Керамзитобетонные: Керамзитобетонные блоки для строительства дома: плюсы и минусы

Автор

Содержание

Сравнение керамзитобетонных и газобетонных блоков

Бытует мнение, что керамзитобетон – материал чуть ли не гаражного производства. Это устаревшая информация. Сегодня на рынке есть серьёзные компании, которые производят качественные керамзитобетонные блоки, лишённые недостатков, о которых часто упоминают в интернете. И геометрия, и теплозащитные свойства у этих блоков намного лучше, чем у их предшественников.

Тем не менее у газобетонных блоков есть целый ряд преимуществ над керамзитобетонными:

  1. Низкая цена. Если вы хотите купить качественные стеновые блоки, то м3 газобетона обойдётся на 20-30% дешевле, чем м3 керамзитобетона.
  2. Лучше теплозащитные свойства. Любой из этих материалов даёт возможность строить однослойные (не утеплённые) наружные стены, которые будут соответствовать требованиям строительных норм для европейской части России. Однако в зависимости от материала толщина стен будет разной.

Стены из популярных на нашем рынке газобетонных блоков YTONG (Xella Россия) с маркой по плотности D400 при толщине 375 мм обеспечивают сопротивление теплопередаче R=3,45 Вт/(м2·°С).

Нормативные требования для средней полосы России – 3,15 Вт/(м2·°С), так что показатели газобетона даже превышают их. В то время как стены из керамзитобетона «вписываются» в требования только при толщине 400 мм. Иными словами, стены из газобетона можно делать тоньше и при этом они будут «теплее». 

  1. Выше морозостойкость. Величина морозостойкости напрямую говорит о сроке службы каменного стенового материала. Чем она выше – тем долговечнее материал. Марка по морозостойкости газобетонных блоков – F100, в то время как у лучших образцов керамзитобетона – F50, а чаще она ещё меньше – F25-F35. В принципе даже F35 – хороший показатель для стенового материала. Но в любом случае газобетонные блоки долговечнее даже самых качественных керамзитобетонных.
  2. Выше огнестойкость. Согласно испытаниям, конструкция из газобетона YTONG сохранит несущую способность в течение 360 минут, а керамзитобетонные конструкции – максимум 180 минут.
  3. Удобство и быстрота укладки.
    В сравнении с газобетоном у керамзитобетона выше плотность (D800-D1200), и потому изделия из него оказываются очень тяжёлыми. Чтобы керамзитобетонные блоки было легче укладывать, их габариты делают меньше. Но из-за этого, во-первых, уменьшается скорость укладки (приходится чаще подносить блоки). Во-вторых, появляется больше швов между блоками, а, как известно, швы – это мостики холода, через которые из дома улетучивается драгоценное тепло. В-третьих, столь плотные блоки сложно резать или штробить, для этого нужна, например, болгарка с дорогостоящим алмазным диском по бетону.

Газобетон лишён этих недостатков. Блоки заметно крупнее и при этом незначительно тяжелее (примерно на 5 кг). Скорость укладки выше. Швов меньше, а значит, меньше и мостиков холода. Резать и штробить газобетон можно даже ручным не моторизированным инструментом, и делать это можно очень быстро.

  1. Есть доборные элементы, которых нет у производителей керамзитобетона. В линейке YTONG есть элементы для надёжного и быстрого обустройства стандартно сложных узлов здания.
    Например, есть U-блоки, дугообразные блоки, О-блоки для дымоходов и вентканалов, готовые перемычки для оконных и дверных проёмов, комплектующие для устройства сборно-монолитных перекрытий, на которые проходит акция у наших партнеров. Все они заметно упрощают и ускоряют монтаж, а также делают конструкцию дома более долговечной.

Ещё несколько нюансов:

  • На рынке есть керамзитобетонные блоки, которые прочнее газобетонных. Однако блоки YTONG даже низкой плотности (D400) имеют класс прочности В2,5 и обладают достаточной несущей способностью, чтобы строить дома высотой в три этажа. А из блоков D500 можно сооружать пятиэтажные здания. Это подтверждено независимыми испытаниями.

Говорят, что из-за высокой прочности керамзитобетон не требуется армировать. Но рядовые участки кладки из газобетона тоже не требуется армировать. Усиливать необходимо лишь подоконный ряд блоков. И это нужно, прежде всего, для компенсации усадки здания. То есть чтобы не появлялись волосяные трещины на штукатурном слое.

В этом плане и кладке из керамзитобетона не помешало бы такое армирование.

  • У керамзитобетонных блоков бюджетного сегмента неидеальная геометрия, поэтому их приходится укладывать на толстослойный цементный раствор. При этом через растворные швы стены будут промерзать. Избежать этого можно, только если использовать дорогостоящий раствор с улучшенными теплозащитными характеристиками или утеплять фасад. Газобетонные и качественные керамзитобетонные блоки укладывают на тонкошовный клей и иногда на пеноклей. В этом случае промерзание через швы сведено к минимуму.

· Производители керамзитобетона утверждают, что это экологически чистый материал. Но известно, что керамзит, входящий в его состав, может иметь небольшой радиационный фон. Поэтому перед покупкой таких блоков попросите у производителя сертификат, подтверждающий их экологическую безопасность. Что же касается газобетона, то в его составе нет никаких вредных компонентов. И он гарантированно не «фонит», что, впрочем, также подтверждено протоколом испытаний.

цены и размеры на пескобетонные блоки

В ПБИ «Максимово» вы можете купить пескоцементные блоки от производителя. Мы сами производим бетонные изделия в Москве и продаем их без посредников и наценок. С нашей компанией вы будете уверены в стабильности поставок и качестве материала. Мы отгружаем материалы оптом и в розницу в день заказа.

Пескоцементные блоки, благодаря их прочности, можно использовать для создания несущих конструкций. Они активно применяются в многоэтажном строительстве, но подойдут и для возведения коттеджей и загородных домов. Если перед вами стоит задача построить хозяйственную пристройку, забор, гараж или баню, материал тоже подойдет как нельзя лучше.

Особенности пескоцементных блоков

В создании изделий используется раствор из цемента и песка. Они бывают пустотелыми и полнотелыми, отличаются по:

  • габаритам,
  • весу,
  • морозостойкости,
  • марке, которая показывает предел прочности материала.

Стандартный цвет материала — серый. При его использовании вам потребуется провести дополнительную отделку внешних стен, чтобы улучшить защиту от внешнего воздействия среды и сделать фасад красивее. Подойдет сайдинг, штукатурка, обшивка панелями. Допускается дополнительное утепление и монтаж звукоизоляции, создание системы вентилируемого фасада.

 

Преимущества пескоцементных блоков

  • Хорошие изоляционные качества. В построенном из такого стройматериала доме будет тепло и тихо.
  • Экологическая безопасность. Продукт не выделяет вредных испарений.
  • Удобство установки. По габаритам такой блок больше кирпича — это уменьшает расход материала и соединительного раствора.

Еще одно достоинство — выгодная цена пескоцементных блоков. Покупая у нас, вы получаете товар от производителя и не переплачиваете.

Производятся пескоблоки методом вибропрессования, что позволяет исключить появление нежелательных пустот в изделии.

Как выбрать подходящий материал?

Каждая разновидность блока предназначена для решения конкретной задачи.

  • Облицовочный. Одна сторона его обработана. Его можно использовать без дополнительной отделки стены здания.
  • Фундаментный. Материал повышенной прочности, подходит для создания несущих конструкций. Дополнительно усиливается за счет полнотелого исполнения.
  • Стеновой. Подойдет для возведения стен дома.
  • Перегородочный. Подойдет для изменения внутренней планировки помещения. Часто используется как в каркасном, так и в монолитном строительстве.

Мы поставляем продукцию с полным набором сертификатов качества. В продаже вы также найдете ЖБ изделия, керамзитобетонные блоки и тротуарную плитку. Чтобы сделать заказ, воспользуйтесь формой на сайте.

Керамзитобетонные блоки | BELBLOCK®

Блок строительный керамзитобетонный


Является промежуточным звеном от кирпича до пористого блока, который бывает пенобетонным или газобетонным. Данный товар, а именно керамзитобетонные блоки в СПб, можно купить по выгодной цене, при этом продукция будет иметь хорошее качество.

 

Какие преимущества и минусы товара

 

Блоки для строительства керамзитобетонные должны изготавливаться по определенным стандартам качества, тогда они будут иметь множество преимуществ, а также будут безопасными.

 

Какие основные качества имеют блоки:

  • долговечные;
  • проницают пар;
  • имеют маленькую массу, за счет этого их часто используют для строительства, керамзитобетонные блоки занимают меньше энергии при укладывании;
  • имеют низкую теплопроводность;
  • керамзитобетонные блоки для дома можно использовать как материал, обеспечивающий дополнительную теплоизоляцию основного материала, используемого для дома в строительстве;
  • керамзитобетонные блоки огнеупорны, а при горении они не выделяют токсичного продукта;
  • могут сочетаться с различными вариантами облицовки – плитки, штукатурки, дерева;
  • имеют ровную поверхность;
  • невысокая стоимость.

 

Однако, как и любой материал, блоки имеют и свои недостатки. Их значительно меньше, чем плюсов, но они могут быть определяющими при выборе материалов для строительства.

 

Недостатки:

  • Плохая переносимость динамических и ударных перегрузок.
  • Их сложно разрезать или распилить, они могут образовывать трещины.

 

При приобретении материала необходимо обращать внимание на состав товара. В некоторых случаях недобросовестные производители могут добавлять различные примеси, из-за которых блоки становятся менее экологичными и при горении образуют токсичный дым. Керамзитобетонные блоки в Москве можно найти хорошего качества, главным принципом при выборе является наличие ГОСТа.

 

Выдерживание материалом воздействия температур

 

Одним из параметров товара является устойчивость к высоким и низким температурам. От того, насколько керамзитобетон устойчив у морозу, зависит срок эксплуатации и несущие способности стен дома. Блоки, сделанные в соответствии с государственным стандартом, имеют разные марки устойчивости к морозу.

 

Керамзитобетонные блоки в Санкт-Петербурге можно купить различных марок, в настоящее время ассортимент строительных товаров достаточно большой.

Керамзитобетонные дома (80 фото) - инструкция строительства и выбор материалов для дома

При возведении частного дома или дачи главным является выбор места на участке и качественного строительного материала. Кроме эстетики каждый хозяин хочет возвести вечное «родовое гнездо», чтобы потомки благодарили за прочность, комфорт и энергоэффективность строения. Грамотно подобранные материалы помогут сэкономить немалые средства на ремонте, обогреве и пр.

Краткое содержимое статьи:

Особенности керамзитобетона

Сейчас для возведения зданий применяют кирпич, дерево, бетон или различные по составу блоки: шлакобетонные или пенобетонные. Но подробно разберем — керамзитовые.

Большую популярность приобретает строительство дома из керамзитобетонных блоков. Для возведения зданий технология аналогична кирпичным или шлакоблочным, но лучшее соотношение цена/качество, вывело керамзит в лидеры продаж. Особенность его структуры придают отличные эксплуатационные свойства.

Состав керамзита – это шарики с губчатой структурой, поэтому вес блока значительно ниже, чем кирпич. Это не только снижает затраты на все строение, меньше давление на фундамент. А производительность труда резко увеличивается.


Пористая структура отлично защищает от всех шумов, сохраняя тепло. Легкий монтаж позволяет возводить всевозможные варианты для внешних стен и внутри помещений.

Преимущества керамзитобетонных домов

  • Экологически чистая продукция без опасных примесей, поэтому можно использовать для внутренней отделки помещений.
  • Влагостойкость.
  • Прочность и долговечность.
  • Пожароустойчивость, материал не боится высоких температур, его трудно поджечь.
  • Низкий уровень теплопроводности. Если сравнивать с газобетонными блоками у керамзита в 1,5 раза ниже.
  • Отличная шумоизоляция.
  • Малый вес и высокая производительность труда, что сокращает время на возведение постройки.

Недостатки керамзитобетонных домов

Обязательная отделка (внешняя и внутренняя). Если этого не сделать, то через пару лет прочность материала снизится, это плохо скажется на жесткости всего здания.

Керамзитобетонные блоки (КББ) нельзя использовать для возведения фундамента дома. Его пористая структура не выдержит больших нагрузок.

Как рассчитать количество материала?

Правильный расчет материалов – важный момент в строительстве. Неиспользованные материалы трудно будет продать, лишь с большим дисконтом, что потребует затрат.

Сначала выбирают проекты домов. Производители выпускают стандартные размеры керамзитобетона:

  • для внешних стен 190 * 190 * 360 мм;
  • для внутренних перегородок 190 * 90 (120) * 360 мм.

Нужно сложить площади всех стенок с учетом параметров кладки. Отнять общую площадь дверных проемов и окон.

Распространенные ошибки при подсчете материалов для постройки:

  • При расчете часто забывают включить фронтоны.
  • Следует учесть внутренние стены, при кладке из КББ.
  • При установке армопояса, его нужно вычитать из высоты стенок.
  • При наружной облицовке кирпичом, керамзитобетонные стены строят чуть меньше внешней стены.

Часто высота стенок из КББ кратна высоте блочных элементов со швом (0,2 м). Значит, без армопояса высота стен будет кратной (2.4, 2.6, 2.8).

Важно! КББ не всегда нужны целые, могут понадобиться части для вставок. Также при распаковке могут быть поврежденные элементы, непригодные для строительства.

Пример расчета

Размер дома: 10х10 м, 2 окна по 1,6 метров,  две двери по 1 м, длина перегородки внутри — 9,2 метров.

Домик (1-этаж) с II фронтонами и I перегородкой внутри помещения. Наружные стены толщиной 19 см (это ширина I блока), а внутренней стенки – 39 см (это длина I блочного элемента).

Важно! Если облицовка будет из кирпича, еще утеплитель, значит, все стенки на 15 см меньше с каждой стороны (т.е. на 0,3 м меньше).

При общем периметре стен: 9,7 м х 4 м = 38,8 м.

Число блоков в I ряду по всему периметру: 38,8 м / 0,4 = 97 шт., где 0,4 – это длина I элемента с учетом шва.

Затем умножаем на число рядов (т. е. высоты стен):

  • 2,6 м = 13 рядов;
  • 2,8 м = 14 рядов.

В данном примере высота учитывалась 2,8 метра (т.е. 14 уровней кладки): 97 * 14 рядов = 1358 штук.

Вычитаем оба окна (их размеры 1,6 * 1,4) = 56 штук. Двери (высота 2 м х ширина 1 м) = 25 штук. Отнимаем двери и оба окна из полученного общего числа блочных элементов: 1358 – 56 – 25 = 1277 штук.

Это количество блочных элементов для внешних стен, также считают для несущей стены внутри помещения. Ее толщина в II раза должна быть больше (39 см – длина I элемента).


Несущая стена (без двери) — 594 штук.

Складываем: 1277 + 594 = 1871 штук.

На оба фронтона (при высоте 2 м и длине – 9,7 м) = 242,5 шт.

Правильно кладку начинать с целого ряда, только со II – подпиливают элементы, прибавляем 2 рядка: 242,5 + 48,5 = 291 штук. Лучше 300 шт., чтобы учесть все (брак, распил и пр.). Итого: 1871 + 300 = 2171 штук.

Важно! Если необходим точный расчет, можно отдельно рассчитать каждую стенку: по 24 элемента + ¼ (на распил). Обязательно нужен запас около 8%. Продают поддонами, поэтому следует узнать заранее у производителя, они помогут с расчетами.

Следует убедиться в качестве материалов, проверить сертификаты у компании.

Для I-этажного строения можно приобрести полнотелые блоки, а для двухэтажного – многощелевые. Ценно, что у них есть стыковочные пазы для соединения с торцов, раствор не понадобится.

Фундамент строений

Дом из керамзитобетонных блоков требует качественного фундамента. Если есть желание в подвале создать тренажерный зал, котельную, то понадобятся бетонные блоки. Без подвала можно сделать ленточный фундамент, траншея до 50 см, а по ширине равной стенам плюс 1 м.

На дне – песочная подушка, а из щитов (ДСП, OSB) готовят арматурную решетку и опалубку. Заливают бетоном, уплотняя каждый слой в 20 см.

Последовательность работ

Поверхность фундамента искривляется после усадки, ее выравнивают уровнем. Между слоями фундамента кладут пласт мастики, а на верхнюю поверхность – рубероид для гидроизоляции.

Укладку КББ нужно начинать с угла, для этого натягивают веревку (шнур). Важен постоянный контроль отвесом и уровнем, кладут сначала I-й ряд по всему периметру и т.д.

После IV ряда советуют армировать стенку по периметру, покрыть раствором и продолжают кладку. Если стены двойные, то два ряда кладут одновременно.


Для двухэтажного дома нужна толщина I-го этажа от 40 см. Производители выпускают большие размеры 590 х 400 х 200 мм блоки.

Когда закончен I-й этаж, укрепляется армирующим поясом верхний слой, чтобы нагрузка распределялась равномерно. Часто кирпичный пояс или из ж/б блоков, необходимо его утеплить.

Виды отделки

Чтобы обеспечить хорошую теплоизоляцию, необходима отделка керамзитобетонных домов:

Фасад можно утеплить пенополистироловыми плитами (до 50 см). Для красоты используют цветную штукатурку или декоративную плитку.

Популярны «вентилируемые» фасады, где используется фольга из алюминия (пароизоляция), затем закрепляется минеральная вата. Сверху производят монтаж гидроизоляции, затем закрыть сайдингом или др. Затратный метод, но будет служить долго, такая многослойность обеспечит тепло в доме.

Варианты керамзитобетонных домов представлены на фото в галерее.

Фото керамзитобетонных домов

Сохраните статью себе на страницу:

Пост опубликован: 02.12

Присоединяйтесь к обсуждению: Copyright © 2021 LandshaftDizajn.Ru - портал о ландшафтном дизайне №1 ***Сайт принадлежит Марии Козак

Что такое керамзитобетонные блоки?

Керамзит - легкий и эффективный минеральный утеплитель, который производится посредством высокотемпературной обработки специальной глины.
Гранулы сырья, в несколько раз увеличиваются в объеме и затвердевают, приобретая, таким образом, прочность, низкую теплопроводность, небольшой вес, влагостойкость и другие свойства, предъявляемые к наполнителям легких бетонов.

Материал востребован для производства керамзитобетонных блоков, обладающих доступной стоимостью, и свойствами, определяющих пригодность блоков для бюджетного, малоэтажного строительства. Замена монолитного бетона керамзитовыми блоками, характеризуется высокой экономичностью монтажа и последующей эксплуатации дома.

  • Прежде всего, это меньший вес строения, позволяющего снизить требования к сложности и материалоемкости фундаментного основания.
  •  Керамзитобетонные дома в умеренном климате практически не нуждаются в дополнительной теплоизоляции.
  • При эксплуатации дома в северном регионе, для поддержания комфортного микроклимата в доме, потребуется утепление, выполненное с оптимальными расходами времени и средств.

Объем блоков обеспечивает производительный, 4-5 раз, монтаж, доступный для переноски вес, предоставляет возможность доставки расходного материала на рабочее место вручную, таким образом, применение дорогой аренды подъемной техники становится необязательным.

К сожалению, клеевая кладка для материала невозможна, тем не менее, в отличие от кирпичных технологий, керамзитобетон экономней расходуют кладочный раствор.

Качественный керамзитобетон обладает достаточно эффективным природным паро-газообменом, поэтому комфортность микроклимата в доме достаточная. По уровню теплосохранения, шумопоглощению, стойкости к внешним воздействиям и эксплуатационному ресурсу, материал не уступает многим видам легких бетонов, с минеральными и полимерными наполнителями.

Керамзитобетонные блоки это выгодно

Имеются все основания, для перевода керамзитобетонных блоков в категорию экономически выгодных строительных материалов. По сравнению с кирпичными технологиями, стоимость керамзитобетонного дома в среднем на 40% меньше. Этот показатель можно увеличить за счет оптимальных расходов на теплоизоляцию, экономичное расходование энергоносителей, используемых для обогрева и кондиционирования дома.

Все компоненты блоков экологически безупречны. Даже при продолжительных высокотемпературных воздействиях, материал не загрязняет окружающую среду токсическими соединениями.
Производственные технологии керамзитобетонных блоков, модернизированы за счет улучшения структуры материала виброобработкой и последующим высокотемпературным пропариванием в автоклавном оборудовании.

Однородность структуры и повышение качественных характеристик керамзитобетона - следствие применения мелкофракционного наполнителя. Действующий ассортимент предлагает широкий выбор пустотелых и монолитных изделий нескольких типоразмеров, что положительно сказывается на производительности монтажа сложных участков, способствует уменьшению объема неделовых отходов.
  • Газобетонные блоки полнотелые востребованы для возведения нагруженных ограждающих стен, закладки фундаментов для легких, каркас панельных домов дачного типа.
  • Пустотелые изделия обладают эффективной тепло - звукоизоляцией, поэтому на проблемных участках, оправдано применение обоих видов.
При этом прочностные параметры более дешевых, облегченных изделий, практически не уступают свойствам полнотелых пеноблоков. Более того, внутренние полости могут успешно использоваться для размещения элементов силового каркаса, кабельных и трубопроводных коммуникаций, долговечной, минеральной или стекловолоконной теплоизоляции.


Стены из керамзитобетонных блоков - кладка, возведение, строительство

Среди видов высококачественного строительного материала для возведения стен особого внимания заслуживают керамзитобетонные блоки – доступный, легкий, прочный, долговечный и поддающийся обработке стройматериал. Возведением зданий различного назначения из керамзитобетонных блоков и занимается компания "Проект". Мы оказываем профессиональные строительно-монтажные услуги по невысоким ценам жителям Москвы и Подмосковья.

Керамзитобетонные блоки: общие сведения и характеристики

Керамзитобетон относится к классу легких бетонов, хотя если сравнивать вес изделий из него с изделиями из газобетона, полистиролбетона или пенобетона, то он будет в 1,5 – 2,5 раза больше. Вес стандартного изделия 16 -17 кг.

Изготавливают стеновые блоки в соответствии с нормативами ГОСТ исключительно из природных материалов: керамзит, вода, наполнители, песок и цемент. Первый компонент в составе – это пористый материал, получаемый при помощи обжига глинистого сланца или глины.

Производятся керамзитобетонные блоки из цемента марки М 50 – М 500, щебня (гравия) самых различных фракций (от 5 мм до 40мм) по технологии вибропрессования. Смешенные с водой, песком и цементом щебневые шарики «склеиваются» друг с другом, образуя очень прочный, экологически безопасный и достаточно легкий стройматериал. В зависимости от того, какие виды компонентов были использованы при изготовлении керамзитобетонных блоков, проявляются и их физико-технические качества:

  • Плотность – от 350 до 1800 кг/м3.
  • Паропроницаемость (нормальные условия) – от 0,1 до 0,3 мг/мчПа.
  • Морозостойкость – от 25 до 500 (для перегородочных блоков не определяется).
  • Испытанная эксплуатационная влажность материала – от 5 до 7%.
  • Прочность на сжатие – от 0,5 до 15 мПа.
  • Огнестойкость: изделия сохраняют свои качества под воздействием открытого огня до 10 часов.
  • Теплопроводность (расчетная) кладки – от 0,11 до 0,7 Вт/м2.
  • Процент усадки стены керамзитобетонных блоков – 0%.
  • Процент водопоглощения – до 50%.
  • Время остывания стены – от 65 до 90 часов.

Применение керамзитобетонных блоков и их разновидности

Физико-технические качества определяются процентным содержанием керамзита и его фракцией в составе материала. Чем выше процент содержания, тем меньше характеристики теплопроводности и прочности. При этом свойства изделий подразделяют данный вид стройматериала на типы, от которых зависит область применения данного материала. Наши специалисты рекомендуют использовать керамзитобетонные блоки по назначению:

  • Теплоизоляционные. Наименее прочный и механически стойкий вид материала, плотность которого не превышает 700 кг/м3, а прочность – до 25 мПа. Используются в качестве надежного теплоизоляционного материала, для возведения межкомнатных перегородок.
  • Конструктивные. Наиболее прочный материал, имеющий плотность от 1200 до 1800 кг/м3 при прочности – от 10 до 15 мПа. Эти блоки имеют максимальный коэффициент морозостойкости и используются для возведения несущих стен.
  • Конструктивно-теплоизоляционные. Блоки используются для возведения однослойных стеновых панелей, перегородок, и прочего. Плотность этого материала составляет 800- 1200кг/м3 при прочности – до 10 мПа.

Также различают монолитные и пустотелые блоки. Пустотелые изделия позволяют строить теплые стены конструкций любого назначения, а монолитные применяют для кладки каминов, печей или дымоходов.

Стены из керамзитобетонных блоков: особенности

Для создания оптимально комфортного теплового режима в доме в условиях центрального региона необходимо возводить стены толщиной не менее 0,65 метров с обязательным утеплением. При этом фундамент для кладки стен из керамзитобетонных блоков не должен быть облегченным, как в случае с газобетоном или пенобетоном. Это обеспечит здание долговечность и надежность: его эксплуатационный срок составляет свыше 75 лет (при условии закупки качественных блоков).

Дом со стенами из керамзитобетонных блоков будет обладать:

  • значительными теплотехническими и звукоизоляционными качествами;
  • значительной воздухопроницаемостью. Способность стен сохранять в комнатах оптимальный температурный режим;
  • значительной влагостойкостью, сопротивляемостью агрессивным средам;
  • высокими показателями огнестойкости;
  • экологической безопасностью.

Строительство стен из керамзитобетонных блоков

Возведение стен из керамзитобетонных блоков требует некоторых специальных знаний и нередко принятия конструктивных решений. Эту работу лучше доверить профессионалам. Специалисты нашей компании оказывают доступные профессиональные услуги по строительству сооружений в Москве и Подмосковье.

Начинают кладку стен из керамзитобетонных блоков с углов и продолжают рядами по периметру. Однако прежде чем положить первый ряд, стоит позаботиться о качественной гидроизоляции. Для этого на фундамент укладывается двойной слой рубероида или других изоляционных материалов.

Также стоит помнить, что:

  • использовать обычный молоток каменщика при работе с керамзитобетонными блоками нельзя. Лучше приобрести специальный резиновый молоток;
  • армировать стены необходимо специальной арматурой. Ее укладывают на завершенный ряд по периметру во всю стеновую длину. Кладка следующего ряда осуществляется по арматуре, которую укладывают через каждые 3-5 рядов;
  • кладку каждого ряда из блоков необходимо проверять уровнем, поскольку для этого стройматериала свойственна незначительная конусность;
  • кладку наружных и внутренних стен стоит проводить одновременно, не забывая об арматуре;
  • осуществляя кладку, нельзя забывать о цепной перевязке швов по вертикали;
  • последний ряд завершает армопояс.

При четком соблюдении правил, учете особенностей работы с этим видом стенового материала, возведенная конструкция прослужит долгие годы.

 

преимуществ керамзитовых заполнителей | by Rivashaa Eco Design Solution

Легкий керамзит (LECA) или керамзит (exclay) получают путем нагревания глины во вращающейся печи при высокой температуре около 1200 ℃. Высокая температура создает сотовую структуру, поэтому LECA обычно имеет округлую форму, напоминающую картофель. Возможно изготовление нескольких размеров и плотностей. Он обладает рядом ценных свойств, таких как легкость, теплоизоляция, звукоизоляция, неразложимость, водопоглощение, огнестойкость и т. Д.Общие области применения включают блоки из керамзитового заполнителя , бетонные плиты , легкий бетон, аквапонику, гидрокультуру и т.д. статической нагрузки до 30%.

Очень полезно во время землетрясения. Это главным образом потому, что он менее эластичен и менее разрушителен, поэтому может выдерживать такие бедствия, как землетрясение.Они также могут наносить вертикальный раствор в швы, что, в свою очередь, сводит к минимуму опасность обломков.

Обеспечивает звукоизоляцию.

Пригодится в большом количестве операций. Это включает в себя такие действия, как резка, прибивание гвоздей, расширение и закрепление гребня (безупречно, без трещин).

Они помогают предотвратить гниение труб и проводов, поскольку они химически нейтральны.

Его материал более пористый и менее толстый.

Они оптимизируют строительство несущих конструкций, а также помогают снизить стоимость их строительства.

Свойство теплоизоляции означает высокую степень оптимизации нагрева и охлаждения. Это помогает снизить затраты на изоляцию.

Это помогает снизить затраты на обслуживание и транспортировку.

Снижает потери строительного материала, а также затраты на раствор и рабочую силу.

Rivashaa Eco Design помогает с заполнителями керамзита , европейского стандарта EN 13055–2, изготовленными по индивидуальным спецификациям. Они легкие по весу, обладают высокой прочностью на сжатие.Он обеспечивает хорошее водопоглощение и дренаж. Кроме того, он также защищен от насекомых, не токсичен и экологичен. Он имеет микропористую структуру с низким коэффициентом теплового расширения и отличными фильтрующими материалами.

Поведение легкого керамзитобетона при воздействии высоких температур

Авторов: Ленка Боднарова, Рудольф Хела, Михаила Губертова, Ивета Новакова

Аннотация:

Эта статья посвящена вопросам поведения легкий керамзитобетон, подверженный воздействию высоких температура.Легкие заполнители из керамзита бывают производится обжигом сырьевого материала до температуры 1050 ° С. Легкие заполнители обладают подходящими объемными свойствами. стабильность при воздействии температур до 1050 ° C, что может указывают на их пригодность для строительства с повышенным риском огня. Образцы для испытаний подвергали нагреванию с использованием стандартного кривая температура-время ISO 834. Отрицательные изменения в результате механические свойства, такие как прочность на сжатие, прочность на разрыв, и прочность на изгиб были оценены.Также визуальная оценка образец был выполнен. На образце, подвергнутом чрезмерному нагреванию, может наблюдаться взрывное растрескивание из-за испарения значительное количество неограниченной воды из внутренней структуры бетон.

Ключевые слова: Керамзит, взрывное растрескивание, высокая температура, легкий бетон, кривая температура-время ISO 834.

Идентификатор цифрового объекта (DOI): doi.org / 10.5281 / zenodo.1096883

Процедуры APA BibTeX Чикаго EndNote Гарвард JSON ГНД РИС XML ISO 690 PDF Загрузок 3223

Каталожные номера:


[1] Техническое руководство Лиапор, Ляс Винтов ЛСМ, 2014.
[2] Г. Х. А. ван дер Хейден, R.M.W. ван Бийнен, Л. Пел, Х. П. Хуининк, «Перенос влаги в нагретом бетоне, как было исследовано методом ЯМР, и его последствия для отслаивания пожара », в« Исследования цемента и бетона », т.37, вып. 6, 2007, стр 894-901.
[3] И. Хагер, «Поведение цементного бетона при высокой температуре», в Вестник Польской академии наук: Технические науки, т. 61, вып. 1, 2013.
[4] А. Дюфка, Ф. Хестл, «Определение степени деградации в огневых повреждениях. Ж / б конструкции », Труды и монографии в сб. Инженерные науки о воде и Земле, 6-я Международная конференция по Механика разрушения бетона и бетонных конструкций, разрушение механика бетона и бетонных конструкций, Вып.1-3, с. 1767- 1771, 2007.
[5] М. Цаймл, Р. Лакнер, Д. Лейтнер, Дж. Эберхардштайнер, «Идентификация остаточных газотранспортных свойств бетона, подвергнутого высоким температуры », в« Исследования цемента и бетона », т. 38 (5), 2008, стр. 699-716.
[6] П. Рейтерман, М. Кепперт, О. Холкапек, З. Кадлецова, К. Колар, «Проницаемость бетонного поверхностного слоя», В сб. 50-го ежегодного Конференция по экспериментальному анализу напряжений, Табор, Чешская Республика, 2012, с. 361-368.
[7] Павус, «Протокол о классификации огнестойкости No.ПК2-03-10- 004-C-0 Несущие потолки и кровли с функцией пожаротушения EN 13501-2 + A1: 2010 », Прага, 2010.
[8] EN 1365-2 Испытания на огнестойкость несущих элементов - Часть 2: Полы и крыши.
[9] EN 12350-6 Испытание свежего бетона - Часть 6: Плотность.
[10] EN 12350-2 Испытание свежего бетона - Часть 2: Испытание на оседание.
[11] EN 12390-7 Испытание затвердевшего бетона. Часть 7: Плотность затвердевшего бетона. конкретный.
[12] EN 12390-3 Испытание затвердевшего бетона - Часть 3: Прочность на сжатие образцов для испытаний.
[13] EN 12390-5 Испытания затвердевшего бетона - Часть 5: Прочность на изгиб образцы для испытаний.
[14] EN 1991-1-2 Еврокод 1: Воздействие на конструкции - Часть 1-2: Общие положения действия - Воздействие на конструкции, подвергшиеся возгоранию.

Интернет-ресурс с информацией о материалах - MatWeb

MatWeb, ваш источник информации о материалах

Что такое MatWeb? MatWeb's база данных свойств материалов с возможностью поиска включает паспорта термопластов и термореактивных полимеров, таких как АБС, нейлон, поликарбонат, полиэстер, полиэтилен и полипропилен; металлы, такие как алюминий, кобальт, медь, свинец, магний, никель, сталь, суперсплавы, сплавы титана и цинка; керамика; плюс полупроводники, волокна и другие инженерные материалы.

Преимущества регистрации в MatWeb
Премиум-членство Характеристика: - Данные о материалах экспорт в программы CAD / FEA, включая:

Как найти данные о собственности в MatWeb

Нажмите здесь, чтобы узнать, как войти материалы вашей компании в MatWeb.

У нас есть более 150 000 материалы в нашей базе данных, и мы постоянно добавляем к этому количеству, чтобы предоставить Вам доступен самый полный бесплатный источник данных о собственности материалов в Интернете. Для вашего удобства в MatWeb также есть несколько конвертеров. и калькуляторы, которые делают общие инженерные задачи доступными одним щелчком мыши. кнопки. MatWeb находится в стадии разработки.Мы постоянно стремимся найти лучшее способы служить инженерному сообществу. Пожалуйста, не стесняйтесь свяжитесь с нами с любыми комментариями или предложениями.

База данных MatWeb состоит в основном из предоставленных таблиц данных и спецификаций. производителями и дистрибьюторами - сообщите им, что вы видели их данные о материалах на MatWeb.


Рекомендуемый материал:
Меламино-арамидный ламинат




Использование керамзита в экологически чистом легком геополимерном бетоне

  • 1.

    Сингх Б., Ишвария Г., Гупта М., Бхаттачарья С.К. (2015) Геополимерный бетон: обзор некоторых недавних разработок. Строительный материал 85: 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

    Статья Google Scholar

  • 2.

    Posi P, Thongjapo P, Thamultree N, Boontee P, Kasemsiri P, Chindaprasirt P (2016) Прессованный геополимерный бетон с легкой летучей золой и OPC, содержащий переработанный легкий заполнитель бетона. Материал сборки 127: 450–456.https://doi.org/10.1016/j.conbuildmat.2016.09.105

    Статья Google Scholar

  • 3.

    Posi P, Teerachanwit C, Tanutong C, Limkamoltip S, Lertnimoolchai S, Sata V, Chindaprasirt P (2013) Легкий геополимерный бетон, содержащий заполнитель из переработанных легких блоков. Mater Des (1980–2015) 52: 580–586. https://doi.org/10.1016/j.matdes.2013.06.001

    Статья Google Scholar

  • 4.

    Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, Landi E (2015) Производство и характеристика легких панелей на основе вермикулита / геополимера. Mater Des 85: 266–274. https://doi.org/10.1016/j.matdes.2015.06.145

    Статья Google Scholar

  • 5.

    Mo KH, Yeoh KH, Bashar II, Alengaram UJ, Jumaat MZ (2017) Поведение при сдвиге и механические свойства легкого заполнителя бетона на основе цемента и геополимерной оболочки масличной пальмы, армированного стальной фиброй.Строительный материал 148: 369–375. https://doi.org/10.1016/j.conbuildmat.2017.05.017

    Статья Google Scholar

  • 6.

    Ислам А., Аленгарам У. Дж., Джумаат М.З., Башар II, Кабир С.А. (2015) Технические характеристики и углеродный след измельченного гранулированного доменного шлака и пальмового масла на основе структурного геополимерного бетона на основе золы. Строительный материал 101: 503–521. https://doi.org/10.1016/j.conbuildmat.2015.10.026

    Статья Google Scholar

  • 7.

    Купай Р.Х., Аленгарам У. Дж., Джумаат М.З., Никраз Х. (2013) Расчет смеси для легкого геополимерного геополимерного бетона на основе масличной пальмы на основе летучей золы. Материал сборки 43: 490–496. https://doi.org/10.1016/j.conbuildmat.2013.02.071

    Статья Google Scholar

  • 8.

    Ханхадже Э., Хусин М.В., Мирза Дж., Рафиэизоноз М., Салим М.Р., Сионг Х.С., Варид М.Н. (2016) О смешанных цементных и геополимерных бетонах, содержащих золу топлива из пальмового масла. Mater Des 89: 385–398.https://doi.org/10.1016/j.matdes.2015.09.140

    Статья Google Scholar

  • 9.

    Nematollahi B, Ranade R, Sanjayan J, Ramakrishnan S (2017) Термические и механические свойства устойчивых легких геополимерных композитов с деформационным упрочнением. Arch Civ Mech Eng 17 (1): 55–64. https://doi.org/10.1016/j.acme.2016.08.002

    Статья Google Scholar

  • 10.

    Novais RM, Ascensão G, Buruberri LH, Senff L, Labrincha JA (2016) Влияние вспенивателя на свойства легких геополимеров в свежем и затвердевшем состоянии.Mater Des 108: 551–559. https://doi.org/10.1016/j.matdes.2016.07.039

    Статья Google Scholar

  • 11.

    Санджаян Дж. Г., Назари А., Чен Л., Нгуен Г. Х. (2015) Физические и механические свойства легкого аэрированного геополимера. Строительный материал 79: 236–244. https://doi.org/10.1016/j.conbuildmat.2015.01.043

    Статья Google Scholar

  • 12.

    Хаджимохаммади А., Нго Т., Кашани А. (2018) Устойчивые однокомпонентные геополимерные пенопласты со стеклянной мелкостью по сравнению с песком в качестве заполнителей.Строительный материал 171: 223–231. https://doi.org/10.1016/j.conbuildmat.2018.03.120

    Статья Google Scholar

  • 13.

    Zhu W, Rao XH, Liu Y, Yang EH (2018) Легкий аэрированный геополимер на основе метакаолина, включающий зольный остаток от сжигания твердых бытовых отходов в качестве газообразующего агента. J Clean Prod 177: 775–781. https://doi.org/10.1016/j.jclepro.2017.12.267

    Статья Google Scholar

  • 14.

    Wongsa A, Sata V, Nuaklong P, Chindaprasirt P (2018) Использование измельченного глиняного кирпича и заполнителей пемзы в легком геополимерном бетоне. Строительный материал 188: 1025–1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Статья Google Scholar

  • 15.

    Абдулкарим О.А., Аль Бакри А.М., Камарудин Х., Низар И.К., Алаэддин А.С. (2014) Влияние повышенных температур на термическое поведение и механические характеристики геополимерной пасты, строительного раствора и легкого бетона летучей золы.Строительный материал 50: 377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Статья Google Scholar

  • 16.

    Mermerdaş K, Algın Z, Oleiwi SM, Nassani DE (2017) Оптимизация легких геополимерных растворов GGBFS и FA методом поверхности отклика. Материал сборки 139: 159–171. https://doi.org/10.1016/j.conbuildmat.2017.02.050

    Статья Google Scholar

  • 17.

    Пейн Дж., Готрон Дж., Дудо Дж., Россиньол С. (2018) Разработка низкотемпературного легкого геополимерного заполнителя из промышленных отходов по сравнению с заполнителями, подвергающимися высокотемпературной обработке. J Clean Prod 189: 47–58. https://doi.org/10.1016/j.jclepro.2018.04.038

    Статья Google Scholar

  • 18.

    Top S, Vapur H (2018) Влияние добавления базальтовой пемзы на свойства материала легкого геополимерного бетона на основе летучей золы.J Mol Struct 1163: 10–17. https://doi.org/10.1016/j.molstruc.2018.02.114

    Статья Google Scholar

  • 19.

    Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P (2018) Механические и термические свойства легкого геополимерного раствора, включающего резиновую крошку. Дж. Чистый продукт 195: 1069–1080. https://doi.org/10.1016/j.jclepro.2018.06.003

    Статья Google Scholar

  • 20.

    Рашад А.М. (2018) Легкий керамзит как строительный материал - обзор. Материал сборки 170: 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009

    Статья Google Scholar

  • 21.

    Habert G, De Lacaillerie JD, Roussel N (2011) Экологическая оценка производства бетона на основе геополимеров: обзор текущих тенденций исследований. J Clean Prod 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012

    Артикул Google Scholar

  • 22.

    Гурсель А.П., Масанет Э., Хорват А., Штадел А. (2014) Инвентаризационный анализ жизненного цикла производства бетона: критический обзор. Cem Concr Compos 51: 38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

    Статья Google Scholar

  • 23.

    Ван ден Хеде П., Де Бели Н. (2012) Оценка воздействия на окружающую среду и жизненного цикла традиционных и «зеленых» бетонов: обзор литературы и теоретические расчеты.Cem Concr Compos 34 (4): 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

    Статья Google Scholar

  • 24.

    Вейл М., Домбровски К., Бухвальд А. (2009) Анализ жизненного цикла геополимеров. В кн .: Геополимеры. Издательство Woodhead Publishing, Кембридж, стр. 194–210. https://doi.org/10.1533/9781845696382.2.194

  • 25.

    Müller HS, Haist M, Vogel M (2014) Оценка потенциала устойчивости бетонных и бетонных конструкций с учетом их воздействия на окружающую среду, характеристик и срока службы.Строительный материал 67: 321–337. https://doi.org/10.1016/j.conbuildmat.2014.01.039

    Статья Google Scholar

  • 26.

    Бхогаята А.К., Арора Н.К. (2019) Утилизация металлизированных пластиковых отходов пищевых упаковочных изделий в геополимерный бетон. J Mater Cycles Waste Manag 1: 1–3. https://doi.org/10.1007/s10163-019-00859-9

    Статья Google Scholar

  • 27.

    Комитет ACI 544 (1989) Измерение свойств фибробетона (ACI 544.2R-89) (утверждено повторно в 2009 г.). Американский институт бетона, Фармингтон-Хиллз

  • 28.

    Индийский стандарт IS. 2386-1963 (Часть-IV). Метод испытания заполнителей для бетона Бюро стандартов Индии, Манак Бхаван

  • Передовые технологии поддерживали Acotec на протяжении десятилетий

    Истоки Acotec, Advanced Construction Technology, восходят к результатам лабораторных испытаний, проведенных финским техническим студентом Петтери Лайтиненом в 1990–1991 годах. В то время Лайтинен заканчивал магистерскую диссертацию на техническом факультете Университета Оулу, где он разработал новый рецепт легкого бетона по контракту с Acotec Ltd.

    Основанная в 1988 году компания Acotec Ltd нуждалась в новой бетонной смеси для своих легких ненесущих перегородок. Первая линия Acotec уже была доставлена ​​в Сингапур в 1987 году от имени предшественника Acotec с использованием древесно-стружечного бетона в качестве материала.

    «Легкие бетонные перегородки были ориентированы на развивающиеся рынки, где быстро росла потребность в недорогих и рентабельных строительных технологиях. Однако древесно-стружечный бетон не отвечал требованиям рынка », - отмечает Петтери Лайтинен, который сейчас работает директором по продажам в компании Elematic, о начальных этапах производства Acotec.Elematic приобрела бизнес-подразделение Acotec в 2001 году.

    На основе исследований Лайтинена и в связи с этими потребностями клиентов бетон был заменен более качественным и легким сырьем.

    «Легкий керамзит Leca значительно повысил качество стены», - поясняет Лайтинен.

    Leca состоит из небольших, легких, вспученных частиц обожженной глины. Тысячи небольших заполненных воздухом полостей придают Leca прочность и теплоизоляционные свойства.

    «С помощью Leca также стало возможным избавиться от добавок и химических процессов, используемых с древесно-стружечным бетоном. Весь производственный процесс стал более простым и экономичным ».

    Успешный дизайн линии

    Наряду с новым бетонным материалом линия Acotec была переработана в соответствии с новыми требованиями. Высокий уровень автоматизации, удобство использования и небольшие масштабы были среди приоритетов в процессе планирования, имевшем место на рубеже десятилетия.

    «Процесс проектирования линии прошел успешно», - говорит технический консультант Elematic Хейкки Миккола . Миккола и его команда разработали современную производственную линию в конце 1980-х годов. За десятилетия он был установлен примерно в 60 местах с очень небольшими изменениями. Миккола начал работать в Acotec Ltd в 1989 году и продолжил работу в Elematic с 2001 года. Он принимал участие во всех установках и развертывании линий.

    «Линия компактна, поэтому ее легко установить в существующие помещения.Высокий уровень автоматизации обеспечивает хорошее и постоянное качество и позволяет выполнять производство с помощью небольшого количества рабочих », - объясняет Миккола о свойствах линии, которые хорошо выдержали испытание временем.

    Хейкки Миккола устанавливает производственную линию Acotec.

    Завоевание азиатского рынка

    Современная технология Acotec отмечает свое официальное начало с 1991 года, когда первая линия была продана финскому поставщику бетона Rakennusbetoni ja Elementti Oy .Начали производить легкие ненесущие перегородки под собственной торговой маркой ACO. Затем Петтери Лайтинен перешел на технологию Rakennusbetoni, где продолжил развивать использование стен Acotec, а также продвигать новые и инновационные легкие ненесущие перегородки, сочетающие в себе высокое качество и экономическую эффективность.

    Следующая линия Acotec была вскоре продана в Малайзию, где компания по производству сборных железобетонных изделий PJDMALTA начала производство стен Acotec в 1994 году. Малайзия, а затем Филиппины, Корея, Тайвань и Китай в течение следующих нескольких лет с тех пор стали важными областями для развития этой технологии.Строительный бум в Азии в 1990-х годах сыграл важную роль в развитии технологий.

    «Традиция кирпичного строительства в азиатских странах благоприятствует легкому бетону. По сравнению с кирпичом, стены Acotec намного предпочтительнее с точки зрения скорости монтажа, рентабельности, качества и надежности поставок », - поясняет Лайтинен. «Линия также может использоваться со стандартным бетоном, что важно в Азии».

    Хейкки Миккола устанавливает панели Acotec в 90-е годы.

    Полное обслуживание окупается

    По словам Петтери Лайтинена, полный сервис был ключом к успеху технологии.

    «Не стоит продавать только линию и стены, а целую услугу, включая обучение местных рабочих использованию линии и правильной установке стен. Это был важный урок, который нужно усвоить в первые годы, - говорит Лайтинен.

    «Начало комплексного обслуживания в начале 1990-х годов было для нас решающим шагом вперед. Наша собственная сервисная команда могла обеспечить правильные процедуры и высокое качество на месте, что было высоко оценено нашими клиентами.”

    Петтери Лайтинен, как и Хейкки Миккола, продолжал работать с технологией Acotec на полной скорости после того, как Elematic приобрела компанию в 2001 году. Он рассматривает сделку как благоприятный сдвиг для обеих сторон.

    «Это была беспроигрышная ситуация: легкие перегородки Acotec дополнили портфолио Elematic и, в той же степени, преимущества технологии от глобальной маркетинговой сети Elematic».

    Лайтинен доволен новым этапом развития технологии, отмеченным тремя новыми уровнями автоматизации и производительности.

    «После долгой карьеры в этой области я все еще очень рад новым разработкам. Это движет технологии в правильном направлении ».

    Фрактальная модель влияния макроструктуры пенобетона на его прочность

    [1] Мандельброт, Б.Б. (1982). Фрактальная геометрия природы. Нью-Йорк – Сан-Франциско: Фриман.

    [2] Волчук, В., Клименко, И., Кровяков, С., Орешкович, М. (2018). Метод оценки качества материалов с использованием мультифрактального формализма. Tehnički glasnik - Технический журнал, 12 (2), 93-97. https://hrcak.srce.hr/202359.

    DOI: 10.31803 / tg-20180302115027

    [3] Ван З.С., Ван Л. Дж. И Су Х. Л. (2011). Экспериментальные исследования по зернистости мелкого заполнителя в каркасном бетоне. Advanced Materials Research, 163-167, 1085-1089. https://doi.org/10.4028/www.scientific.net/AMR.163-167.1085.

    DOI: 10.4028 / www.scientific.net / amr.163-167.1085

    [4] Волчук, В.М. (2017). О применении фрактального формализма для ранжирования критериев качества многопараметрических технологий. Металлофизика и Новейшие технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 39 (7), 949-957. (на русском языке) https://doi.org/10.15407/mfint.39.07.0949.

    DOI: 10.15407 / мфинт.39.07.0949

    [5] Большаков В.И., Волчук В.М., Дубров Ю. И. (2018). Регуляризация одной условно III задачи добывающей металлургии.Металлофизика и Новейшие технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 40 (9), 1165-1171. https://doi.org/10.15407/mfint.40.09.1165.

    DOI: 10.15407 / mfint.40.09.1165

    [6] Кровяков, С., Волчук, В., Заволока, М., Крыжановский, В. (2019). Поиск подходов к ранжированию критериев качества керамзитобетона. Форум по материаловедению, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20.

    DOI: 10.4028 / www.scientific.net / msf.968.20

    [7] Чжао, Л., Ван В., Ли З. и Чен Ю. (2015). Микроструктура и фрактальные размерности пор повторно используемого теплоизоляционного бетона. Тестирование материалов, 57, 349-359. https://doi.org/10.3139/120.110713.

    DOI: 10.3139 / 120.110713

    [8] Мишутн, А., Кровяков, С., Пищев, О., Сольдо, Б. (2017). Модифицированные керамзитобетоны легкие для тонкостенных железобетонных плавучих конструкций. Tehnički glasnik - технический журнал, 11 (3), 121-124. https://hrcak.srce.hr/186657.

    [9] Большаков, В., Волчук В., Дубров Ю. (2016). Фракталы и свойства материалов. Саарбрюккен, Германия: Lambert Academic Publishing.

    [10] Хаусдорф, Ф.(1919). Dimension und äußeres Maß. Mathematische Annalen, 79, 157-179.

    [11] Крауновер Р.М. (1995). Введение в фракталы и хаос. Бостон, Лондон: Jones and Bartlett Publishers, Inc.

    [12] Много.Y., Tang, W.C., Cui, H.Z. (2007). Влияние свойств заполнителя на легкий бетон. Строительство и окружающая среда, 42 (8), 3025-3029. https://doi.org/10.1016/j.buildenv. 2005.06.031.

    DOI: 10.1016 / j.buildenv.2005.06.031

    [13] Ключ., Бокур, А.Л. Ортола, С., Дюмонте, Х., Кабрильяк, Р. (2009). Влияние объемной доли и характеристик легких заполнителей на механические свойства бетона. Строительство и строительные материалы, 23 (8), 2821-2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038.

    DOI: 10.1016 / j.conbuildmat.2009.02.038

    [14] Большаков, В.И., Дворкин Л. И. (2016). Структура и свойства строительных материалов. Швейцария: Trans and Technical Publication Ltd.

    [15] Большаков, В.И., Дубров Ю. И. (2002). Оценка применимости фрактальной геометрии для описания языка качественного преобразования материалов. Вестник Национальной академии наук Украины, 4, 116-121. (по-русски).

    [16] Большаков, В.И., Волчук В. Н. (2011). Материаловедческие аспекты использования вейвлет-мультифрактального подхода к оценке структуры и свойств низкоуглеродистых низколегированных сталей. Металлофизика и Новейшие технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 33 (3), 347-360.

    [17] Цзэн, К., Ли, К., Фен-Чонг, Т., Дангла, П. (2010) Поверхностный фрактальный анализ пористой структуры цементных паст с большим объемом золы-уноса. Прикладная наука о поверхности. 257 (3), 762-768 https://doi.org/10.1016/j.apsusc.2010.07.061.

    DOI: 10.1016 / j.apsusc.2010.07.061

    [18] Пиа, Г., Санна, У. (2013) Геометрическая фрактальная модель пористости и теплопроводности изоляционного бетона. Строительные и строительные материалы. 44, 551-556.

    DOI: 10.1016 / j.conbuildmat.2013.03.049

    Расширенное использование керамзитового заполнителя станет будущим строительной индустрии

    🕑 Время чтения: 1 минута

    Ожидается, что использование керамзита произведет революцию в строительной отрасли.Это может быть добавлено в качестве инициативы к шагу, предпринимаемому для сдерживания воздействия глобального потепления. Эта инновационная концепция должна быть направлена ​​на повышение осведомленности людей о преимуществах использования керамзита за счет увеличения числа поставщиков в конкретном городе или стране. Поставщики керамзита поставляют керамзитовые шары в соответствии с требованиями заказчика по размеру.

    Преимущества керамзитовых шаров Шарики керамзитового заполнителя изготовлены из глины, нагретой до одной определенной высокой температуры во вращающейся печи. Причина этого процесса - сделать его долговечным для использования в строительстве, а также в некоторых других областях. При его изготовлении образуется сотовая структура, которая позволяет удерживать воду в гальке, делая ее более прочной, чтобы выдерживать давление. Есть несколько преимуществ использования шариков из керамзитового заполнителя; некоторые из них указаны ниже:

    1.Полностью многоразовый Керамзитовые шары можно использовать многократно, что может привести к снижению затрат.

    2. Легкий вес Его свойства делают его легким, что, в свою очередь, позволяет легко переносить большие количества за один раз.

    3. Высокая прочность на сжатие Структура шариков из керамзитового заполнителя помогает сегодня в строительной отрасли работать в качестве одного из агентов, способствующих захвату под высоким давлением.

    4. Сотовая структура соединительных пустот Его структура привлекает внимание, поскольку она работает как одна из лучших, устойчивых к давлению, огнестойких, с исключительными тепло- и звукоизоляционными свойствами.

    5. Нетоксичный и экологически чистый Изготовление керамзита не приводит к выбросу каких-либо вредных газов, таких как углекислый газ, метан, пропан и т. Д., Что не приводит к загрязнению атмосферы.Это натуральный продукт, негорючий по своей природе.

    6. Хорошее водопоглощение Качество водопоглощения делает конструкцию более прочной. Гибкость конструкции делает ее сейсмостойкой.

    7. Особо предпочтительный Использование керамзитового заполнителя является очень предпочтительным по сравнению с другими заполнителями, так как он имеет большую устойчивость к кислотным и щелочным веществам. Это приводит к химической стойкости и защите от насекомых.

    Меняющееся восприятие строительной отрасли В отличие от других отраслей, строительная отрасль также движется к концепции Go-Green. Эта отрасль постоянно развивалась с постоянными революционными изменениями в строительстве, в которых она была ответственна за ущерб, нанесенный природным ресурсам на высшей стороне. Осознание этого раньше заставило их принять своевременные меры, и изобретение керамзитового заполнителя - один из таких результатов.Строительная отрасль в последние годы спроектировала несколько зданий, сделав защиту окружающей среды своим центральным критерием. Специальное уведомление было сделано в отношении выращивания деревьев вокруг возводимого сооружения, а также внутри помещений, где это возможно. Ожидается, что эти развивающиеся изменения внесут больший вклад в спасение планеты Земля.

    Несколько применений керамзитовых шаров Использовать керамзитовые шары может быть проще, чем даже предполагалось.В Индии есть компании, производящие керамзитовые шары и экспортирующие их клиентам, а также предприятия в других странах, таких как США, Канада, Великобритания, Сингапур, Австралия, Южная Африка, Дубай и т. Д. Использование керамзитовых шаров стало более популярным. популярность во всем мире. Как было замечено, использование керамзитовых шаров для нижеперечисленных проектов оказалось рентабельным, чем использование других заполнителей:
    • Звукоизоляция стен
    • Усиление плиты
    • Садоводство
    • Панели напольные и кровельные
    • Противопожарная
    • Устройство озелененных насыпей и др.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *