Коэффициент армирования железобетонных конструкций таблица: таблица коэффициента армирования железобетонных конструкций на 1 м3 бетона, расхода арматуры и ее расчет, СНиП

Автор

Содержание

таблица коэффициента армирования железобетонных конструкций на 1 м3 бетона, расхода арматуры и ее расчет, СНиП

Коэффициент армирования — один из самых значимых моментов при строительных работах. Полноценное знакомство с таблицей коэффициента армирования железобетонных конструкций на 1 м3 бетона оказывается крайне полезным для застройщиков и заказчиков. Обязательно надо интересоваться правилами расхода арматуры и ее расчета, требованиями СНиПа.

Нормы и требования

Коэффициент армирования — это важный процентный показатель, который обязательно должен учитываться при строительных работах. Он вычисляется как частное от деления суммарного сечения упрочняющих деталей на сечение бетонной массы, которая должна быть ими усилена. Правильный расчет всегда должен исходить из указаний СНиПа.

Занижение показателя необратимо ухудшит свойства несущей конструкции.

Завышение же будет означать превышение нормативов по материалоемкости и удорожание строительных работ.

К армированию применимы положения СНиПа 2.03.01-84. Надо также учитывать приложение к этому документу, предназначенное для строений из монолитного железобетона и проектных материалов. Ключевые параметры эксплуатации усиливающих стержней и свойства этих блоков приведены в ГОСТе 10884, принятом в 1994 году. Строительные нормы и правила гласят, что расчет по предельным состояниям должен застраховать от:

  • любых разрушений конструкций при нормальной эксплуатации;
  • дестабилизации конструкционных форм;
  • чрезмерного нарастания усталости металла (в сравнении с обычной инженерной практикой).

Бетонное основание может быть оформлено с применением не менее чем 2 неразрывных каркасов. Их создают, фиксируя стержни внахлест. Подобное решение лучше всего показывает себя в частном домостроении. Промышленное и иное капитальное строительство в основном подразумевает сварочное соединение.

Но поскольку любая сварка ослабляет конструкции, нужно вводить поправочные коэффициенты, а какие именно, разберутся лишь технологи.

Минимальная величина

Наименьший допустимый показатель усиления железобетонных конструкций на 1 м3 бетона лучше всего представить в виде лаконичной таблицы.

Формула расчета

Но стандартная таблица выручает не всегда. Существует ряд ситуаций, когда усиление железобетона не может ограничиться несколькими типовыми показателями. В этих случаях правильно разобраться с величиной расхода арматуры помогут дополнительные вычисления. Определить процент армирования несложно. Массу каркаса следует поделить на массу монолитной заливки и увеличить результат в 100 раз.

Такой подход отлично работает с:

  • балками;
  • колоннами;
  • основой фундамента;
  • капитальными стенами зданий.

Определение эффективных параметров армирования железобетонных конструкций

Леонид Скорук
К. т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок.

При этом в конструкциях должны быть соблюдены требования как по 1­й (прочность, устойчивость), так и по 2­й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).

При этом в действующих строительных нормах [1­3] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05­0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой­то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5].

Там величина арматуры в бетоне находится в пределах 190­200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т. п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

Фактор

Следствие

Инженерно­геологические условия строительной площадки

Тип фундамента (свайный, плитный, ленточный)

Шаг сетки несущих вертикальных элементов

Пролет плит, их толщина (жесткость)

Размеры сечения колонн/пилонов/стен

Удельный вес арматуры в бетоне

Класс бетона и арматуры

Расход арматуры в сечении

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15­20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5­10%).

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 2. Содержание арматуры в бетоне для разных типов зданий

Тип здания

Элемент здания

Расход, кг/м3

а) 22­этажное здание на сваях
(шаг колонн/пилонов 6,0 м)

Сваи

64

Фундаментная плита

392

Вертикальные несущие элементы

263

Плиты перекрытия

193

Всего по зданию

212

б) 10­этажное здание на сваях
(шаг пилонов 3,4­3,6 м)

Сваи

70

Фундаментная плита

223

Вертикальные несущие элементы

148

Плиты перекрытия

129

Всего по зданию

148

в) 8­, 9­этажное здание на плите
(шаг пилонов 4,5­4,8 м)

Фундаментная плита

238

Вертикальные несущие элементы

126

Плиты перекрытия

150

Всего по зданию

175

г) 2­этажное здание на сваях
(шаг колонн/стен 4,5­8,0 м)

Сваи

83

Фундаментная плита

179

Вертикальные несущие элементы

118

Плиты перекрытия

170

Всего по зданию

147

В табл. 2 на различных типах реальных зданий и сооружений показано, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.

Более точно содержание арматуры в бетоне можно определить по формуле:

, где  

Са — содержание арматуры в бетоне для всего здания, кг/м3;

Сэ — содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;

Υ э — удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;

n — общее количество конструктивных элементов здания.

Выводы

Всё вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3)
для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.

Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.

С помощью новых функций, реализованных в 21­й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но гораздо более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Литература:

  1. СП 63. 13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52­01­2003).
  2. СП 52­101­2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52­101­2003).
  4. ГЭСН 81­02­06­2001.
  5. ФЕР 06­01­001­17. 

Процент армирования фундаментной плиты. Калькулятор расчёта минимальной толщины прутьев для основного армирования плитного фундамента. Минимальный процент армирования плиты


Как определить минимальный процент армирования конструкции?

Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.

Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.

 

Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

3) Составим известную со школы пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

 

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

4) Составим пропорцию:

900 см² — 100%

Х – 0,05%

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

 

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 3. Дан  железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/1.5 = 4,4 < 5 (для прямоугольного сечения):

0,05%

3) Из пункта 2 примечаний к таблице 16 (см. рисунок выше) определим, что мы должны удвоить процент армирования, чтобы найти минимальную площадь арматуры всего сечения фундамента (а не у одной его грани!), т. е. минимальный процент армирования у нас будет равен:

2∙0,05% = 0,1%

4) Составим пропорцию:

22500 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙22500/100 = 22,5 см²

5) Принимаем шаг арматуры фундамента 200 мм, значит по периметру мы должны установить 28 стержней, а площадь одного стержня должна быть не меньше 22,5/28 = 0,8 см²

6) По сортаменту арматуры находим, что мы должны принять диаметр арматуры 12 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! В данном примере мы определяем площадь арматуры не у одной грани фундамента, а сразу для всего фундамента, т.к. он заармирован равномерно по всему периметру.

 

Пример 4. Дана  железобетонная колонна сечением 500х1600 (рабочая высота сечения колонны в коротком направлении h₀= 460 мм). Расчетная высота колонны равна 8 м. Определить минимальный процент армирования у длинных граней колонны.

1) Найдем площадь сечения колонны:

0,46∙1,6 = 0,736 м² = 7360 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для колонны (внецентренно-сжатого элемента с l₀/h = 8/0.5 = 16):

0,2%

3) Составим известную со школы пропорцию:

7360 см² — 100%

Х – 0,2%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,2∙7360/100 = 14,72 см²

5) Из руководства по проектированию находим, что максимальное расстояние между продольной арматурой в колонне не должно превышать 400 мм. Значит, у каждой грани мы можем установить по 4 стержня (между угловой арматурой колонны, которая является рабочей, и ее площадь определялась расчетом), площадь каждого из стержней равна 14,72/4 = 3,68 см²

6) По сортаменту находим, что у каждой грани нам нужно установить 4 стержня диаметром 22 мм. Если считаем, что диаметр великоват, увеличиваем количество стержней, уменьшая тем самым диаметр каждого.

Обратите внимание! Мы определяем площадь арматуры у каждой из двух граней колонны, именно она соответствует минимальному проценту армирования в данном случае.

 

Пример 5. Дана стена и толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм), рабочая высота стены l₀ = 5 м. Определить минимальное количество арматуры у обеих граней стены.

1) Найдем площадь сечения бетона 1 погонного метра стены:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для стены, предварительно определив l₀/h = 5/0.2 = 25 > 24:

0,25%

3) Составим пропорцию:

1750 см² — 100%

Х – 0,25%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,25∙1750/100 = 4,38 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 12 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

Заметьте, если бы стена была толще, минимальный процент армирования резко бы упал. Например, при толщине стены 210 мм потребовалось бы уже 5 стержней диаметром 10 мм, а не 12.

 

class=»eliadunit»>
Добавить комментарий

svoydom.net.ua

Минимальный процент армирования железобетонных конструкций

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных норм

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

pobetony.expert

минимальный и максимальный процент усиления. Защитный слой бетона

Как определить минимальный процент армирования конструкции?

Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.

Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.

 

Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

3) Составим известную со школы пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

0,05%

4) Составим пропорцию:

900 см² — 100%

Х – 0,05%

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

 

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

 

Пример 3. Дан  железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/0.9 = 4,4 < 17:

0,05%

3) Из пункта 2 примечаний к таблице 16 (см. рисунок выше) определим, что мы должны удвоить процент армирования, чтобы найти минимальную площадь арматуры всего сечения фундамента (а не у одной его грани!), т.е. минимальный процент армирования у нас будет равен:

2∙0,05% = 0,1%

4) Составим пропорцию:

22500 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙22500/100 = 22,5 см²

5) Принимаем шаг арматуры фундамента 200 мм, значит по периметру мы должны установить 28 стержней, а площадь одного стержня должна быть не меньше 22,5/28 = 0,8 см²

6) По сортаменту арматуры находим, что мы должны принять диаметр арматуры 12 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! В данном примере мы определяем площадь арматуры не у одной грани фундамента, а сразу для всего фундамента, т.к. он заармирован равномерно по всему периметру.

 

Пример 4. Дана  железобетонная колонна сечением 500х1600 (рабочая высота сечения колонны в коротком направлении h₀= 460 мм). Расчетная высота колонны равна 8 м. Определить минимальный процент армирования у длинных граней колонны.

1) Найдем площадь сечения колонны:

0,46∙1,6 = 0,736 м² = 7360 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для колонны (внецентренно-сжатого элемента с l₀/h = 10/0.5 = 20):

0,1%

3) Составим известную со школы пропорцию:

7360 см² — 100%

Х – 0,1%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,1∙7360/100 = 7,36 см²

5) Из руководства по проектированию находим, что максимальное расстояние между продольной арматурой в колонне не должно превышать 400 мм. Значит, у каждой грани мы можем установить по 4 стержня (между угловой арматурой колонны, которая является рабочей, и ее площадь определялась расчетом), площадь каждого из стержней равна 7,36/4 = 1,84 см²

6) По сортаменту находим, что у каждой грани нам нужно установить 4 стержня диаметром 16 мм.

Обратите внимание! Мы определяем площадь арматуры у каждой из двух граней колонны, именно она соответствует минимальному проценту армирования в данном случае.

 

Пример 5. Дана стена и толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм), рабочая высота стены l₀ = 5 м. Определить минимальное количество арматуры у обеих граней стены.

1) Найдем площадь сечения бетона 1 погонного метра стены:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для стены, предварительно определив l₀/h = 5/0.9 = 5,5 < 17:

0,05%

3) Составим пропорцию:

1750 см² — 100%

Х – 0,05%

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

 

class=»eliadunit»>
Добавить комментарий

svoydom.net.ua

Процент армирования железобетонных конструкций: минимальный и максимальный

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температ

sevparitet.ru

Минимальный процент армирования фундамента. Минимальный процент армирования фундаментных плит

ГлавнаяПлитМинимальный процент армирования фундаментных плит

Калькулятор Армирование_Ленты_Онлайн v.

1.0 — армирование ленточного фундамента

Калькулятор Армирование-Ленты-Онлайн v.1.0

Расчет продольной рабочей, конструктивной и поперечной арматуры для ленточного фундамента. Калькулятор основан на СП 52-101-2003 (СНиП 52-01-2003, СНиП 2.03.01-84), Пособие к СП 52-101-2003, Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предв. напряжения).

Результаты
Параметры проектируемого фундамента

Ширина фундамента, м:

Высота фундамента, м:

Сечение ленты, м2:

Общая длина ленты, м:

Объем фундамента, м3:

Расчет арматуры
Продольная рабочая арматура

Диаметр арматуры, мм:

Расчитанная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Подобранная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Количество стержней арматуры в верхнем (нижнем) поясе, шт:

Количество стержней арматуры на сечение ленты, шт:

Общая площадь сечения арматуры, мм2:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Продольная конструктивная арматура (противоусадочная)

Диаметр арматуры не менее (оптимально 12мм), мм:

Количество стержней арматуры на сечение ленты, шт:

Количество горизонтальных рядов:

Расстояние между рядами (шаг), мм:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Поперечная арматура (хомуты)

Диаметр арматуры, мм:

Расстояние между хомутами (шаг), мм:

Количество хомутов на ленту, шт:

Длина одного хомута (с учетом крюков), м:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Общая масса и объем арматуры на ленту

Масса арматуры, кг:

Объем арматуры на ленту, м3:

Алгоритм работы калькулятора
Конструктивное армирование

Если выбран данный пункт меню, калькулятор рассчитает минимальное содержание рабочей продольной арматуры для конструкции фундамента согласно СП 52-101-2003. Минимальный процент армирования для железобетонных изделий лежит в диапазоне 0.1-0.25% от площади сечения бетона, равной произведению ширины ленты на рабочую высоту ленты.

СП 52-101-2003 Пункт 8.3.4 (аналог Пособие к СП 52-101-2003 Пункт 5.11, Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.8)

 

Пособие к СП 52-101-2003 Пункт 5.11

 

В нашем случае минимальный процент армирования составит 0.1% для растянутой зоны. В связи с тем, что в ленточном фундаменте растянутой зоной может быть как верх ленты, так и низ, процент армирования составит 0.1% для верхнего пояса и 0.1% для нижнего пояса ленты.

Для продольной рабочей арматуры используются стержни диаметром 10-40мм. Для фундамента рекомендуется использовать стержни диаметром от 12мм.

Пособие к СП 52-101-2003 Пункт 5.17

 

Руководство по конструированию бетонных и ж/б изделий из тяжелого бетона пункт 3.11

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3. 27

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Расстояние между стержнями продольной рабочей арматуры

Пособие к СП 52-101-2003 Пункт 5.13 (СП 52-101-2003 Пункт 8.3.6)

 

Пособие к СП 52-101-2003 Пункт 5.14 (СП 52-101-2003 Пункт 8.3.7)

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.95

 

 

Конструктивная арматура (противоусадочная)

Согласно руководству по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (аналог Пособие к СП 52-101-2003 Пункт 5.16) для балок высотой более 700мм предусматривается конструктивная арматура по боковым поверхностям (2 прутка арматуры в одном горизонтальном ряду). Расстояние между стержнями конструктивной арматуры по высоте должно быть не более 400мм. Площадь сечения одной арматуры должна составлять не менее 0,1% от площади сечения, равной по высоте расстоянию между этими стержнями, по ширине половине ширины ленты, но не более 200мм.

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (Пособие к СП 52-101-2003 Пункт 5.16)

 

 

По расчету получается, что максимальный диаметр конструктивной арматуры составит 12мм. По калькулятору может получаться и меньше (8-10мм), но все же, чтобы иметь запас прочности лучше использовать арматуру диаметром 12мм.

Пример

Исходные данные:

  • Размеры фундамента в плане: 10х10м (+одна несущая внутренняя стена )
  • Ширина ленты: 0.4м (400мм)
  • Высота ленты: 1м (1000мм)
  • Защитный слой бетона: 50мм (выбран по умолчанию)
  • Диаметр арматуры: 12мм

Расчет:

Рабочая высота сечения ленты [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр рабочей арматуры) = 1000 – (50 + 0.5 * 12) = 944 мм

Площадь сечения рабочей арматуры для нижнего (верхнего) пояса = (Ширина ленты * Рабочая высота сечения ленты) * 0.001 = (400 * 944) * 0.001 = 378 мм2

Подбираем кол-во стержней по СП 52-101-2003 приложения 1.

sevparitet.ru

Необходимый расчёт арматуры на монолитную плиту. Процент армирования фундаментной плиты

Армирование монолитной плиты — Фундамент своими руками

 

Усиление монолитных плит
  • Технология: как правильно армировать плиты
  • Особенности армирования фундаментных плит
  • Формула расчета арматуры

Изготовление монолитных конструкций не обходится без применения арматуры, которая выступает связующим материалом в любой железобетонной конструкции.

Чертеж армированной плиты

Арматурой для монолитной плиты являются прутки сечением 8-14 миллиметров, толщина фундаментной плиты при этом составляет 150 миллиметров. Таким образом, процент соотношения диаметра прутка к толщине плиты составляет 5%.

Армирование плиты позволяет решить общую концепцию строительства по-настоящему теплых домов. Поперечные и продольные железобетонные плиты перекрытий позволяют надежно защитить от холода чердачные помещения и эксплуатируемые мансарды.

Все армированные фундаментные плиты перекрытия используются, в первую очередь, в перекрытиях общественных и жилых домов, стены которых выполнены из ячеистых бетонных или крупных блоков, а также кирпича. Такие плиты перекрытий применяются для зданий, процент влажности воздуха в которых составляет 60-75%, которые имеют на поверхности стен внутреннюю пароизоляцию. Глубина опирания плит на несущие стены составляет не менее 80 миллиметров.

Схема армирования монолитной плиты.

Армировать фундаментные плиты необходимо не только для качественного утепления постройки и ускорения процесса строительства, но и для повышения звукоизоляции. Армированные железобетонные плиты имеют небольшой вес, поэтому они снижают нагрузку на стены и фундамент здания, тем самым давая возможность получить дополнительный экономический эффект при возведении дома. Очень важно, что для процедуры армирования пустотных плит перекрытия нет необходимости использовать большую строительную технику, в том числе подъемный кран.

Конструкция получается прочной, она способна без проблем выдержать колоссальные нагрузки, а также воздействие высоких температур на протяжении длительного периода. Для сравнения заметим, что деревянные перекрытия способны выдержать огненное воздействие всего 25 минут, а такие плиты выдерживают час, то есть процент превышения составляет 200 единиц.

Современное строительство, в котором применяют армирование фундаментной плиты, позволяет строить здания любой сложности и любых размеров. Используя монолитные стены, появляется возможность перекрывать те помещения, которые имеют неправильную геометрическую форму стен. Так можно создавать нестандартные по габаритам перекрытия.

Технология: как правильно армировать плиты

Если говорить об основных составляющих данной технологии, то традиционная схема армирования фундаментных плит выглядит так: рабочие стержни снизу плиты, рабочие стержни сверху; арматура, перераспределяющая нагрузку; подставки из катанки. Перед началом армирования важно правильно рассчитать будущую нагрузку и необходимую толщину бетона — этого требует правильная технология. Толщина перекрытия должна рассчитываться из пропорции 1:30. Это означает, что требуемую толщину бетона можно узнать, разделив длину пролета на 30, — так получится оптимальная толщина, процент погрешности — +/- 1%.

Схема армирования углов плиты.

Если толщина фундаментной плиты превышает 150 миллиметров, то в таком случае армирование необходимо совершать в два слоя, которые связываются между собой металлической проволокой. Размер ячеек не должен превышать 200х200 миллиметров, но одновременно не должен быть и меньше 150х150 миллиметров.

Если специально уменьшать толщину бетона, то заметно увеличится расход металлопроката, если возрастает толщина, то это ведет к увеличению объемов используемого бетона. Для прочности изделия применяется, как правило, арматура одного диаметра. Дополнительное армирование плиты можно выполнить, используя прутья длиной 400-1500 миллиметров.

Основная часть нагрузки находится на нижних слоях арматуры, сжимающая нагрузка давит на верхние. С этим усилием может легко справиться и бетон. Процесс армирования фундаментной монолитной плиты необходимо выполнять на всю длину изделия, стоит применять опалубку, которая является важным этапом в монтаже всей плиты. Для создания опалубки можно использовать обычные деревянные доски 50х150 миллиметров или обычную фанеру.

Очень важно надежно и прочно закрепить стойки опалубки. Этот связано с тем, что вес бетона, который используется в данной операции, может достигать 300 кг/кв.м перекрытия. Единственный элемент, без которого будет действительно сложно обойтись, — это телескопические стойки. Это очень надежный и удобный инструмент. Такая стойка способна выдержать две тонны веса, ведь доска может иметь сучки или микротрещины.

Особенности армирования фундаментных плит

Схема расположения усилений.

Монолитную плиту, поперечное сечение которой может быть разной, необходимо армировать в два слоя. Первая сетка располагается в нижней части плиты, вторая — должна идти сверху. Сетки должны располагаться строго в середине бетона. Защитный слой, который создается при помощи опалубки, должен быть от 15-20 миллиметров. Арматура и сетка между собой связываются при помощи специальной вязальной проволоки.

В сетке арматура должна будет полностью цельной, не иметь никаких разрывов, иначе процент разрушенных армированных фундаментных плит будет постоянно расти. Если не хватает длины арматуры, то дополнительные прутья нужно подвязывать с нахлестом, который должен равняться 40 диаметрам самой арматуры. Если, например, армируется перекрытие диаметром в 10 миллиметров, то нахлест необходимо сделать в 400 миллиметров. Все стыки должны располагаться строго в шахматном порядке, в разбежку. Края верхней и нижней арматуры можно связывать между собой П-образным усилением.

Так как процент нагрузки на железобетонную плиту передается сверху вниз, то можно сделать следующий вывод: главной рабочей арматурой является именно нижняя, которая испытывает растягивающие нагрузки. Верхняя, в основном, получает нагрузки на сжатие.

При проводимой процедуре армирования нижняя сетка дополнительно прокладывается между несущими опорами строго посередине. При связке верхней сетки необходимо усиление прокладывать над несущими опорами. Требуется дополнительное усиление в местах большого скопления отверстий разного диаметра. Нижняя сетка усиливается между несущими стенами в проеме.

Верхняя сетка, как правило, усиливается над несущими стенами. Армирование монолитных плит перекрытия в тех местах, где они опираются на колонны, требует создания объемных усилий. Плита перекрытия заливается с помощью бетононасоса. При этом в обязательном порядке уплотняется бетон, для этих целей используется глубинный вибратор. Процесс затвердения бетона сопровождается его усадкой, чей процент возрастает по мере высыхания бетона, что приведет к появлению на его поверхности микротрещин. Именно поэтому на протяжении двух-трех дней после совершения заливки бетоном желательно пролить данную конструкцию обычной водой. Бетон лучше увлажнять путем разбрызгивания, а не прямой струей воды.

Формула расчета арматуры

Имеется плита габаритами 6х10 метров. Используется арматура диаметром 10 миллиметров, шаг сетки 20 сантиметров. Произведем расчет количества арматуры, которую необходимо уложить: (6/0,2+1) + (10/0,2+1)= 31 (прутки по 6 метров) + 51 (прутки по 10 метров) = 82 прутка. Необходимо использовать два пояса армирования, поэтому количество арматуры удваивается. В итоге получается 82 *2 = 164 прутка, в том числе 62 прутка по 6 метров и 102 прутка по 10 метров. Итого 62*6+102*10= 1392 метров арматуры для армирования плиты.

Армирование плиты: особенности, технология

Армирование плиты необходимо выполнять правильно, соблюдая технологию. Перед началом армирования важно правильно рассчитать будущую нагрузку и необходимую толщину бетона.

Источник: moifundament

sevparitet.ru

Процент армирования железобетонных конструкций: минимальный и максимальный

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Вернуться к оглавлению

Минимальный армирующий процент

Расчетная схема нормального сечения железобетонного элемента с внешним армированием.

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Вернуться к оглавлению

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Вернуться к оглавлению

Защитный слой бетона

Армирование элементов монолитных железобетонных зданий.

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Вернуться к оглавлению

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.

kladembeton.ru

Минимальный процент армирования фундамента своими руками

Содержание статьи:

Армирование – это процедура, позволяющая увеличить общую прочность несущей конструкции. Армирование предусмотрено в большинстве конструкций фундаментов, но в каждом из видов фундамента оно выполняется согласно определенным требованиям. В зависимости от расположения прутов арматуры армирование бывает вертикальное и горизонтальное.

Способы размещения арматуры

Самым распространенным типом является горизонтальное размещение арматуры. Такой вид армирования нивелирует неравномерные нагрузки на фундамент, которые возникают из-за разной несущей способности участков грунта, на котором заложен фундамент, из-за вспучивания грунта и т. п.

Вертикальное армирование чаще всего делается в дополнение к горизонтальному. Такая мера необходима в том случае, когда фундамент подвержен действию сильных горизонтальных нагрузок.

Минимальный процент армирования

Многих интересует такой показатель, как минимальный процент армирования фундамента. Но строгих указаний по этому поводу нет. Количество арматуры можно использовать по своему усмотрению, можно еще обратить внимание и на то, сколько арматуры в кубе бетона должно быть.

Этот коэффициент невозможно рассчитать еще и потому, что играют роль множество факторов: и тип фундамента, и тип грунта, и количество этажей здания, и прочность материалов фундамента, и многое другое. Поэтому минимальный процент армирования фундамента в каждом отдельном случае будет отличаться.

В некоторых случаях армирование фундамента вообще не требуется, но такое бывает редко. Без армирования можно обойтись в том случае, когда нагрузка распределяется на фундамент равномерно и отсутствуют места локального перегруза.

Но такое бывает редко, поэтому практически всегда приходится проводить армирование. Пренебрежение этой процедурой приводит к проседанию здания, появлению трещин в стенах и прочим неприятным последствиям.

Диаметр арматуры

Диаметр прутьев арматуры должен составлять не менее 10-12 мм. Сечение арматуры определяется при расчете нагрузки на фундамент. Установка прутьев арматуры  и расчет, схема армирования должна производиться таким образом, чтобы расстояние между ними было равно 30 см, а расстояние до внутренней стороны фундамента – не меньше 5 см.

Ниже приведено видео с армированием ленточного фундамента.

dom-fundament.ru

Онлайн-калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента


В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.


Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.


Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных норм

Как рассчитывается расход арматуры на куб бетона

Согласно СП 52-101-2003 конструкцию можно назвать железобетонной, если площадь сечения продольных стальных стержней равна минимум 0,1 %, от площади сечения бетона. Максимальный процент содержания стальных стержней в бетоне равен 5, в местах стыковки, например колонн, этот показатель может доходить до 10. Рекомендуемый диапазон, это 0,5-3 % арматуры, от площади сечения бетона.

Исходя из конструктивных требований СП 52-101-2003, норма расхода арматуры для армирования железобетонных конструкций, находится в пределах от 20 до 430 кг на 1 м3 бетона.

Таблица расхода арматуры

В данной таблице, рассчитан вес арматуры, необходимый для армирования железобетонных конструкций, в зависимости её количества в процентах от площади сечения бетона.

Содержания арматуры, %Масса арматуры на 1 м3 бетона, кг
0.17.85
0.539.25
178.5
1.5117.75
2157
2.5196.25
3235.5
3.5274.75
4314
4.5353.25
5392.5

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Почему необходимо армирование?

Фундамент, вне зависимости от того, какого он типа, делают, чаще всего, из бетона. Материал этот имеет особенность: он выдерживает большое давление и сжатие, но плохо справляется с воздействием на изгиб и растяжение.

При строительстве любых сооружений редко удается распределить нагрузки равномерно. В итоге возникает момент изгиба, что может обернуться разрушением бетонной конструкции.


Армирование плитного фундамента достаточно трудоемкий процесс, поэтому, если нет опыта, лучше доверить это специалистам

Армирование плитного фундамента выполняют для того, чтобы усилить монолит именно по данному показателю. В итоге получается своего рода дуальная конструкция (несмотря на то, что это монолит), где бетон держит вес, арматура противостоит растяжению и линейной деформации.

Именно от армирования фундамента зависит насколько долго простоит постройка.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.


Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Выбор арматуры

Для того, чтобы каркас был максимально эффективным и функциональным, необходимо правильно выбрать и рассчитать диаметр и общую длину арматуры. Чаще всего используют материал следующих типов:

  • гладкие прутья (А240). Применяют для придания конструкции формы, из нее делают хомуты и распорки, для армирования не используют;
  • рифленые (А300, А400). Используют непосредственно для армирования.

Расчет диаметра

Прежде всего необходимо рассчитать оптимальный для данной конструкции диаметр прутка. Минимальный размер диаметра рассчитывают по следующему алгоритму:

  1. Вычисляют сечение плиты, умножив ее длину на высоту. Например, имеем плиту длиной 5 м и высотой 0,4 м, получаем 5*0,4=2 м².
  2. Рассчитывают площадь прутьев в одном ряду. Зная длину плиты и шаг между прутьями, рассчитывают минимальный диаметр стержня.

Расчет выглядит таким образом:

  1. Имеем плиту длиной 6 м и высотой 0,3 м. Площадь поперечного сечения равна 1,8 м².
  2. Общая площадь всей арматуры 1,8*0,3%=0,0048 м², т. е. 48 см².
  3. Площадь в одном направлении — не менее 24 см² (48/2=24).
  4. Далее обращаемся к справочникам, где указаны площади прутьев разных диаметров, где и подбираем подходящее значение диаметра арматуры.

Общая площадь сечения арматуры — не менее 0,3% поперечной площади фундамента. Диаметр прутьев выбирают так:

  • при длине плиты от 3 м — 10 мм;
  • при большей длине плиты — 12-24 мм;
  • диаметр гладких вертикальных стержней — от 6 мм.

Расчет количества

Общую длину арматуры вычисляют таким образом:

  1. Допустим, размеры плиты — 5х7 м, шаг между прутьями — 30 см. Получается 5/0,3=16,6. То есть необходимо 16 прутьев длиной по 7 м. Это продольные элементы армирования.
  2. Поперечные прутья имеют длину 5 м, а их количество — 7/0,3=23,3=23 шт. Итого получается 16 прутьев по 7 м и 23 стержня. по 5 м, то есть 16*7+23*5=112+115=227 м. Это длина арматуры, необходимой на одну решетку. Если их две, 227*2=452 м, если 3 яруса, 227*3=681 м.
  3. Кроме того, между двумя ярусами арматуры устанавливают своеобразные фиксаторы-распорки, представляющие собой П-образные элементы, нижние части ножек которого загнуты в разные стороны. Высота ножек до загибов равна расстоянию между ярусами каркаса.
  4. К полученному результату прибавляют 10% длины, это запас на стыки.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Схема армирования

Армирование фундаментной плиты осуществляется согласно определенным схемам. Иногда плиту заливают неравномерно: в местах, на которые будут опираться несущие стены, колонны, перегородки, часто выполняют дополнительное армирование. Считается, что расстояние между ярусами сетки не должны превышать 0,4 м. То есть, для фундамента высотой 1 м, необходимо 3 пояса армирования.

Перед тем, как вязать каркас, рассчитывают схему армирования, делают чертеж, и в дальнейшем действуют согласно ему.

Параметры плит

Простейшая схема армирования плиты фундамента выглядит следующим образом: нижний ярус — горизонтальная решетка, с шагом ячейки 20-40 см. Точно такая же сетка установлена на втором ярусе, параллельно первому. Между сетками крепят вертикальные распорки. Высота между двумя уровнями не должна превышать 40 см. Если фундамент выше, добавляют третий ярус и т. д.

Армирование торцов плиты выполняют при помощи П-образных хомутов. Длина каждой из «ножек» буквы «П» — две толщины каркаса плиты. А поперечина «П» в данном случае расположена вертикально, и является торцевым элементом арматурного каркаса.


Схема армирования фундаментной плиты

Толщина бетона, между краем плиты с любой стороны, и внутренним каркасом, должна быть не менее 5 см, во избежание скорого возникновения коррозийных процессов.

Зоны продавливаний

Такими участками считаются, в первую очередь, места опоры несущих стен, колонн и др. В этих зонах размер ячеек следует делать меньше, во избежание образования момента растяжения. Если укладываете арматуру со стороной ячейки 30 см, в этих зонах сделайте 15 см. Таким образом удастся избежать образования трещин и продавливаний.

Технология армирования плиты фундамента

Крайне важно правильно выполнить армирование монолитной плиты фундамента. Сделать это можно различными способами: каркас вяжут или сваривают, собирают все элементы в траншее, либо опускают туда уже готовые. Рассмотрим наиболее часто применяемые варианты.

Способы изготовления каркаса

Армирующий каркас делают двумя способами:

  • вязка. Прутья соединяют при помощи специальной проволоки, используя крючок или пистолет;
  • сварка. Применяют аппарат для электросварки.

Предпочтительнее собирать каркас, используя проволоку. Сварка придает конструкции жесткость, которая в данной ситуации не только не нужна, но и крайне нежелательна. Жесткое соединение лишено малейшей подвижности, даже при умеренном воздействии оно разрушается.

Каркас должен быть чуть подвижен, чтобы не ломаться в случае сильной деформации, а держать форму. Именно это качество придает метод вязки.

Имейте в виду!

С любой из сторон плиты, верх, низ, торцы, между арматурным каркасом и краем фундамента должен быть слой бетона 6-8 см.

Процент армирования железобетонных конструкций: минимальный, максимальный

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.
Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

После заливки важно уплотнить бетон, чтобы не было воздуха возле решетки, который приводит к снижению прочности сооружения.

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Наименование стройматериалаШирина объекта, смСлой бетона, см
Несущая стенаБолее 101,5
СтенаМенее 101
Ребро252
БалкаМенее 251,5
Колонна3
Фундаментная балка

Посмотреть «СНиП 2. 03.01-84» или cкачать в PDF (4.8 MB)

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

Статья «Определение эффективных параметров армирования железобетонных конструкций» из журнала CADmaster №3(85) 2016

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал — стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1-й группе (прочность, устойчивость), так и по 2-й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в кг/м3).

При этом в действующих строительных нормах [1−3] такой параметр напрочь отсутствует и он никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05−0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой-то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190- 200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Как видно из приведенных выше данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но и заодно (что очень важно) проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15−20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5−10%).
а)
б)

Рис.  1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных:
а) при разных диаметрах арматуры, б) при разных толщинах плит

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры
Фактор Следствие
Инженерно-геологические условия строительной площадки Тип фундамента (свайный, плитный, ленточный)
Шаг сетки несущих вертикальных элементов Пролет плит, их толщина (жесткость)
Размеры сечения колонн/пилонов/стен Удельный вес арматуры в бетоне
Класс бетона и арматуры Расход арматуры в сечении

В табл. 2 мы покажем на различных типах реальных зданий и сооружений, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Более точно содержание арматуры в бетоне можно определить по формуле:

где
— содержание арматуры в бетоне для всего здания, кг/м3;
— содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;
— удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;
n — общее количество конструктивных элементов здания.
Таблица 2. Содержание арматуры в бетоне для разных типов зданий
Тип здания Элемент здания Расход, кг/м3
а) 22-этажное здание на сваях (шаг колонн/пилонов 6,0 м) Сваи 64
Фундаментная плита 392
Вертикальные несущие элементы 263
Плиты перекрытия 193
Всего по зданию 212
б) 10-этажное здание на сваях (шаг пилонов 3,4−3,6 м) Сваи 70
Фундаментная плита 223
Вертикальные несущие элементы 148
Плиты перекрытия 129
Всего по зданию 148
в) 8-, 9-этажное здание на плите (шаг пилонов 4,5−4,8 м) Фундаментная плита 238
Вертикальные несущие элементы 126
Плиты перекрытия 150
Всего по зданию 175
г) 2-этажное здание на сваях (шаг колонн/стен 4,5−8,0 м) Сваи 83
Фундаментная плита 179
Вертикальные несущие элементы 118
Плиты перекрытия 170
Всего по зданию 147

Выводы

  • Все вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3) для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.
  • Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.
  • С помощью новых функций, реализованных в 21-й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но намного более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Литература

  1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52−01−2003).
  2. СП 52−101−2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52−101−2003).
  4. ГЭСН 81−02−06−2001.
  5. ФЕР 06−01−001−17.
Леонид Скорук
к.т.н., доц., старший научный сотрудник
НП ООО «СКАД Софт» (г. Киев)

Минимальный процент армирования железобетонных конструкций

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных норм

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

Размещение арматурной стали | Журнал Concrete Construction

Adobe Stock / Peangdao

Несмотря на то, что на более крупных проектах металлисты размещают арматурную сталь, большинство подрядчиков размещают некоторую арматуру. Размещение его в нужном месте и удержание его там во время укладки бетона имеет решающее значение для производительности конструкции. Арматуру следует размещать, как показано на чертежах размещения. Там детейлер укажет количество стержней, длину стержней, изгибов и положения.

Крышка

Одной из важных причин для правильного размещения арматурной стали является достижение нужного количества бетонного покрытия — количества бетона между арматурной сталью и поверхностью бетонного элемента. Покрытие является самым важным фактором защиты арматурной стали от коррозии. Покрытие также необходимо, чтобы гарантировать, что сталь достаточно хорошо сцепляется с бетоном и развивает его прочность. Требования к минимальному покрытию обычно перечислены в спецификациях проекта или показаны на чертежах.Если не указано иное, минимальное покрытие для монолитного бетона указано в Строительном кодексе ACI 318.

Выбор позиции

Важно помнить, что конструкция конструкции основана на размещении стали в нужном месте. Неправильное размещение арматурной стали может привести и привело к серьезным повреждениям конструкции бетона. Например, опускание верхних стержней или подъем нижних стержней на ½ дюйма больше, чем указано для плиты глубиной 6 дюймов, может снизить ее грузоподъемность на 20%.

Укладка арматуры поверх слоя свежего бетона с последующей заливкой поверх нее не является приемлемым методом позиционирования. Вы должны использовать опоры для арматурных стержней, которые сделаны из стальной проволоки, сборного железобетона или пластика. Стулья и опоры доступны разной высоты для поддержки определенных размеров и положений арматурных стержней. В целом пластиковые аксессуары дешевле металлических опор. Справочник по ресурсам для арматурной стали Института бетонной арматурной стали или классический Размещение арматурных стержней содержит три таблицы, которые показывают большинство доступных в настоящее время опор из различных материалов и описывают ситуацию, в которой каждая из них используется наиболее эффективно.

Недостаточно просто разместить штанги на опорах. Арматурная сталь должна быть закреплена, чтобы предотвратить смещение во время строительных работ и укладки бетона. Обычно это делается с помощью проволочной стяжки. Связующая проволока поставляется в мотках по 3 или 4 фунта. Провода помещаются в держатель для проволоки или катушка подвешивается к ремню рабочего для доступа. Обычно это проволока 16½ или черная, мягкая, отожженная проволока калибра 16, хотя для более тяжелого армирования может потребоваться проволока калибра 15 или 14 для удержания арматурного стержня в правильном положении.В индустрии армирования бетона используются различные типы стяжек (стяжки — это в основном проволочные скрутки для соединения пересекающихся стержней), от карабинов до седельных стяжек. CRSI Размещение арматурных стержней иллюстрирует типы связей и описывает ситуацию, в которой каждая из них используется наиболее эффективно.

Для связывания стержней с эпоксидным покрытием используйте стяжки из ПВХ (можно приобрести в компании American Wire Tie). Также доступны запатентованные защелкивающиеся стяжки, такие как стяжка Speed-Clip Rebar Tie от Con-Tie Inc. Это простое устройство, которое вручную прикрепляет арматурный стержень параллельно или под любым углом.Никаких инструментов не требуется.

При связывании стержней нет необходимости связывать каждое пересечение — обычно достаточно каждого четвертого или пятого. Помните, что стяжка не придает прочности конструкции, поэтому больше необходимо только тогда, когда сталь может сместиться во время укладки бетона. Убедитесь, что концы стяжной проволоки не касаются поверхности бетона, где они могут заржаветь. Для предварительно собранных матов или арматурной стали свяжите достаточное количество пересечений, чтобы сделать сборку достаточно жесткой для размещения — обычно каждое пересечение снаружи и каждое пересечение в середине мата.Прихваточная сварка пересечений обычно не допускается, так как это уменьшает поперечное сечение стержней.

Допуски при размещении
Хотя стержни следует размещать как можно ближе к указанному положению, всегда будут небольшие отклонения. Допуски на положение арматурных стержней, определенные ACI 117, «Допуски для бетонных конструкций и материалов», показаны в таблице. Помните, что это означает: допуск, согласно ACI 117, — это допустимое отклонение от заданного размера, другими словами, насколько далеко арматурный стержень на самом деле находится от того, что показано на чертежах.Так, например, если расстояние в свету между внешней стороной арматурного стержня и лицевой стороной бетонной балки шириной 6 дюймов задано равным 2 дюймам, допуск позволяет ему быть не менее 1 5/8 дюйма.
Допуск на положение продольных стержней довольно слабый — ± 3 дюйма. Это потому, что точное положение не так важно, если поддерживается надлежащее покрытие и указанное количество полосок.

При размещении арматуры следует помнить о том, что:

  • Опоры для стержней не предназначены для использования в качестве опоры для строительного оборудования, такого как бетононасосы, тележки или лазерные стяжки.
  • Расстояние между опорами стержня зависит от размера поддерживаемого арматурного стержня. Например, для односторонней цельной плиты с термоусадочными стержнями №5 высокие стулья используются на расстоянии 4 фута от центра; для баров №4 высокие стулья должны быть размещены на расстоянии 3 фута от центра.
  • Укладка арматуры на слои свежего бетона или регулировка положения стержней или сварной проволочной арматуры во время укладки бетона недопустимы. Неосмотрительная практика при строительстве плит, когда арматура укладывается на земляное полотно и поднимается вверх при укладке бетона, называется «зацеплением».”
  • Распорки для вертикального бетона (конструкции стен) традиционно использовались в качестве опции. Боковые распорки включают двуглавые гвозди, сборные бетонные блоки (dobies) и запатентованные цельнопластиковые профили.
  • Слесарь, слесарь-слесарь, подрядчик и инспектор несут ответственность за правильное размещение арматурных стержней в бетонных конструкциях.
  • Отклонение от указанного местоположения: в перекрытиях и стенах, кроме хомутов и стяжек ± 3 дюймаСтремена: глубина балки в дюймах, разделенная на 12. Стяжки: ширина колонны в дюймах, разделенная на 12.

Стандартная практика для предприятий по производству арматурных стержней из нержавеющей стали (ANSI / CRSI – IPG4.1)

Минимальный и максимальный коэффициент усиления

в различных железобетонных элементах

🕑 Время чтения: 1 минута

Минимальный коэффициент армирования — это наименьшее возможное количество стали, которое должно быть заделано в конструкционные бетонные элементы, чтобы предотвратить преждевременное разрушение после потери прочности на разрыв.Минимальный коэффициент армирования контролирует растрескивание бетонных элементов.

Максимальный коэффициент армирования — это наибольшая площадь стали, которая может быть помещена в бетонные элементы, такие как колонны и балки. В железобетонной балке обеспечение дополнительной арматуры сверх максимального коэффициента армирования не принесет пользы, поскольку бетон будет раздавлен до того, как будет использована вся прочность стали.

Обрушение бетонной конструкции происходит внезапно и не имеет никаких признаков разрушения.Максимальный коэффициент армирования обеспечивает экономию бетонных элементов и защиту от хрупкого разрушения бетона.

Наконец, требуемая площадь армирования спроектированного бетонного элемента не должна превышать максимального коэффициента армирования и должна быть меньше минимального коэффициента армирования. Следовательно, спроектированный элемент следует проверить на соответствие этому требованию.

Минимальный коэффициент усиления

Назначение минимального соотношения армирования — контролировать растрескивание и предотвращать внезапное разрушение путем придания элементу достаточной пластичности после потери прочности бетона на растяжение из-за растрескивания.

Строительные нормы и правила, такие как ACI 318-19, обеспечивают минимальный коэффициент армирования для различных железобетонных элементов, таких как балки и колонны.

1. Минимальный коэффициент усиления в балках

В железобетонных балках, если прочность на изгиб секции с трещинами ниже, чем момент, вызвавший растрескивание секции без трещин, то балка выйдет из строя при образовании первой трещины изгиба без каких-либо повреждений.

Минимальный коэффициент армирования, который можно вычислить с помощью уравнения, предоставленного ACI 318-19, может предотвратить преждевременное разрушение бетонной балки. Минимальное армирование для балок можно рассчитать с помощью следующего выражения:

Где:

A с, не менее : минимальная площадь стали, мм 2

fc ‘: прочность бетона на сжатие, МПа

фу: предел текучести стали, МПа

b w : ширина стенки в тавровой балке и ширина балки в прямоугольной балке, мм

d: эффективная глубина, измеренная от волокна с крайним сжатием бетона до центра стальных стержней, мм

Рисунок-1: Продольные и поперечные арматурные стержни

2.Минимальный коэффициент армирования в плитах

Минимальная площадь армирования для плиты — это температура и усадочная арматура, установленная для контроля трещин из-за усадки в бетоне и колебаний температуры. Не требуется предусматривать площадь армирования больше температурной и усадочной арматуры.

As = ρbd Уравнение 2

As: усадка и температурная арматура, мм 2

b: ширина полосы перекрытия, учитываемая для проектного назначения, которая составляет 1 м

d: эффективная глубина, мм

Рисунок 2: Распределение или усадка и температурные арматурные стержни в односторонней бетонной плите

3.Минимальный коэффициент усиления в однородной опоре

Минимальный коэффициент армирования для равномерного основания аналогичен коэффициенту армирования плиты, т.е. коэффициент армирования по температуре и усадке.

4. Минимальный коэффициент усиления в колоннах

Минимальный коэффициент усиления для колонн требуется для обеспечения сопротивления изгибу, который может не соответствовать аналитическим результатам. Это также необходимо для уменьшения эффекта усадки и ползучести бетона при длительных сжимающих напряжениях.

Минимальный коэффициент армирования в колонне предотвращает деформацию стальных стержней при длительной эксплуатационной нагрузке. ACI 318-19 определяет минимальный коэффициент продольного армирования для колонны как 0,01 от общей площади колонны.

5. Минимальная арматура для соединений между монолитными элементами и фундаментом

Минимальная площадь армирования, пересекающая монолитную колонну или постамент и поверхность раздела фундамента, должна быть в 0,005 раза больше общей площади поддерживаемого элемента.

Максимальный коэффициент усиления

Максимальный коэффициент армирования — это верхний предел количества стали, которое может быть помещено в бетонные элементы. Обычно это предоставляется по разным причинам, которые обсуждаются ниже:

1. Максимальный коэффициент усиления в балках

Максимальный коэффициент армирования балок предназначен для предотвращения раздавливания бетона, что является нежелательным режимом разрушения и предотвращается кодом ACI. Это также позволяет избежать использования чрезмерной площади стали, что не дает реальных преимуществ.Следовательно, это помогает внести экономию при проектировании бетонных балок.

Если балка имеет более высокую степень армирования, чем максимальная степень армирования, она называется переармированной бетонной балкой и обычно не выдерживает сжатие.

Сверхармированная бетонная балка выходит из строя при сжатии до полного использования потенциала стальных стержней. Максимальный коэффициент усиления для балок можно рассчитать с помощью уравнения 3.

2. Максимальный коэффициент усиления в колоннах

Максимальное армирование было установлено, чтобы гарантировать, что бетон может быть должным образом уплотнен вокруг стальных стержней и гарантировать, что спроектированные колонны аналогичны испытательным образцам в соответствии с ACI 318.19.

Максимальный коэффициент армирования колонн составляет 0,08 общей площади колонны. Это обеспечивает экономию при проектировании колонн и предотвращает скопление стали, что в противном случае мешает правильной укладке бетона.

На практике рекомендуется учитывать максимальный коэффициент армирования, равный 0,04 общей площади колонны, чтобы избежать чрезмерного армирования в местах сращивания стальных стержней.

Минимальный коэффициент усиления для сдвига

Подобно минимальному армированию на изгиб, описанному выше, ACI 318-19 устанавливает минимальный коэффициент усиления для сдвига в балках и т. Д.

1. Минимальный коэффициент усиления сдвигом в балках

Минимальная площадь арматуры на сдвиг должна быть предусмотрена во всех областях балки, где приложенное усилие на сдвиг превышает половину расчетной прочности бетона на сдвиг.

Минимальная поперечная арматура (A v, min ) в балках должна быть большей из следующих величин:

A v, min = 0,062 * fc ‘ (0,5) * (b w * s / f yt ) Уравнение 4

A v, мин = 0.35 * (b w * s / f yt ) Уравнение 5

Где:

с: межцентровое расстояние хомутов, мм

f yt : предел текучести стального стержня хомута, МПа

2. Минимальная продольная и поперечная арматура в монолитных стенах

Если приложенный сдвиг в плоскости (V и ) монолитной стены равен или меньше значения, полученного из уравнения 6, используйте значения, указанные в Таблице-1, в качестве минимального армирования как для продольной, так и для продольной арматуры. поперечное направление.

Однако, если приложенный сдвиг в плоскости (V и ) больше, чем значение, полученное из уравнения 6, тогда ( ρt = 0,0025) и значение ( ρℓ ) будет наибольшим из 0,0025 и результат уравнения 7.

Где:

h w : высота всей стены от основания до верха, мм

l w : длина всей стены, мм

Таблица-1: Минимальная продольная и поперечная арматура для стен

66, коэффициент армирования 66
Тип арматуры без предварительного напряжения Размер стержня / проволоки fy, МПа Минимальный коэффициент продольного армирования, ρℓ Минимальный коэффициент поперечного армирования ,
Деформированные стержни ≤ No.16 ≥420 0,0012 0,0020
Деформированные стержни > No. 16 <420 0,0015 0,0025
Арматура сварной проволокой 200 0,0015 0,0025
Деформированные стержни или арматура из сварной проволоки Любая Любая 0,0012 0,0020
Рис.

Часто задаваемые вопросы

Какое минимальное армирование в балке?

Минимальная арматура — это наименьшая стальная площадь, которая предотвращает преждевременное вязкое разрушение балки, когда бетон теряет прочность на растяжение из-за приложенных нагрузок.

Почему в балке предусмотрена минимальная поперечная арматура?

1. Для предотвращения внезапного разрушения балки, когда разрывается бетонное покрытие и теряется связь с натяжной сталью.
2. Во избежание хрупкого разрушения при сдвиге, которое может произойти без арматуры на сдвиг.
3. Предотвращение разрушения при растяжении из-за усадки и термических напряжений, а также внутреннего растрескивания в балке.
4. Удерживать продольные стальные стержни в их положении во время бетонирования.

Каков минимальный коэффициент армирования в колонне?

Минимальный коэффициент армирования для колонны равен 0.01.

Как рассчитать минимальную площадь армирования для колонны?

Минимальная площадь армирования в колонне равна общей площади колонны, умноженной на 0,01.

Почему в плитах используется усиление усадки и температуры?

Бетонная плита расширяется и сжимается при колебаниях температуры. Когда свежий бетон схватывается и быстро теряет влагу, он дает усадку и создает напряжение в бетоне. Усадка и расширение бетона приводят к развитию трещин, если это не учитывается при проектировании.
Итак, температурная и усадочная арматура предусмотрена для контроля трещин из-за колебаний температуры и усадки бетона

Подробнее

Расчет прямоугольной железобетонной балки

Руководство по проектированию и детализации железобетонных перекрытий IS456: 2000

(PDF) Расчет нормального сечения изгибаемых железобетонных и фибробетонных элементов

Copyright © 2018 Авторы. Это статья в открытом доступе, распространяемая по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение

на любом носителе при условии правильного цитирования оригинальной работы.

International Journal of Engineering & Technology, 7 (3.2) (2018) 176-182

International Journal of Engineering & Technology

Веб-сайт: www.sciencepubco.com/index.php/IJET

Research paper

Normal Sections Расчет на изгиб

Железобетонные и фибробетонные элементы

Дмитрий Кочкарев1 *, Татьяна Галинская2, Александр Ткачук3

1 Национальный университет водного и экологического строительства, Украина

2 Полтавский национальный технический университет 30003 Национальный университет имени Кондратюка, Украина 2 Водного и экологического машиностроения, Украина

* Автор для корреспонденции E-Mail: Dim7 @ Ukr.Сеть

Реферат

Рассмотрены основные принципы расчета нормальных сечений изгибаемых элементов железобетонных и фибробетонных

. В статье представлены силовые и деформационные методы расчета железобетонных и фибробетонных элементов прямоугольного сечения

. Деформационная модель расчета железобетонных и фибробетонных элементов представлена ​​в

в рамках методики расчета сопротивления сечения.Данный метод позволяет с общих методических позиций

производить расчеты железобетонных и фибробетонных элементов. А именно выбрать арматуру и определить

несущей способности. Предлагаемая модель деформации для расчета фибробетонных элементов основана на общепринятых предпосылках

. Гипотеза плоских сечений принята справедливой. Диаграмма деформации сжатого бетона описывается нелинейной функцией с установленными параметрическими точками.Распределение напряжений в растянутом бетоне принимается прямоугольным с соответствующими коэффициентами

, которые принимаются в зависимости от вида диаграммы деформирования. Определение несущей способности фибробетонных элементов

происходит в условиях предельной деформации. Рассмотрены два случая разрушения исследуемых элементов. Первый случай —

разрушение за счет достижения предельных деформаций в бетоне сжатой зоны с одновременным достижением предела текучести в рабочей арматуре.Второй случай — разрушение из-за достижения предельных деформаций в бетоне сжатой зоны без достижения предела текучести в рабочей арматуре. Оба случая расчета

сводятся к одной функциональной зависимости. Это позволяет избежать разграничения различных вариантов расчета. Основной безразмерной модификацией

является механический коэффициент армирования. По разработанной методике выполнены примеры расчетов железобетона,

фибробетонных элементов и фибробетонных элементов с продольным армированием.Показана возможность распространения

варианта конструкции железобетонных и фибробетонных элементов.

Ключевые слова: железобетонные элементы, фибробетонные элементы, изгибаемые элементы, балки, прочность, напряжения, деформационная модель.

1. Введение

Элементы и конструкции из фибробетона имеют ряд преимуществ перед тяжелыми бетонными конструкциями. Хорошо известно, что бетон

обладает высокой прочностью на сжатие и имеет довольно низкую прочность на разрыв

.Использование волокон из различных материалов приводит к

увеличению его прочностных характеристик. Согласно различным нормативным источникам

[1, 2, 3, 4], увеличение прочности образцов бетона из фибры

происходит до 20% на сжатие по сравнению с

аналогичных железобетонных образцов и в 2-7 раз при растяжении. . В добавлении

введение фибры в бетон

значительно снижает появление усадочных трещин и значительно увеличивает его динамические характеристики

.Это дает возможность использовать волокно

крит не только для создания новых строительных элементов и конструкций, но и

для усиления существующих.

В то же время существует ряд вопросов, связанных с расчетом таких элементов. Существующие силовые модели их расчета

не позволяют точно учесть их деформационные характеристики. Это мешает эффективному оформлению таких элементов.

Поэтому доработка модели деформации для расчета таких элементов

является актуальной задачей.

2. Методика расчета нормальных сечений

железобетонных и фибробетонных

элементов

2.1. Железобетонные элементы

Принято рассматривать силовой модельный расчет

железобетонных элементов

[5, 6]. Модель мощности

взята из предположения о прямоугольном распределении напряжений в зоне сжатого бетона

.Замена криволинейного контура

напряжений на прямоугольный в сечении железобетонных

элементов происходит введением коэффициентов ,  (рис. 1). Сопротивлением

растянутых бетонных участков пренебрегают.

Значение коэффициентов , , определяющих фактическую высоту и

прочности сжатой зоны бетона, определяется

выражениями:



; 9050

400

50

8,0

; 508,0

MPafwithin

fMPaf3000 c

000

000 c

000

000

(1)

% PDF-1.5 % 1 0 объект > / Метаданные 2 0 R / Контуры 3 0 R / PageLayout / OneColumn / Страницы 4 0 R / StructTreeRoot 5 0 R / Тип / Каталог >> эндобдж 6 0 obj > эндобдж 2 0 obj > транслировать 2016-05-12T19: 41: 02 + 02: 002016-05-12T19: 40: 53 + 02: 002016-05-12T19: 41: 02 + 02: 00Acrobat PDFMaker 10.1 для Worduuid: 60fcb503-ce0a-4197-bd74- 77b3928abc79uuid: ba90afe9-5693-46fd-99b0-7e06b438ffa5

  • 1
  • application / pdf
  • Библиотека Adobe PDF 10.0D: 20160512174008 конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 7 0 объект >> эндобдж 8 0 объект >> эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект >> эндобдж 21 0 объект > эндобдж 22 0 объект >> эндобдж 23 0 объект > / Шрифт> / XObject> >> / Повернуть 0 / StructParents 0 / Тип / Страница / Аннотации [910 0 R] >> эндобдж 24 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 1 / Тип / Страница >> эндобдж 25 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 2 / Тип / Страница >> эндобдж 26 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 3 / Тип / Страница >> эндобдж 27 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 4 / Тип / Страница >> эндобдж 28 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 5 / Тип / Страница >> эндобдж 29 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 6 / Тип / Страница >> эндобдж 30 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 7 / Тип / Страница >> эндобдж 31 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 8 / Тип / Страница >> эндобдж 32 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 9 / Тип / Страница >> эндобдж 33 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 10 / Тип / Страница >> эндобдж 34 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 11 / Тип / Страница >> эндобдж 35 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 12 / Тип / Страница >> эндобдж 36 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 13 / Тип / Страница >> эндобдж 37 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 14 / Тип / Страница >> эндобдж 38 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 15 / Тип / Страница >> эндобдж 39 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 16 / Тип / Страница >> эндобдж 40 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 17 / Тип / Страница >> эндобдж 41 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 18 / Тип / Страница >> эндобдж 42 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 19 / Тип / Страница >> эндобдж 43 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 20 / Тип / Страница >> эндобдж 44 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 21 / Тип / Страница >> эндобдж 45 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 22 / Тип / Страница >> эндобдж 46 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 23 / Тип / Страница >> эндобдж 47 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 24 / Тип / Страница >> эндобдж 48 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 25 / Тип / Страница >> эндобдж 49 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 26 / Тип / Страница >> эндобдж 50 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 27 / Тип / Страница >> эндобдж 51 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 28 / Тип / Страница >> эндобдж 52 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 29 / Тип / Страница >> эндобдж 53 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 30 / Тип / Страница >> эндобдж 54 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 31 / Тип / Страница >> эндобдж 55 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 32 / Тип / Страница >> эндобдж 56 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 33 / Тип / Страница >> эндобдж 57 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 34 / Тип / Страница >> эндобдж 58 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 35 / Тип / Страница >> эндобдж 59 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 36 / Тип / Страница >> эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект > эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект > эндобдж 123 0 объект > эндобдж 124 0 объект > эндобдж 125 0 объект > эндобдж 126 0 объект > эндобдж 127 0 объект > эндобдж 128 0 объект > эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект > эндобдж 134 0 объект > эндобдж 135 0 объект > эндобдж 136 0 объект > эндобдж 137 0 объект > эндобдж 138 0 объект > эндобдж 139 0 объект > эндобдж 140 0 объект > эндобдж 141 0 объект > эндобдж 142 0 объект > эндобдж 143 0 объект > эндобдж 144 0 объект > эндобдж 145 0 объект > эндобдж 146 0 объект > эндобдж 147 0 объект > эндобдж 148 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 152 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 155 0 объект > эндобдж 156 0 объект > эндобдж 157 0 объект > эндобдж 158 0 объект > эндобдж 159 0 объект > эндобдж 160 0 объект > эндобдж 161 0 объект > эндобдж 162 0 объект > эндобдж 163 0 объект > эндобдж 164 0 объект > эндобдж 165 0 объект > эндобдж 166 0 объект > эндобдж 167 0 объект > эндобдж 168 0 объект > эндобдж 169 0 объект > эндобдж 170 0 объект > эндобдж 171 0 объект > эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект > эндобдж 176 0 объект > эндобдж 177 0 объект > эндобдж 178 0 объект > эндобдж 179 0 объект > эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект > эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект > эндобдж 188 0 объект > эндобдж 189 0 объект > эндобдж 190 0 объект > эндобдж 191 0 объект > эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > эндобдж 195 0 объект > эндобдж 196 0 объект > эндобдж 197 0 объект > эндобдж 198 0 объект > эндобдж 199 0 объект > эндобдж 200 0 объект > эндобдж 201 0 объект > эндобдж 202 0 объект > эндобдж 203 0 объект > эндобдж 204 0 объект > эндобдж 205 0 объект > эндобдж 206 0 объект > эндобдж 207 0 объект > эндобдж 208 0 объект > эндобдж 209 0 объект > эндобдж 210 0 объект > эндобдж 211 0 объект > эндобдж 212 0 объект > эндобдж 213 0 объект > эндобдж 214 0 объект > эндобдж 215 0 объект > эндобдж 216 0 объект > эндобдж 217 0 объект > эндобдж 218 0 объект > эндобдж 219 0 объект > эндобдж 220 0 объект > эндобдж 221 0 объект > эндобдж 222 0 объект > эндобдж 223 0 объект > эндобдж 224 0 объект > эндобдж 225 0 объект > эндобдж 226 0 объект > эндобдж 227 0 объект > эндобдж 228 0 объект > эндобдж 229 0 объект > эндобдж 230 0 объект > эндобдж 231 0 объект > эндобдж 232 0 объект > эндобдж 233 0 объект > эндобдж 234 0 объект > эндобдж 235 0 объект > эндобдж 236 0 объект > эндобдж 237 0 объект > эндобдж 238 0 объект > эндобдж 239 0 объект > эндобдж 240 0 объект > эндобдж 241 0 объект > эндобдж 242 0 объект > эндобдж 243 0 объект > эндобдж 244 0 объект > эндобдж 245 0 объект > эндобдж 246 0 объект > эндобдж 247 0 объект > эндобдж 248 0 объект > эндобдж 249 0 объект > эндобдж 250 0 объект > эндобдж 251 0 объект > эндобдж 252 0 объект > эндобдж 253 0 объект > эндобдж 254 0 объект > эндобдж 255 0 объект > эндобдж 256 0 объект > эндобдж 257 0 объект > эндобдж 258 0 объект > эндобдж 259 0 объект > эндобдж 260 0 объект > эндобдж 261 0 объект > эндобдж 262 0 объект > эндобдж 263 0 объект > эндобдж 264 0 объект > эндобдж 265 0 объект > эндобдж 266 0 объект > эндобдж 267 0 объект > эндобдж 268 0 объект > эндобдж 269 ​​0 объект > эндобдж 270 0 объект > эндобдж 271 0 объект > эндобдж 272 0 объект > эндобдж 273 0 объект > эндобдж 274 0 объект > эндобдж 275 0 объект > эндобдж 276 0 объект > эндобдж 277 0 объект > эндобдж 278 0 объект > эндобдж 279 0 объект > эндобдж 280 0 объект > эндобдж 281 0 объект > эндобдж 282 0 объект > эндобдж 283 0 объект > эндобдж 284 0 объект > эндобдж 285 0 объект > эндобдж 286 0 объект > эндобдж 287 0 объект > эндобдж 288 0 объект > эндобдж 289 0 объект > эндобдж 290 0 объект > эндобдж 291 0 объект > эндобдж 292 0 объект > эндобдж 293 0 объект > эндобдж 294 0 объект > эндобдж 295 0 объект > эндобдж 296 0 объект > эндобдж 297 0 объект > эндобдж 298 0 объект > эндобдж 299 0 объект > эндобдж 300 0 объект > эндобдж 301 0 объект > эндобдж 302 0 объект > эндобдж 303 0 объект > эндобдж 304 0 объект > эндобдж 305 0 объект > эндобдж 306 0 объект > эндобдж 307 0 объект > эндобдж 308 0 объект > эндобдж 309 0 объект > эндобдж 310 0 объект > эндобдж 311 0 объект > эндобдж 312 0 объект > эндобдж 313 0 объект > эндобдж 314 0 объект > эндобдж 315 0 объект > эндобдж 316 0 объект > эндобдж 317 0 объект > эндобдж 318 0 объект > эндобдж 319 0 объект > эндобдж 320 0 объект > эндобдж 321 0 объект > эндобдж 322 0 объект > эндобдж 323 0 объект > эндобдж 324 0 объект > эндобдж 325 0 объект > эндобдж 326 0 объект > эндобдж 327 0 объект > эндобдж 328 0 объект > эндобдж 329 0 объект > эндобдж 330 0 объект > эндобдж 331 0 объект > эндобдж 332 0 объект > эндобдж 333 0 объект > эндобдж 334 0 объект > эндобдж 335 0 объект > эндобдж 336 0 объект > эндобдж 337 0 объект > эндобдж 338 0 объект > эндобдж 339 0 объект > эндобдж 340 0 объект > эндобдж 341 0 объект > эндобдж 342 0 объект > эндобдж 343 0 объект > эндобдж 344 0 объект > эндобдж 345 0 объект > эндобдж 346 0 объект > эндобдж 347 0 объект > эндобдж 348 0 объект > эндобдж 349 0 объект > эндобдж 350 0 объект > эндобдж 351 0 объект > эндобдж 352 0 объект > эндобдж 353 0 объект > эндобдж 354 0 объект > эндобдж 355 0 объект > эндобдж 356 0 объект > эндобдж 357 0 объект > эндобдж 358 0 объект > эндобдж 359 0 объект > эндобдж 360 0 объект > эндобдж 361 0 объект > эндобдж 362 0 объект > эндобдж 363 0 объект > эндобдж 364 0 объект > эндобдж 365 0 объект > эндобдж 366 0 объект > эндобдж 367 0 объект > эндобдж 368 0 объект > эндобдж 369 0 объект > эндобдж 370 0 объект > эндобдж 371 0 объект > эндобдж 372 0 объект > эндобдж 373 0 объект > эндобдж 374 0 объект > эндобдж 375 0 объект > эндобдж 376 0 объект > эндобдж 377 0 объект > эндобдж 378 0 объект > эндобдж 379 0 объект > эндобдж 380 0 объект > эндобдж 381 0 объект > эндобдж 382 0 объект > эндобдж 383 0 объект > эндобдж 384 0 объект > эндобдж 385 0 объект > эндобдж 386 0 объект > эндобдж 387 0 объект > эндобдж 388 0 объект > эндобдж 389 0 объект > эндобдж 390 0 объект > эндобдж 391 0 объект > эндобдж 392 0 объект > эндобдж 393 0 объект > эндобдж 394 0 объект > эндобдж 395 0 объект > эндобдж 396 0 объект > эндобдж 397 0 объект > эндобдж 398 0 объект > эндобдж 399 0 объект > эндобдж 400 0 объект > эндобдж 401 0 объект > эндобдж 402 0 объект > эндобдж 403 0 объект > эндобдж 404 0 объект > эндобдж 405 0 объект > эндобдж 406 0 объект > эндобдж 407 0 объект > эндобдж 408 0 объект > эндобдж 409 0 объект > эндобдж 410 0 объект > эндобдж 411 0 объект > эндобдж 412 0 объект > эндобдж 413 0 объект > эндобдж 414 0 объект > эндобдж 415 0 объект > эндобдж 416 0 объект > эндобдж 417 0 объект > эндобдж 418 0 объект > эндобдж 419 0 объект > эндобдж 420 0 объект > эндобдж 421 0 объект > эндобдж 422 0 объект > эндобдж 423 0 объект > эндобдж 424 0 объект > эндобдж 425 0 объект > эндобдж 426 0 объект > эндобдж 427 0 объект > эндобдж 428 0 объект > эндобдж 429 0 объект > эндобдж 430 0 объект > эндобдж 431 0 объект > эндобдж 432 0 объект > эндобдж 433 0 объект > эндобдж 434 0 объект > эндобдж 435 0 объект > эндобдж 436 0 объект > эндобдж 437 0 объект > эндобдж 438 0 объект > эндобдж 439 0 объект > эндобдж 440 0 объект > эндобдж 441 0 объект > эндобдж 442 0 объект > эндобдж 443 0 объект > эндобдж 444 0 объект > эндобдж 445 0 объект > эндобдж 446 0 объект > эндобдж 447 0 объект > эндобдж 448 0 объект > эндобдж 449 0 объект > эндобдж 450 0 объект > эндобдж 451 0 объект > эндобдж 452 0 объект > эндобдж 453 0 объект > эндобдж 454 0 объект > эндобдж 455 0 объект > эндобдж 456 0 объект > эндобдж 457 0 объект > эндобдж 458 0 объект > эндобдж 459 0 объект > эндобдж 460 0 объект > эндобдж 461 0 объект > эндобдж 462 0 объект > эндобдж 463 0 объект > эндобдж 464 0 объект > эндобдж 465 0 объект > эндобдж 466 0 объект > эндобдж 467 0 объект > эндобдж 468 0 объект > эндобдж 469 0 объект > эндобдж 470 0 объект > эндобдж 471 0 объект > эндобдж 472 0 объект > эндобдж 473 0 объект > эндобдж 474 0 объект > эндобдж 475 0 объект > эндобдж 476 0 объект > эндобдж 477 0 объект > эндобдж 478 0 объект > эндобдж 479 0 объект > эндобдж 480 0 объект > эндобдж 481 0 объект > эндобдж 482 0 объект > эндобдж 483 0 объект > эндобдж 484 0 объект > эндобдж 485 0 объект > эндобдж 486 0 объект > эндобдж 487 0 объект > эндобдж 488 0 объект > эндобдж 489 0 объект > эндобдж 490 0 объект > эндобдж 491 0 объект > эндобдж 492 0 объект > эндобдж 493 0 объект > эндобдж 494 0 объект > эндобдж 495 0 объект > эндобдж 496 0 объект > эндобдж 497 0 объект > эндобдж 498 0 объект > эндобдж 499 0 объект > эндобдж 500 0 объект > эндобдж 501 0 объект > эндобдж 502 0 объект > эндобдж 503 0 объект > эндобдж 504 0 объект > эндобдж 505 0 объект > эндобдж 506 0 объект > эндобдж 507 0 объект > эндобдж 508 0 объект > эндобдж 509 0 объект > эндобдж 510 0 объект > эндобдж 511 0 объект > эндобдж 512 0 объект > эндобдж 513 0 объект > эндобдж 514 0 объект > эндобдж 515 0 объект > эндобдж 516 0 объект > эндобдж 517 0 объект > эндобдж 518 0 объект > эндобдж 519 0 объект > эндобдж 520 0 объект > эндобдж 521 0 объект > эндобдж 522 0 объект > эндобдж 523 0 объект > эндобдж 524 0 объект > эндобдж 525 0 объект > эндобдж 526 0 объект > эндобдж 527 0 объект > эндобдж 528 0 объект > эндобдж 529 0 объект > эндобдж 530 0 объект > эндобдж 531 0 объект > эндобдж 532 0 объект > эндобдж 533 0 объект > эндобдж 534 0 объект > эндобдж 535 0 объект > эндобдж 536 0 объект > эндобдж 537 0 объект > эндобдж 538 0 объект > эндобдж 539 0 объект > эндобдж 540 0 объект > эндобдж 541 0 объект > эндобдж 542 0 объект > эндобдж 543 0 объект > эндобдж 544 0 объект > эндобдж 545 0 объект > эндобдж 546 0 объект > эндобдж 547 0 объект > эндобдж 548 0 объект > эндобдж 549 0 объект > эндобдж 550 0 объект > эндобдж 551 0 объект > эндобдж 552 0 объект > эндобдж 553 0 объект > эндобдж 554 0 объект > эндобдж 555 0 объект > эндобдж 556 0 объект > эндобдж 557 0 объект > эндобдж 558 0 объект > эндобдж 559 0 объект > эндобдж 560 0 объект > эндобдж 561 0 объект > эндобдж 562 0 объект > эндобдж 563 0 объект > эндобдж 564 0 объект > эндобдж 565 0 объект > эндобдж 566 0 объект > эндобдж 567 0 объект > эндобдж 568 0 объект > эндобдж 569 0 объект > эндобдж 570 0 объект > эндобдж 571 0 объект > эндобдж 572 0 объект > эндобдж 573 0 объект > эндобдж 574 0 объект > эндобдж 575 0 объект > эндобдж 576 0 объект > эндобдж 577 0 объект > эндобдж 578 0 объект > эндобдж 579 0 объект > эндобдж 580 0 объект > эндобдж 581 0 объект > эндобдж 582 0 объект > эндобдж 583 0 объект > эндобдж 584 0 объект > эндобдж 585 0 объект > эндобдж 586 0 объект > эндобдж 587 0 объект > эндобдж 588 0 объект > эндобдж 589 0 объект > эндобдж 590 0 объект > эндобдж 591 0 объект > эндобдж 592 0 объект > эндобдж 593 0 объект > эндобдж 594 0 объект > эндобдж 595 0 объект > эндобдж 596 0 объект > эндобдж 597 0 объект > эндобдж 598 0 объект > эндобдж 599 0 объект > эндобдж 600 0 объект > эндобдж 601 0 объект > эндобдж 602 0 объект > эндобдж 603 0 объект > эндобдж 604 0 объект > эндобдж 605 0 объект > эндобдж 606 0 объект > эндобдж 607 0 объект > эндобдж 608 0 объект > эндобдж 609 0 объект > эндобдж 610 0 объект > эндобдж 611 0 объект > эндобдж 612 0 объект > эндобдж 613 0 объект > эндобдж 614 0 объект > эндобдж 615 0 объект > эндобдж 616 0 объект > эндобдж 617 0 объект > эндобдж 618 0 объект > эндобдж 619 0 объект > эндобдж 620 0 объект > эндобдж 621 0 объект > эндобдж 622 0 объект > эндобдж 623 0 объект > эндобдж 624 0 объект > эндобдж 625 0 объект > эндобдж 626 0 объект > эндобдж 627 0 объект > эндобдж 628 0 объект > эндобдж 629 0 объект > эндобдж 630 0 объект > эндобдж 631 0 объект > эндобдж 632 0 объект > эндобдж 633 0 объект > эндобдж 634 0 объект > эндобдж 635 0 объект > эндобдж 636 0 объект > эндобдж 637 0 объект > эндобдж 638 0 объект > эндобдж 639 0 объект > эндобдж 640 0 объект > эндобдж 641 0 объект > эндобдж 642 0 объект > эндобдж 643 0 объект > эндобдж 644 0 объект > эндобдж 645 0 объект > эндобдж 646 0 объект > эндобдж 647 0 объект > эндобдж 648 0 объект > эндобдж 649 0 объект > эндобдж 650 0 объект > эндобдж 651 0 объект > эндобдж 652 0 объект > эндобдж 653 0 объект > эндобдж 654 0 объект > эндобдж 655 0 объект > эндобдж 656 0 объект > эндобдж 657 0 объект > эндобдж 658 0 объект > эндобдж 659 0 объект > эндобдж 660 0 объект > эндобдж 661 0 объект > эндобдж 662 0 объект > эндобдж 663 0 объект > эндобдж 664 0 объект > эндобдж 665 0 объект > эндобдж 666 0 объект > эндобдж 667 0 объект > эндобдж 668 0 объект > эндобдж 669 0 объект > эндобдж 670 0 объект > эндобдж 671 0 объект > эндобдж 672 0 объект > эндобдж 673 0 объект > эндобдж 674 0 объект > эндобдж 675 0 объект > эндобдж 676 0 объект > эндобдж 677 0 объект > эндобдж 678 0 объект > эндобдж 679 0 объект > эндобдж 680 0 объект > эндобдж 681 0 объект > эндобдж 682 0 объект > эндобдж 683 0 объект > эндобдж 684 0 объект > эндобдж 685 0 объект > эндобдж 686 0 объект > эндобдж 687 0 объект > эндобдж 688 0 объект > эндобдж 689 0 объект > эндобдж 690 0 объект > эндобдж 691 0 объект > эндобдж 692 0 объект > эндобдж 693 0 объект > эндобдж 694 0 объект > эндобдж 695 0 объект > эндобдж 696 0 объект > эндобдж 697 0 объект > эндобдж 698 0 объект > эндобдж 699 0 объект > эндобдж 700 0 объект > эндобдж 701 0 объект > эндобдж 702 0 объект > эндобдж 703 0 объект > эндобдж 704 0 объект > эндобдж 705 0 объект > эндобдж 706 0 объект > эндобдж 707 0 объект > эндобдж 708 0 объект > эндобдж 709 0 объект > эндобдж 710 0 объект > эндобдж 711 0 объект > эндобдж 712 0 объект > эндобдж 713 0 объект > эндобдж 714 0 объект > эндобдж 715 0 объект > эндобдж 716 0 объект > эндобдж 717 0 объект > эндобдж 718 0 объект > эндобдж 719 0 объект > эндобдж 720 0 объект > эндобдж 721 0 объект > эндобдж 722 0 объект > эндобдж 723 0 объект > эндобдж 724 0 объект > эндобдж 725 0 объект > эндобдж 726 0 объект > эндобдж 727 0 объект > эндобдж 728 0 объект > эндобдж 729 0 объект > эндобдж 730 0 объект > эндобдж 731 0 объект > эндобдж 732 0 объект > эндобдж 733 0 объект > эндобдж 734 0 объект > эндобдж 735 0 объект > эндобдж 736 0 объект > эндобдж 737 0 объект > эндобдж 738 0 объект > эндобдж 739 0 объект > эндобдж 740 0 объект > эндобдж 741 0 объект > эндобдж 742 0 объект > эндобдж 743 0 объект > эндобдж 744 0 объект > эндобдж 745 0 объект > эндобдж 746 0 объект > эндобдж 747 0 объект > эндобдж 748 0 объект > эндобдж 749 0 объект > эндобдж 750 0 объект > эндобдж 751 0 объект > эндобдж 752 0 объект > эндобдж 753 0 объект > эндобдж 754 0 объект > эндобдж 755 0 объект > эндобдж 756 0 объект > эндобдж 757 0 объект > эндобдж 758 0 объект > эндобдж 759 0 объект > эндобдж 760 0 объект > эндобдж 761 0 объект > эндобдж 762 0 объект > эндобдж 763 0 объект > эндобдж 764 0 объект > эндобдж 765 0 объект > эндобдж 766 0 объект > эндобдж 767 0 объект > эндобдж 768 0 объект > эндобдж 769 0 объект > эндобдж 770 0 объект > эндобдж 771 0 объект > эндобдж 772 0 объект > эндобдж 773 0 объект > эндобдж 774 0 объект > эндобдж 775 0 объект > эндобдж 776 0 объект > эндобдж 777 0 объект > эндобдж 778 0 объект > эндобдж 779 0 объект > эндобдж 780 0 объект > эндобдж 781 0 объект > эндобдж 782 0 объект > эндобдж 783 0 объект > эндобдж 784 0 объект > эндобдж 785 0 объект > эндобдж 786 0 объект > эндобдж 787 0 объект > эндобдж 788 0 объект > эндобдж 789 0 объект > эндобдж 790 0 объект > эндобдж 791 0 объект > эндобдж 792 0 объект > эндобдж 793 0 объект > эндобдж 794 0 объект > эндобдж 795 0 объект > эндобдж 796 0 объект > эндобдж 797 0 объект > эндобдж 798 0 объект > эндобдж 799 0 объект > эндобдж 800 0 объект > эндобдж 801 0 объект > эндобдж 802 0 объект > эндобдж 803 0 объект > эндобдж 804 0 объект > эндобдж 805 0 объект > эндобдж 806 0 объект > эндобдж 807 0 объект > эндобдж 808 0 объект > эндобдж 809 0 объект > эндобдж 810 0 объект > эндобдж 811 0 объект > эндобдж 812 0 объект > эндобдж 813 0 объект > эндобдж 814 0 объект > эндобдж 815 0 объект > эндобдж 816 0 объект > эндобдж 817 0 объект > эндобдж 818 0 объект > эндобдж 819 0 объект > эндобдж 820 0 объект > эндобдж 821 0 объект > эндобдж 822 0 объект > эндобдж 823 0 объект > эндобдж 824 0 объект > эндобдж 825 0 объект > эндобдж 826 0 объект > эндобдж 827 0 объект > эндобдж 828 0 объект > эндобдж 829 0 объект > эндобдж 830 0 объект > эндобдж 831 0 объект > эндобдж 832 0 объект > эндобдж 833 0 объект > эндобдж 834 0 объект > эндобдж 835 0 объект > эндобдж 836 0 объект > эндобдж 837 0 объект > эндобдж 838 0 объект > эндобдж 839 0 объект > эндобдж 840 0 объект > эндобдж 841 0 объект > эндобдж 842 0 объект > эндобдж 843 0 объект > эндобдж 844 0 объект > эндобдж 845 0 объект > эндобдж 846 0 объект > эндобдж 847 0 объект > эндобдж 848 0 объект > эндобдж 849 0 объект > эндобдж 850 0 объект > эндобдж 851 0 объект > эндобдж 852 0 объект > эндобдж 853 0 объект > эндобдж 854 0 объект > эндобдж 855 0 объект > эндобдж 856 0 объект > эндобдж 857 0 объект > эндобдж 858 0 объект > эндобдж 859 0 объект > эндобдж 860 0 объект > эндобдж 861 0 объект > эндобдж 862 0 объект > эндобдж 863 0 объект > эндобдж 864 0 объект > эндобдж 865 0 объект > эндобдж 866 0 объект > эндобдж 867 0 объект > эндобдж 868 0 объект > эндобдж 869 0 объект > эндобдж 870 0 объект > эндобдж 871 0 объект > эндобдж 872 0 объект > эндобдж 873 0 объект > эндобдж 874 0 объект > эндобдж 875 0 объект > эндобдж 876 0 объект > эндобдж 877 0 объект > эндобдж 878 0 объект > эндобдж 879 0 объект > эндобдж 880 0 объект > эндобдж 881 0 объект > эндобдж 882 0 объект > эндобдж 883 0 объект > эндобдж 884 0 объект > эндобдж 885 0 объект > эндобдж 886 0 объект > эндобдж 887 0 объект > эндобдж 888 0 объект > эндобдж 889 0 объект >> эндобдж 890 0 объект > эндобдж 891 0 объект >> эндобдж 892 0 объект > транслировать HS ۊ 0} Ẉ [| e! DaK [Cҵ / j $; i29g} OU ~ Pt.

    % PDF-1.4 % 44 0 объект > эндобдж xref 44 68 0000000016 00000 н. 0000001708 00000 н. 0000002388 00000 н. 0000002597 00000 н. 0000002861 00000 н. 0000003798 00000 н. 0000004527 00000 н. 0000005158 00000 п. 0000016371 00000 п. 0000016967 00000 п. 0000017748 00000 п. 0000018257 00000 п. 0000018707 00000 п. 0000029180 00000 п. 0000029891 00000 п. 0000030684 00000 п. 0000031265 00000 п. 0000031744 00000 п. 0000040064 00000 п. 0000040585 00000 п. 0000041688 00000 п. 0000042687 00000 п. 0000043624 00000 п. 0000056357 00000 п. 0000056911 00000 п. 0000056986 00000 п. 0000062337 00000 п. 0000062919 00000 п. 0000063768 00000 п. 0000064239 00000 п. 0000064415 00000 п. 0000064622 00000 н. 0000064880 00000 п. 0000065191 00000 п. 0000065734 00000 п. 0000067383 00000 п. 0000067515 00000 п. 0000067837 00000 п. 0000068130 00000 н. 0000068591 00000 п. 0000069033 00000 п. 0000069054 00000 п. 0000069958 00000 н. 0000070068 00000 п. 0000070815 00000 п. 0000071509 00000 п. 0000071530 00000 п. 0000072508 00000 п. 0000072529 00000 п. 0000073465 00000 п. 0000073486 00000 п. 0000074452 00000 п. 0000074473 00000 п. 0000075479 00000 п. 0000075500 00000 п. 0000076374 00000 п. 0000076757 00000 п. 0000077252 00000 п. 0000078001 00000 п. 0000078481 00000 п. 0000086219 00000 п. 0000086242 00000 п. 0000087368 00000 п. 0000087390 00000 п. 0000088141 00000 п. 0000088220 00000 п. 0000001781 00000 н. 0000002366 00000 н. трейлер ] >> startxref 0 %% EOF 45 0 объект > эндобдж 110 0 объект > транслировать Hb«f« Ab, _ssd! ~ M + k08: & СП ب 7 ϤfidžN3Ͳx «) bS * $ sp qH {] 򣗂3t2N-h (, xvzUr9l6; x% t2 {* yD: ̺1Qt «S / g3vA ВК8БДУф :.xWūd}, 6) X «~ FE /` BJ @. ɴ 4MCCJWi 21} 7xtkwCn2mPf (Z ~ y) (Nq @ Al |> x; знак равно `.fLMX # xC5`} ɐ ׀; AQB * i3ȁx6H

    Экспериментальные и теоретические исследования характеристик изгиба железобетонных балок из нержавеющей стали

    В этой статье изучаются характеристики изгиба железобетонных балок из нержавеющей стали (SS) и проанализированы. В основном мы уделяем внимание типу трещин, типу разрушения, кривой прогиба нагрузки и несущей способности. Шесть балок с параметрами испытаний, включая диаметр арматуры, тип арматуры и расстояние между скобами, были испытаны на 4-точечный изгиб.Результаты испытаний показывают, что режим разрушения железобетонной балки из ПС можно разделить на три стадии: упругую стадию, стадию растрескивания и стадию разрушения. Деформация межпролетного сечения железобетонной балки СС соответствует предположению о плоском сечении. При одинаковых условиях армирования несущая способность железобетонных балок ПС по нормальному сечению и наклонному сечению значительно выше, чем у обычных железобетонных балок. Кроме того, был оценен прогноз момента растрескивания и несущая способность, рассчитанный по ACI 318-14 и GB 50010-2010.Результаты расчетов двух кодов были надежными и консервативными, а GB 50010-2010 обеспечил более точное прогнозирование моментов растрескивания. Кроме того, для проверки надежности результатов испытаний были созданы модели конечных элементов, и результаты анализа хорошо подтвердились результатами испытаний.

    1. Введение

    SS обладает множеством выдающихся свойств, которые можно популяризировать в инженерном строительстве. Благодаря отличной пластичности, прочности и пригодности для вторичной переработки можно создать более прочную и экологически чистую конструкцию из нержавеющей стали [1, 2].Обладая превосходной пластичностью и растяжимостью, он предоставляет больше возможностей для внешнего вида, цвета и стиля инженерной конструкции. Кроме того, нержавеющая сталь обладает превосходной коррозионной стойкостью и высокой химической стабильностью, поэтому ее можно использовать для мостов, прибрежного оборудования и зданий.

    Коррозионная стойкость играет важную роль в устойчивости железобетонных конструкций [3, 4]. Возникновение проблем, связанных с коррозией стали, сопровождается высокими затратами на техническое обслуживание и высокими интервалами технического обслуживания.Проведено множество исследований коррозионной стойкости арматуры СС в бетоне. При определенной концентрации хлорид-иона пассивирующая пленка железобетонной конструкции SS будет разрушена, и ее долговечность окажется под угрозой. Концентрация хлорид-иона по-разному влияет на нержавеющую сталь и обычную углеродистую сталь; допустимый предел концентрации хлорид-ионов в арматуре SS в 10 раз выше, чем в углеродной арматуре [5]. При воздействии хлоридов на обычную стальную арматуру и арматуру из нержавеющей стали повреждения обычной стальной арматуры более серьезны, чем повреждения арматуры из нержавеющей стали [6–8].Было обнаружено, что присутствие хлорида влияет на электронные свойства пассивирующих пленок железобетонных конструкций, а арматура из аустенитной нержавеющей стали имеет лучшие электронные и электрохимические свойства, чем дуплексная арматура из нержавеющей стали. Кроме того, сплав SS может эффективно повысить сопротивление скольжению, твердость и коррозионную стойкость обычной нержавеющей стали, чтобы решить проблему коррозии стали, но на него также повлияли такие факторы, как концентрация хлорид-ионов, ингибитор коррозии и холод. уровни работы [9–13].На основании проведенных выше исследований можно сделать вывод, что коррозионная стойкость железобетонной конструкции из нержавеющей стали достаточна для повышения на порядок величины по сравнению с обычной углеродистой сталью.

    С другой стороны, многие исследователи изучали механические свойства СС, остаточные напряжения, высокотемпературные свойства, свойства при растяжении и так далее [14–23]. В испытании на одноосное растяжение при комнатной температуре SS не имеет четко определенного предела текучести и демонстрирует отличные характеристики деформационного упрочнения.Кроме того, процесс холодной штамповки оказывает определенное влияние на механические свойства SS. В процессе холодной штамповки номинальный предел текучести и предел прочности при растяжении нержавеющей стали увеличиваются, а относительное удлинение уменьшается.

    Недавно появились сообщения о некоторых исследованиях структурных свойств железобетонных конструкций из нержавеющей стали. Некоторые исследования показали, что замена арматуры из углеродистой стали на арматуру из нержавеющей стали мало повлияла на свойства сцепления [24–26]. Хассанейн и Сильвестр [27] изучили механические свойства изгиба наклонных дуплексных балок из нержавеющей стали, используя модель конечных элементов для анализа, и пришли к выводу, что прогноз изгиба, предоставленный EN 1993-1-4, является консервативным.Shamass et al. [28, 29] предоставили несколько методов прогнозирования характеристик изгиба композитных балок SS на основе метода непрерывной прочности.

    Однако в настоящее время нет экспериментальных исследований характеристик изгиба железобетонных конструкций из нержавеющей стали. В этой статье были изготовлены и испытаны два набора образцов. Тип (арматура SS и обычная арматура) и диаметр (6,5, 12 и 16 мм) арматуры были рассмотрены как переменные. Кроме того, на основе теории проектирования железобетонных элементов изгиба и экспериментальных результатов, были оценены уравнения прогнозирования китайских и американских кодексов для характеристик изгиба.Тем временем были разработаны модели конечных элементов для проверки и прогнозирования экспериментальных результатов.

    2. Теория расчета изгибаемых элементов из железобетона

    Методы расчета вероятностных предельных условий, используемые в текущих китайских нормах GB 50010-2010 [30] и американских стандартах ACI 318-14 [31], делят предельное состояние инженерных конструкций на два типа: предельные состояния по предельным значениям и предельные состояния по пригодности к эксплуатации. При проектировании железобетонных элементов несущую способность следует рассчитывать в соответствии с конечными предельными состояниями для обеспечения безопасности и надежности.Во-первых, расчет несущей способности бетонных изгибаемых элементов в основном включает расчет прочности на изгиб нормального сечения и расчет прочности на сдвиг наклонного сечения. Во-вторых, также необходимо спроектировать изгибаемые элементы в соответствии с предельными состояниями эксплуатационной пригодности. В основном это необходимо для проверки деформации и трещиностойкости или ширины трещины, чтобы убедиться, что элементы могут использоваться в нормальном режиме. Методика расчета несущей способности китайских кодов и американских кодов одинакова, а метод расчета момента взлома отличается.Прямоугольное сечение образцов было взято в качестве примера, чтобы проиллюстрировать метод проектирования железобетонных элементов изгиба.

    2.1. Изгибная способность нормального сечения

    Теоретический предельный момент представляет собой изгибающую способность нормального сечения, которая предлагается где — коэффициент момента сопротивления сечения, — расчетное значение прочности бетона на осевое сжатие, — ширина прямоугольного сечения и эффективная высота секции.

    2.2. Прочность на сдвиг наклонной секции

    Во избежание хрупкого разрушения количество хомутов в конструкции должно соответствовать требованиям конструкции. Шесть балок в этом испытании были оснащены стременами и не имели изогнутых усилителей. Предельная сдвигающая способность балки складывается из сдвигающей силы бетона и поперечной силы стремена. Таким образом, основной метод расчета прочности на сдвиг наклонной секции балок представлен там, где — это предельная прочность на сдвиг наклонной секции, — сдвигающая способность бетона и — сдвигающая способность хомутов.

    2.3. Момент взлома

    Расчет момента взлома в китайском коде и американском коде отличается. Уравнение (3) показывает метод расчета теоретического момента растрескивания бетона в ACI 318-14: где — теоретическое значение момента растрескивания бетона. — предел прочности бетона на растяжение при изгибе, — прочность на сжатие испытательного блока бетонного цилиндра, и его соотношение преобразования с кубической прочностью на сжатие. — момент сопротивления сечения по осям центра тяжести, независимо от площади арматуры.расстояние между центральной осью и краем растяжимого бетона.

    Как показано в уравнении (4), теоретическое значение момента растрескивания в GB 50010-2010 связано с прочностью и размером арматуры и бетона: где — теоретическое значение момента растрескивания бетона, — пластические коэффициенты модуль сечения, — коэффициент контроля растягивающего напряжения бетона, — стандартное значение прочности бетона на растяжение, — модуль преобразованного сечения к краю растяжимого бетона, рассчитанный по формуле: где — момент сопротивления сечения на осях центроида, — расстояние между преобразованными сечениями. центр тяжести и край сжатия секции, а — высота секции.

    3. Экспериментальная программа
    3.1. Материалы

    Армирование шести балок включало арматуру из нержавеющей стали и обычную стальную арматуру. Как показано на рисунке 1, арматура из нержавеющей стали была арматурой из нержавеющей стали 022Cr22Ni5Mo3N, произведенной Shanxi Taigang Stainless Steel Co., Ltd., которая была доступна в трех типах диаметров: 6,5 мм, 12 мм и 16 мм. Обычная стальная арматура принята резьбой HRB335 диаметром 12 мм и 16 мм и круглой арматурой HPB335 диаметром 6 мм.Диаметр 5 мм, произведенный Anyang Iron and Steel Co., Ltd. Согласно китайскому стандарту GB / T 228-2010 [32], два вида стальной арматуры были испытаны на одноосное растяжение при комнатной температуре.


    В таблице 1 показаны свойства материала стальной арматуры. Относительное удлинение арматуры SS более 30%. По сравнению с обычной стальной арматурой, арматура из нержавеющей стали имеет характеристики более высокой прочности, более высокого коэффициента текучести, большего удлинения и более низкого модуля упругости.Механические свойства и технологические свойства арматуры из нержавеющей стали соответствуют требованиям к формованию и конструктивному использованию бетонных компонентов. В таблице 2 представлены пропорции бетонной смеси, а удельная расчетная прочность бетона составила 30 МПа.

    6 5 Модуль упругости (%)

    Тип усиления Диаметр (мм) Предел текучести (МПа) Предел прочности (МПа) Относительное удлинение 900 (%) Н / мм)

    Арматура из нержавеющей стали 6.5 595 800 32,5 1,41
    12 660 830 37,8 1,41
    640238 9023 9023 9023 9023 2 Обычная стальная арматура 6,5 280 430 29,7 2,12
    12 380 530 30,7 2.30
    16 400 555 28,7 2,22

    )

    Цемент (кг) Песок (кг) Гравий (кг) Вода (кг) Водоредуцирующий агент (кг)

    0.49 37 350 719 1173 171,5 2,7

    3,2. Схема эксперимента

    На рисунке 2 показаны шесть образцов и процесс их производства. Были две железобетонные изгибные балки SS (№ BKW1 и BKW2), две железобетонные поперечные балки SS (№ BKJ1 и BKJ2), одна обычная железобетонная изгибная балка (№ PKW1) и одна обычная железобетонная поперечная балка ( Нет.PKJ1). На рисунке 3 показаны детали продольной арматуры. Все балки были спроектированы длиной 2400 мм и прямоугольным поперечным сечением 150 × 300 мм. Пролет балки в свету составлял 1800 мм, а длина участка чистого изгиба — 600 мм.


    В таблице 3 подробно показаны типы и характеристики стальной арматуры каждой балки. Диаметр растягивающей арматуры, используемой в изгибной балке, составлял 12 мм, а диаметр растягивающей арматуры, используемой в поперечной балке, составлял 16 мм.

    2352 9023 PK81290 25 @ 180

    Образец Тип стальной арматуры Компрессионная арматура Растягивающая арматура Хомут 9023 902 902 902 902 902 902 Арматура из нержавеющей стали 2 Ø6,5 2 Ø12 Ø6,[email protected] 41,92
    BKW2 2 Ø6.5 2Ø12 Ø6,[email protected] 41,54
    BKJ1 2Ø12 2Ø16 Ø6,[email protected] 41,88 2 902 5 @ 180 43,41
    PKW1 Обычная стальная арматура 2 Ø6,5 2 Ø12 Ø6,[email protected] 40,13
    Ø1 35,77

    Стандартные кубические блоки с длиной стороны 150 мм были зарезервированы при построении балок, а блоки и балки поддерживались в том же состоянии для проверки прочность бетона на сжатие образцов. Средние значения прочности бетона на сжатие блоков приведены в таблице 3.

    3.3. Экспериментальный метод

    Положения датчика давления, LVDT, тензодатчиков и точек нагрузки показаны на рисунках 4 и 5.Квазистатический метод постепенного нагружения был принят для проверки поведения на изгиб всех образцов. Машина для испытаний на сжатие общей мощностью 2000 кН использовалась для приложения нагрузки к распределительной балке. Стальная распределительная балка распределяла сосредоточенные нагрузки на две точки тройного сечения верхней части балки. В ходе испытания была принята ступенчатая нагрузка, и все балки были предварительно нагружены до 20 кН, а затем разгружены. До того, как нагрузка достигла 80% от теоретической нагрузки на балку при растрескивании, соотношение каждой ступени нагрузки составляло 5% от теоретической предельной нагрузки, а значение нагрузки на каждой ступени не превышало 5 кН при приближении к нагрузке на растрескивание.После возникновения первой трещины значение нагрузки на каждой стадии составляло 10% от теоретической предельной нагрузки, и по мере приближения к теоретической предельной нагрузке скорость нагружения снижалась. Нагрузка поддерживалась в течение 5 минут после каждого этапа нагружения, при этом ширина трещины регистрировалась прибором для наблюдения за трещиной с точностью до 0,02 мм, и наблюдались возникновение и развитие трещин.



    Датчик давления использовался для наблюдения за приложенной нагрузкой.Для контроля отклонения балки вдоль продольного направления балки были размещены пять LVDT с диапазоном 50 мм. Как показано на рисунке 4, положения LVDT были, соответственно, в середине пролета балки, в двух точках нагрузки и двух центральных точках опоры. Чистое отклонение балок было разницей между смещением в середине пролета и оседанием опоры, измеренной LDVT.

    Чтобы проверить предположение о том, что деформация секции соответствует плоскому сечению, всего в середине пролета балки использовалось всего 5 тензодатчиков для наблюдения за распределением деформации по высоте.Высота расположения тензодатчиков (расстояние от края сжатия балки) составляла 0 мм, 75 мм, 150 мм, 225 мм и 300 мм соответственно.

    4. Результаты экспериментов и обсуждение
    4.1. Кривые нагрузки-прогиба и режимы разрушения

    На рисунке 6 (а) показаны кривые прогиба-нагрузки для середины пролета трех изгибных балок. Балки BKW1 и BKW2 и балка PKW1 все показали пластичное разрушение. Прогиб балки продолжал увеличиваться после выхода, в то время как нагрузка медленно увеличивалась.На рисунке 6 (b) представлена ​​кривая прогиба нагрузки в середине пролета трех поперечных балок. Обычная железобетонная поперечная балка PKJ1 показала вязкое разрушение, и прогиб продолжал увеличиваться после того, как балка подалась, в то время как нагрузка увеличивалась медленно. Предельная несущая способность BKW1 и BKW2 составляла 140 кН, предельная несущая способность PKW1 составляла 100 кН, а отношение предельной несущей способности двух типов составляло 1,40. Срезные балки BKJ1 и BKJ2 арматуры SS показали хрупкое разрушение.Когда балка была повреждена, растягивающая арматура еще не подалась, но бетон секции сжатия был раздроблен, в результате чего балка внезапно сломалась. Предельная несущая способность BKJ1 и BKJ2 составляла 185 кН, предельная несущая способность PKJ1 составляла 140 кН, а отношение предельной несущей способности двух типов составляло 1,32.

    На рисунке 7 представлены фотографии и рисунки трещин всех балок после повреждения. При той же нагрузке ширина трещины поперечной балки была значительно меньше, чем у изгибной балки.Причина может заключаться в том, что более высокий коэффициент усиления поперечных балок контролировал развитие ширины трещины. Режимы разрушения двух типов железобетонных балок аналогичны; Их можно приблизительно разделить на следующие три стадии:

    Первая стадия — упругая стадия. В начале нагружения напряжение арматуры было небольшим, прогиб медленно изменялся с нагрузкой, и трещина не появлялась.

    Вторая стадия — стадия крекинга.На этом этапе по мере развития трещин жесткость балок постепенно снижалась. После достижения момента растрескивания первая вертикальная трещина появилась около середины пролета в нижней части балки. При увеличении нагрузки трещины медленно развивались вверх, и ширина трещины медленно увеличивалась. Когда нагрузка достигла примерно 30% предельной нагрузки балки, на участке чистого изгиба появилось несколько вертикальных трещин. Когда нагрузка достигла примерно 40% от предельной нагрузки, количество трещин достигло относительно стабильного значения, и эти трещины были мелкими и короткими и появлялись ниже нейтральной оси.Поскольку нагрузка продолжала увеличиваться, трещина все еще развивалась медленно, и между начальными трещинами появилось больше вертикальных трещин. Когда арматура приблизилась к пределу текучести, косые трещины появились в средней и нижней частях сегмента изгиба сдвига и быстро развились к точкам нагрузки и опорам.

    Третья стадия — стадия отказа. На этом этапе почти не появлялись новые трещины, а вертикальные и наклонные трещины быстро развивались вверх, пока не была повреждена балка.Среди изгибных балок ширина вертикальных трещин в середине пролета резко выросла, а высота расширилась над нейтральной осью после того, как продольная растягивающая арматура уступила. Длина косых трещин продолжала расти, но ширина не сильно изменилась. Когда деформация бетона вблизи точек нагружения приблизилась к предельной деформации сжатия и была раздроблена, несущая способность резко снизилась, и балки сломались. До повреждения прогиб трех балок продолжал расти, а рост нагрузки замедлялся.Среди поперечных балок, после того, как стремена балки уступили, косые трещины быстро развивались от около опор до точек нагружения, и их ширина также быстро увеличивалась. Длина и ширина вертикальных трещин в середине пролета развивались медленнее. BKJ1 и BKJ2 продемонстрировали явление приблизительного хрупкого разрушения: после того, как балки подались, они быстро разрушались, и прогиб существенно не увеличивался. Напротив, PKJ1 сохранял рост прогиба по мере приближения к отказу.

    4.2. Распределение деформации бетона

    На рис. 8 показано распределение деформации бетона по высоте в средней части шести балок при нагрузках на разных уровнях. Деформация бетона в момент разрушения балок была явно ненормальной на верхнем и нижнем краях промежуточной секции. Причина заключалась в том, что по мере разрушения балок деформация секции резко увеличивалась, а деформацию бетона регистрировать было трудно. На каждом этапе бетонная деформация в средней части пролета всех балок была приблизительно линейно распределена по высоте.Разумно полагать, что деформация сечения всех балок соответствует предположению о плоском сечении. Это соответствует основным предположениям механики материалов и служит основой для следующих теоретических расчетов железобетонной балки из нержавеющей стали.

    4.3. Сравнение результатов испытаний с теоретическими результатами
    4.3.1. Момент растрескивания

    На основании уравнений (3) и (4) был рассчитан момент растрескивания, который представлен вместе с экспериментальными значениями на Рисунке 9.Экспериментальные моменты растрескивания как SS, так и обычных железобетонных балок были больше теоретических моментов растрескивания. Среди них соотношение между экспериментальными моментами растрескивания и моментами растрескивания, рассчитанными в соответствии с кодом ACI 318-14, составляет от 1,21 до 1,43, а среднее значение составляет 1,328. Некоторые результаты, рассчитанные по американскому кодексу, значительно отличаются от результатов испытаний; тем не менее, общая тенденция безопасна. Соотношение экспериментальных моментов растрескивания и моментов растрескивания, рассчитанных в соответствии со стандартом GB 50010-2010, находится между 1.07 и 1,20, а среднее значение — 1,138. Китайский код обеспечивает более точное предсказание результатов теста.


    4.3.2. Несущая способность нормального сечения

    Теоретические предельные моменты трех изгибных балок были рассчитаны по уравнению (1). На рисунке 10 показаны теоретические и экспериментальные значения предельных моментов, которые определяют несущую способность нормального сечения. Экспериментальные предельные моменты SS и обычных железобетонных балок были больше теоретических предельных моментов.Среднее отношение экспериментальных конечных моментов к теоретическим конечным моментам железобетонной балки SS составляет 1,35 с коэффициентом дисперсии 0,068. Можно сделать вывод, что расчетный по действующим нормам предельный момент нормального сечения железобетонной балки ПС на 35% безопаснее.


    4.3.3. Несущая способность наклонной секции

    Теоретическая предельная прочность на сдвиг трех поперечных балок рассчитывается по уравнению (2). На рисунке 11 показано сравнение экспериментальной и теоретической предельной прочности на сдвиг, которая представляет несущую способность наклонного сечения.При тех же условиях армирования средняя предельная прочность на сдвиг железобетонных балок из нержавеющей стали в 1,27 раза выше, чем у обычных железобетонных балок. Экспериментальная предельная прочность на сдвиг для BKJ1 и BKJ2 в 1,41 раза больше теоретического значения, в то время как экспериментальная предельная прочность на сдвиг для PKJ1 в 1,13 раза превышает теоретическое значение. Таким образом, уравнение (2) является консервативным для расчета предельной прочности на сдвиг железобетонных балок из нержавеющей стали.


    5. Исследование методом конечных элементов

    Для исследования анализа методом конечных элементов ABAQUS использовался для проверки и прогнозирования экспериментальных результатов.Были смоделированы шесть пучков, и результаты анализа были сопоставлены с экспериментальными результатами для анализа. На рисунке 12 подробно показана конечно-элементная модель. Модель избегала концентрации напряжений в точках нагружения и опорах, устанавливая стальную пластину, а процесс нагружения контролировался смещением. Арматура была залита бетоном. Шестнадцатеричная форма элемента и метод структурирования были адаптированы для управления сеткой. Впоследствии были описаны основные модели, использованные для трех материалов модели, и обсуждались аналитические результаты.

    5.1. Материальные конститутивные модели
    5.1.1. Модель бетона

    В модели бетона была принята модель пластичности повреждений бетона (модель CDP), предоставленная ABAQUS, а одноосные определяющие отношения бетона были представлены в стандарте GB 50010-2010. Модель отражает явление уменьшения модуля упругости бетона с увеличением степени повреждения. Одноосная конститутивная модель может быть определена тем, где — параметр эволюции бетона при одноосной нагрузке и — начальный модуль упругости.Когда бетон находится под одноосным растяжением, можно определить по следующим уравнениям: где — значение параметра нисходящего участка кривой одноосного растяжения бетона. представляет собой характерное значение прочности бетона на одноосное растяжение. — пиковая деформация растяжения, соответствующая репрезентативному значению прочности на одноосное растяжение.

    Когда бетон находится в состоянии одноосного сжатия, можно определить по следующим уравнениям: где — значение параметра нисходящего участка кривой одноосного сжатия и деформации бетона.представляет собой характерное значение прочности бетона на одноосное сжатие. — пиковая деформация сжатия, соответствующая представительному значению прочности на одноосное сжатие.

    5.1.2. Обычная стальная арматура Модель

    На рисунке 13 показана обычная модель армирования, состоящая из трех частей. Эта модель воплощает явление текучести обычной стали и упрощает ее механические свойства до трех прямых линий. Определяющее соотношение рассчитывается следующим образом: где — модуль упругости арматуры, — представительное значение предела текучести арматуры, — деформация начальной точки упрочнения стальной арматуры, — деформация текучести арматуры, — пиковая деформация арматуры, — уклон участка упрочнения арматуры, и является характерным значением предела прочности арматуры.


    5.1.3. SS Reinforcement Model

    Ramberg и Osgood [33] впервые предложили использовать три параметра для описания нелинейной связи между напряжением и деформацией. Расмуссен [34] улучшил модель Рамберга-Осгуда, и улучшенная модель лучше отражает реальную кривую напряжения-деформации арматуры SS. Как показано на рисунке 14, модель армирования SS приняла модель Расмуссена. Модель состоит из двух частей и может быть определена следующим образом: где — индекс деформационного упрочнения, — модуль упругости и — соответствующие значения предельного напряжения упругости, когда остаточная деформация равна 0.2% и 0,01% соответственно — это предельное напряжение и предельное напряжение.


    5.2. Аналитические результаты и обсуждение

    В ABAQUS картину повреждений бетона при растяжении можно рассматривать как структуру трещин. На рисунке 15 показан типичный рисунок трещин для конечно-элементных моделей. Первая трещина возникла в нижней части модели. Затем трещины распространились снизу вверх и от опор до точек нагружения. Образцы трещин и их характеристики при анализе методом конечных элементов соответствовали результатам испытаний.Это показывает, что модель конечных элементов может отражать явления трещин в железобетонных балках из нержавеющей стали.


    На рисунке 16 показано сравнение аналитических кривых прогиба нагрузки и экспериментальных результатов для шести балок. Среди этих балок результаты (включая начальный модуль упругости, растрескивающую нагрузку, предельную нагрузку и кривую прогиба), предсказанные с помощью модели конечных элементов, показали хорошее согласие с экспериментальными результатами. Из таблицы 4 видно, что прогиб, соответствующий растрескивающей нагрузке и предельной нагрузке, проанализированный с помощью модели конечных элементов, близок к результату испытания.Отношение нагрузки к растрескиванию аналитического значения к экспериментальному значению составляет от 0,89 до 1,13, а отношение предельной нагрузки аналитического значения к экспериментальному значению составляет от 0,99 до 1,06. Максимальная погрешность нагрузки на растрескивание составляет 13%, а максимальная погрешность предельной нагрузки составляет 6%. Это сравнение показывает, что модель, созданная с помощью программы конечных элементов, может в достаточной степени предсказать экспериментальные результаты.

    9023 902 9023 902 32,79 140352 9023 9023 9023 140352 9023 1,13

    Образец Растрескивающая нагрузка Предельная нагрузка Прогиб при предельной нагрузке
    FEA Exp. FEA Exp. FEA

    BKW1 31,00 33,11 145,00 150,47 23,94 24,84 1,0352 145,00 149,46 25,90 26,40 1,01 1.03 1,02

    PKW1 34,00 30,56 100,00 101,51 13,17 13,22 2 13,22 32,67 185,00 182,34 9,48 9,44 0,90 0,99 1,00
    BKJ2 39.00 34,52 185,00 195,20 9,46 8,25 0,89 1,06 0,87
    PKJ1 29,00
    29,00
    0,99 1,04

    6. Выводы

    В этой статье арматура из нержавеющей стали и обычная стальная арматура были испытаны на одноосное растяжение при комнатной температуре.Затем 6 балок размером 150 мм × 300 мм, 2400 мм, которые состояли из стальной арматуры разных типов и диаметров, были исследованы на механическое поведение. На основании проведенного выше исследования можно сделать следующие выводы: (1) арматура SS не имеет четко определенного предела текучести. По сравнению с обычной стальной арматурой, арматура из нержавеющей стали имеет характеристики более высокой прочности, более высокого коэффициента текучести, большего удлинения и немного более низкого модуля упругости. В испытаниях на изгиб и сдвиг арматура из нержавеющей стали демонстрирует хороший совместный рабочий механизм с бетоном.(2) Отклонение деформации бетона в средней части пролета было приблизительно линейно распределено по высоте. Можно считать, что деформация сечения железобетонной балки SS соответствует предположению о плоском сечении. (3) По сравнению с обычными стальными железобетонными балками, железобетонные балки SS имели большую предельную несущую способность. При одинаковых условиях армирования отношение предельной несущей способности между двумя типами железобетонных балок было равно 1.40 при испытании на изгиб и 1,32 при испытании на сдвиг. Однако железобетонные балки из SS склонны к хрупкому разрушению из-за высокого коэффициента усиления. (4) Экспериментальные моменты растрескивания как SS, так и обычных железобетонных балок превышают теоретический момент растрескивания. Для оценки моментов растрескивания ACI 318-14 обеспечил в среднем на 28,5% и 35% более безопасный прогноз для балок из нержавеющей стали и обычных железобетонных балок, соответственно. GB 50010-2010 обеспечил в среднем 15% и 11.5% СС для балок из СС и обычных железобетонных балок соответственно. Результаты, рассчитанные с помощью GB 50010-2010, ближе к экспериментальным результатам, в то время как ACI 318-14 был более безопасным. (5) Метод расчета несущей способности нормального и наклонного сечения одинаков в американских и китайских стандартах. . Теоретическая несущая способность для всех балок в 1,13–1,45 раза превышала экспериментальные результаты. Можно безопасно предсказать несущую способность изгибных элементов арматуры SS, используя существующие нормы.(6) Характер трещин и кривые прогиба нагрузки, полученные из FEA, хорошо согласуются с экспериментальными результатами, а максимальная погрешность предельной нагрузки составляет 6%. Сравнение доказывает рациональность и выполнимость данной статьи.

    Доступность данных

    Данные, использованные для подтверждения результатов этого исследования, включены в статью.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Благодарности

    Авторы выражают признательность за финансовую поддержку, предоставленную Национальным фондом естественных наук Китая (No.51679220) и Открытый проектный фонд Исследовательского центра по безопасности дамбы и предотвращению стихийных бедствий MMR (№ 2018002).

    Страница не найдена — Global Design Solutions (GDS)

    Мы оцифровываем мир и предоставляем вам нужный формат.

    Global Design Solutions, Inc. (GDS) находится в Хьюстоне, Техас и Лос-Анджелесе, Калифорния. Мы здесь, чтобы предоставить нашим клиентам экономичные решения для 3D-лазерного сканирования, моделирования, захвата реальности и услуг обратного проектирования.

    Global Design Solutions Услуги лазерного 3D-сканирования

    Зачем нужны службы 3D-лазерного сканирования?

    3D лазерное сканирование — это средство получения данных в формате 360 градусов, которые обеспечивают трехмерный вид объекта, объекта или топографической области. 3D-лазерное сканирование собирает пространственные данные с помощью лазерного излучения. Форма, положение и расположение объектов регистрируются лазерным лучом, движущимся со скоростью в миллионы точек в секунду.Каждый источник света имеет свою координату широты, долготы и высоты (XYZ). По совпадению, одно сканирование не предоставит вам всей информации, необходимой для вашего проекта. Выполняется несколько сканирований и регистрируется в ОБЛАКЕ ТОЧЕК для создания 3D-модели. Затем сканированные изображения можно просмотреть с помощью специального программного обеспечения, которое сможет интерпретировать даже самый новичок. Промышленное трехмерное лазерное сканирование — это способ перенести настоящую виртуальную среду реального мира в пространство модели для немедленного использования вашими проектными группами в ваших собственных проектах трехмерного САПР.GDS позволяет нашим клиентам иметь всю субмиллиметровую съемочную информацию на вашем компьютере за небольшую часть стоимости отправки традиционной съемочной группы на ваш сайт. В целом, услуги лазерного 3D-сканирования GDS позволяют быстро, экономично и эффективно принимать решения при стратегическом планировании вашего проекта.

    Global Design Solutions, Inc. — профессиональная поставщик услуг, специализирующийся на 3D-лазерном сканировании, данные о проектировании, консультировании и облаке точек.

    Бесплатный звонок: 1-800-839-3342

    .
  • Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *