Источник: Таблица 403. 1; Кодекс CABO для проживания одной и двух семей; 1995.

Дополнительные размеры опоры:

  • Толщина опоры — от 8 до 12 дюймов
  • Глубина опоры — варьируется в зависимости от линии промерзания и прочности почвы (некоторые опоры могут быть неглубокими, а другие — глубокими)

Калькулятор бетона — Подсчитайте, сколько бетона вам понадобится для фундамента .

Найдите поблизости подрядчиков по изготовлению плит и фундаментов, которые помогут с вашими опорами.

Вы можете найти рекомендуемый размер фундамента в зависимости от размера и типа дома, а также несущей способности почвы. Как видите, тяжелые дома на слабой почве требуют опор шириной 2 фута и более. Но самые легкие здания на самой прочной почве требуют опор шириной 7 или 8 дюймов. Под стеной толщиной 8 дюймов это то же самое, что сказать, что у вас нет опоры.

Эти числа основаны на предположениях о весе строительных материалов, а также о динамических и статических нагрузках на крыши и перекрытия.Допустимая несущая способность грунта под основанием должна равняться нагрузке, создаваемой конструкцией. Читая таблицу, вы видите, что код требует основания шириной 12 дюймов под двухэтажным деревянным каркасным домом в почве с плотностью 2500 фунтов на квадратный фут. 12-дюймовая опора — это 1 квадратный фут площади на линейный фут, поэтому в кодексе говорится, что часть двухэтажного деревянного дома, которая опирается на внешние стены, весит около 2500 фунтов, может быть, немного консервативно, но разумно. Фундамент такого же размера требуется под одноэтажный дом, если он облицован кирпичом, то предполагается, что вес кирпича равен целому второму этажу.

Если бы у вас был инженер, спроектировавший фундамент на основе результатов испытаний грунта и ваших отпечатков, он бы сложил фактические веса бетона, дерева и кирпича, которые вы будете использовать в своем здании, с учетом требуемых временных нагрузок, и рассчитайте, какой вес будет иметь ваш дом.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *