Монолитный железобетон это: Страница не найдена — Бетон

Автор

Содержание

Монолитный железобетон: изготовление и применение

Монолитный железобетон – это конструкция, которая заливается непосредственно на строительном объекте, позволяя создавать постройки любой архитектуры, с разнообразными элементами, прямыми и изогнутыми линиями. Ввиду экологичности и прекрасных эксплуатационных характеристик железобетон сегодня используется в возведении зданий разного назначения, высотности.

Благодаря использованию технологии монолитного железобетона удается реализовывать проекты многоэтажных домов, которые демонстрируют прекрасные показатели прочности и надежности, стойкость к нагрузкам на изгиб, требуют меньших трудозатрат, возводятся быстрее. Немаловажным преимуществом является и снижение стоимости строительства.

Особенности материала

Основное отличие железобетонного монолита заключается в том, что его изготавливают прямо на строительной площадке. В то время, как сборные изделия производят в заводских условиях в специальных формах и доставляют на объект уже готовыми.

Монолитный железобетон производят таким образом:

сначала строят арматурный каркас, потом сооружают опалубку вокруг каркаса, заливают в форму предварительно приготовленный бетон, уплотняют поверхностными и глубинными вибраторами, выжидают нужное время и продолжают строительство.

Конфигурация возводимого сооружения может быть любой, но находится в прямой зависимости от возможностей по монтажу опалубки и прочности застывшего бетона. Стоит учесть, что за способность выдерживать нагрузки разного типа и механические характеристики в ответе внутреннее армирование конструкции. Каркас готовят из толстой арматуры, в несколько рядов, прямо перед закладкой бетона.

Бетон могут готовить прямо на объекте либо транспортировать с завода (тут необходимо применение спецтехники). Во втором случае значительно повышается цена раствора, но зато можно осуществлять масштабную заливку бетоном непрерывно, что существенно улучшает эксплуатационные характеристики всего железобетонного монолита.

Достоинства и недостатки

Монолитный железобетон обладает определенными особенностями, которые объясняются как свойствами каждого из материалов по отдельности (бетон и стальная арматура), так и технологий его производства. Качество раствора (пропорции компонентов) и технологический процесс во многом влияют на прочность и плотность железобетона.

Основные преимущества монолитного железобетона:

  • Уменьшение временных и трудозатрат на возведение сооружения в сравнении со строительством его из камня или кирпича.
  • Уменьшение толщины стен (соответственно, увеличение внутренней площади помещения).
  • Возможность реализовать любую идею при создании проекта.
  • Высокий уровень прочности.
  • Сейсмоустойчивость на уровне 8 баллов без разрушения.
  • Отсутствие или уменьшение количества швов в монолите, что улучшает теплоизоляционные характеристики.
  • Стойкость к разнообразным химическим воздействиям, окислению, коррозии.
  • Длительный срок эксплуатации

Из недостатков монолитного железобетона стоит упомянуть такие

, как необходимость в привлечении грузоподъемной спецтехники, дополнительных работников ввиду того, что практически все этапы производства осуществляются на строительном объекте. Стоит отметить и такие нюансы, как необходимость возводить мощный фундамент из-за большого веса монолита, обязательное выполнение гидро- и теплоизоляции, сложность в обработке бетона.

Технические характеристики

Бетон отличается прекрасной сопротивляемостью на сжатие и не любит растяжение, что с успехом компенсирует железобетонный каркас, обладающий прекрасной стойкостью на растяжение, но плохо выдерживающий сжатие. Таким образом, тандем этих двух материалов в железобетоном монолите позволяет добиться наилучших результатов, ввиду чего такая технология повсеместно используется при строительстве мало- и многоэтажных зданий.

В большой мере технические характеристики монолитной конструкции определяются характеристиками металлической арматуры (правильность вязки, количество прутов, их диаметр) и типом самого бетона.

Особенности эксплуатации монолитов из разных бетонов:

1) Легкие бетоны (к их числу относятся опилкобетон, керамзитобетон и т.д.) – актуальны для облегченных монолитов, где нужно добиться уменьшения теплопроводности.

2) Тяжелые бетоны, плотность которых составляет от 2200 до 2500 кг/м3 – выдерживают нагрузки несущих конструкций и фундамента. Классы смеси (В1, В2, В1.5) выбираются в соответствии с тем, какую прочность нужно обеспечить.

В бетон могут вводить разнообразные компоненты для улучшения тех или иных свойств – повышения уровня теплоизоляции, уровня прочности, стойкости к морозу и т.д.

Теплопроводность итоговой конструкции зависит от наполнителя – так, максимальный показатель 1.75 Вт/(м•град) демонстрирует бетон без присадок, раствор с щебнем или гравием показывает 1.51 Вт/(м•град), со шлаком, песком или силикатами обеспечивает 0.3-0.81 Вт/(м•град). Наилучшие теплоизоляционные характеристики дают специальный теплоизоляционный бетон (0.18) и смесь на основе вулканического шлака (0.2-0.5).

Качество материалов, технология, заливка монолитных железобетонных конструкций регулируется ГОСТом и требованиями СНИП: в указанных документах прописаны разные схемы и изделия, по которым осуществляется заливка бетонным раствором тех или иных элементов зданий и сооружений.

Среда применения

Монолитный железобетон используют в индивидуальном и крупном строительстве, для выполнения самых разных задач – с применением данной технологии строят коттеджи, частные одноэтажные дома, здания с большим количеством этажей, многие другие сооружения. Перед сооружением фундамента, перекрытий, стен обязательно проводят все расчеты, определяют предполагаемые нагрузки, верно выбирают стальную арматуру и состав бетона.

Что сооружают по технологии монолитного железобетона:

  • Ленточный фундамент – обычно укладывают под стены и колонны.
  • Монолитная плита под основанием всего строения – самый простой вариант. Возможны модификации с использованием коробчатых и ребристых плит.
  • Свайный фундамент – актуальный выбор для слабых грунтов.
  • Несущие внутренние и наружные конструкции.
  • Колонны разной формы сечения, использующиеся в качестве вертикальных опор со стенами или вместо них.
  • Производство ребристых, пустотных или сплошных плит монолита для перекрытий с балками.
  • Разнотипные лестничные марши – могут выполняться винтовыми, прямыми, комбинированными.
  • Широкое разнообразие декоративных архитектурных элементов – благодаря хорошей пластичности бетона можно проектировать разные колонны, фронтоны, арки.
  • Туннели – для метро, проложенные под проезжими частями, сложными мостами.
  • Мосты – монолитный железобетон идеален в строительстве таких объектов.
  • Площадки, которые будут выдерживать серьезные нагрузки – испытательные полигоны, аэродромы и другие.

Документы для приемки

Возведение железобетонных монолитов входит в перечень строительных работ и принимается в соответствии с определенными требованиями. С учетом того, что конструкция должна будет выдерживать серьезные нагрузки и несоответствие каких-то параметров установленным может повлечь обрушение зданий, все должно осуществляться в строгом соответствии с правилами и значениями ГОСТ и СНИП.

До заливки зданий из монолитного железобетона обязательно реализуют лабораторный анализ приготовленного бетонного раствора с указанием в акте показателей водонепроницаемости, морозостойкости, средней прочности, выведенной из серии образцов для контроля. Проверяют и стальную арматуру. После выдается акт освидетельствования и приемки, которые выполняются при сдаче готовых промежуточных этапов (не всего здания, этажа или стены).

В акте по приемке монолитного железобетона указывают:

  • Номера рабочих чертежей и осуществленных работ из журналов строительства и авторского надзора
  • Результаты лабораторных исследований
  • Акты приемки предварительных работ (в случае, если они проводились)
  • Геометрические размеры конструкции, данные об отклонениях от плановых
  • Соответствие конструкции СНИП и рабочему проекту
  • Непосредственно освидетельствование с указанием возможных дефектов, оценкой состояния поверхности и т.д.

Расчет монолитных железобетонных конструкций

Самым важным параметром монолитной железобетонной конструкции является величина расчетной нагрузки – речь идет о максимальном значении веса, который в состоянии выдержать плиты (ее собственная масса не считается). Величина определяется в соответствии с: толщиной перекрытия или стены, классом прочности бетона, включением в конструкцию арматурного каркаса.

Так, если пустотная монолитная плита может выдерживать нагрузку, равную 800 кг/м2, то сплошная аналогичная плита из напряженного бетона демонстрирует показатель в 1250 кг/м2. Расчеты проводятся до начала строительства, предполагают тщательные вычисления и учет всех параметров: общие нагрузки, сопротивление деформациям, степень разрушений оснований и т.д.

Если заливается фундамент, то его площадь высчитывают по формуле S > γn F/γc Ro, где:

  • γn – обозначает коэффициент надежности (1.2)
  • F – это нагрузка: вес здания, полезная нагрузка (техника, мебель, люди, отделка), для обычного жилого дома составляет 150 кг/м2
  • γc – коэффициент условий в соответствии с типом грунта: для пластичной глины равен 1.0, для крупного песка 1.2
  • Ro – условный уровень сопротивления грунта, берется из таблицы сопротивлений (там учитываются тип здания и грунта)

После определения величины выбирают значения ширины и длины в соответствии с конфигурацией здания. Глубина основания определяется по справочнику СНИП и таким ключевым параметрам: глубина фактического промерзания (произведение глубины для той или иной местности по нормативам и коэффициента отопления, для зданий отапливаемых коэффициент меньше 1, для неотапливаемых 1.1), уровень залегания грунтовых вод (выше/ниже точки промерзания на 2 метра), тип грунта.

Зная указанные данные, можно определить нужное количество арматуры, бетона и возвести прочную монолитную железобетонную конструкцию.

Принцип работы арматуры в монолитных ж/б конструкциях

Арматура в монолитном железобетоне – это стальные прутья определенного диаметра, связанные в несколько слоев по всему периметру конструкции, которые полностью заливаются бетонным раствором и призваны повысить прочность бетона и его стойкость к растяжению. Выбор диаметра стальных прутьев зависит от предполагаемых нагрузок и особенностей зданий, типа элементов и т.д.

Балки

Монолитные железобетонные балки устраивают для соединения отдельностоящих элементов вместо монолитных ленточных фундаментов. Такие балки опираться на фундамент могут двумя способами – лишь концами (когда зона растяжения проходит по нижней половине балки, где закладывается рабочая арматура) или на нескольких фундаментах, стоящих отдельно (зоны растяжения меняются, места укладки в соответствии с этим корректируются).

Монолитная плита

Представляет собой монолитное основание, когда из прутьев арматуры формируется железная сетка, ее вяжут в шахматном порядке между стержнями специальной вязальной проволокой. Часто собирают две сетки, которые располагают внизу и вверху плиты.

Диаметр арматуры и количество прутьев определяют в соответствии с предполагаемыми нагрузками, рассчитывая до начала работ.

История возникновения

Железобетон появился во второй половине девятнадцатого столетия, в 1850-1885 годах, когда Ламбо во Франции и Уилкинсон в Британии, а также Гнатт в США начали применять самые первые изделия из монолита. Далее железобетон активно эксплуатировали в Германии, США, Франции, Великобритании, России для строительства стен, путепроводов, мостов, фортификационных сооружений.

Но наибольшее распространение монолитный железобетон получил в начале двадцатого столетия, когда было создано фундаментальное учение про материал, определившее его преимущества и доказывающее прекрасную стойкость при пожарах. Сегодня монолитный железобетон используется повсеместно, что объясняется его эксплуатационными характеристиками и свойствами.

Процесс заливки бетонных конструкций

Монолитный и сборный железобетон выполняются в точном соответствии с технологией. Обязательно нужно уделить внимание каждому из этапов создания конструкции, чтобы добиться нужных параметров и свойств.

Возведение опалубки

Создание монолитной железобетонной конструкции начинается с монтажа опалубки, которая не позволит растечься жидкому раствору и будет опорой бетону на всех этапах застывания.

Какие бывают виды опалубки:

  • Щитовая разборная – включает несколько отдельных блоков для жесткости, может изготавливаться самостоятельно на объекте.
  • Блочная – используется для единой заливки не одной, а сразу нескольких стен без перекрытий с несущей конструкцией.
  • Пневматическая – с прочной оболочкой, пропускает воздух, ее делают для сложных полостей маленьких объемов.
  • Объемно-переставная – для монтажа монолитных перекрытий, стен в многоэтажках, сооружается с привлечением крана.
  • Скользящая – используется для создания многоэтажек, устанавливается по периметру, в процессе застывания монолита на разных уровнях постепенно поднимается вверх домкратами.
  • Несъемная – для выполнения декоративной отделки.
  • Туннельная – для заливки раствором двух стен с перекрытием.

Создание опалубки при возведении конструкции – один из самых простых этапов строительства. Важно правильно укрепить щиты, проверять ровность строительным уровнем, выбирать достаточно жесткие и надежные материалы, чтобы конструкция не деформировалась под воздействием веса раствора.

Приготовление раствора

После монтажа опалубки готовят раствор, который для заливки монолитного железобетона должен включать такие компоненты: часть цемента марки минимум М350, 2 части просеянного мелкого песка, 3 части наполнителя (щебень, гравий), вода в достаточном количестве для получения раствора нужной консистенции. Сначала смешивают все сухие субстанции, только после тщательного перемешивания по чуть-чуть добавляют воду.

Для улучшения характеристик раствора в него добавляют моющие средства (чайная ложка средства против жира на ведро жидкого бетона увеличит прочность, уменьшит усадку), клей ПВА (200 миллилитров на ведро для улучшения текучести и повышения адгезии материалов), жидкое стекло (для повышения термостойкости и ускорения схватывания на начальных этапах заливки).

Цементный раствор можно готовить в бетономешалке самостоятельно или заказывать нужный объем и организовывать его непрерывную подачу к объекту.

Армировка и заливка

Армировочный каркас монолитного железобетона создается из стальных ребристых прутьев разного диаметра. В формировании крупных элементов применяют стержни сечением 15-25 миллиметров, для обычных стен берут сечением до 10 миллиметров. Каркас связывают вязальной проволокой, опускают в опалубку. Арматура должна стоять на специальных фиксаторах на высоте минимум 30-50 миллиметров от поверхности бетона.

После того, как армирование завершено, заливают бетон: постепенно заполняют опалубку, подавая из желоба жидкий бетон. Небольшие объекты заливают за один раз, крупные делят на захватки (по горизонтали) и ярусы (по вертикали). Первым делом заполняют захватки одного яруса, потом последовательно заливают железобетонную конструкцию дальше.

После завершения заливки раствор уплотняется вибрационным инструментом. Сушат бетон, накрыв пленкой, чтобы вода не испарялась быстро и бетон был прочным. Первые дни желательно его периодически брызгать водой для исключения трещин.

Чем отличается фактическая плотность от реальной

При выполнении проекта нужно помнить о существовании разницы между реальным значением плотности и расчетным. Расчетная плотность высчитывается при идеальных условиях. Реальная получается в процессе заливки бетона, когда в сборной или монолитной конструкции может оставаться воздух, создавая полости внутри. От этих полостей можно и нужно избавляться, уплотняя бетон специальными инструментами и методами.

Вибропрессование позволяет существенно улучшить качество монолитного железобетонного изделия, но все равно внутри остается определенный объем воздуха (до 1%), что несколько меняет параметры плотности, но на прочности не сказывается.

Демонтаж конструкций

Для выполнения демонтажа монолитных железобетонных конструкций используют разные материалы и способы.

Методы демонтажа монолитного железобетона:

  • Взрывной – актуален в процессе сноса здания, но опасен и должен выполняться профессионалами
  • Механический – с применением спецтехники и соответствующего инструмента
  • Полумеханический – с использованием электрического и пневматического инструмента (канатная, механическая пила, алмазный бур, отбойный молоток и т.д.)
  • Мини-роботы – для небольших помещений и опасных условий
  • Электрогидравлический способ – гидроклинами, безопаснее взрыва, по воздействию идентичен
  • Комбинированный – используются разные способы, в соответствии с текущими задачами и условиями

Демонтаж выполняют после полной разборки и отключения коммуникаций. Если сносят постройку, обязательно вокруг нее возводят временное ограждение.

Монолитный железобетон используется в современном строительстве повсеместно, что объясняется прекрасными характеристиками прочности, надежности, долговечности, другими плюсами. Монолит из бетона и стальной арматуры актуален при возведении самых разных зданий и элементов. При условии правильного выполнения всех этапов, соблюдения технологии и использования в работе лишь качественных материалов железобетон монолитный демонстрирует прекрасные свойства и позволяет создавать самые разные конструкции.

Монолитный железобетон: достоинства и недостатки

Строительство с помощью монолитного железобетона имеет свои преимущества и недостатки, которые следует учитывать при составлении проекта. Методика занимает лидирующие позиции среди других представителей своего класса. Минимизация шовных стыков повышает прочность конструкции. Однако это приводит проблемам, которые потребуют дополнительных затрат при строительстве.

Что собой представляет?

Строительство, использующее монолитную технологию, имеет ряд приемов, которые отличают метод от других технологий. Здание, выполненное этой техникой, бывает:

  • Монолитно-каркасное. Первоочередно, в заводских стенах изготавливается «скелет» дома, а потом по частям собирается на стройплощадке.
  • Кирпично-монолитное. Строение заливается непосредственно на месте, после установки опалубки и арматуры.

Какие преимущества у методики?

При выборе материалов, для постройки, рекомендуется изучить все их особенности или обратиться за консультацией к профессиональным строителям. К главным достоинствам монолитного железобетона относятся:

  • высокая огневая выносливость;
  • отсутствие необходимости в дополнительной технике;
  • простота использования;
  • технологическая идентичность для разных уровней строительства;
  • минимальная затрата рабочей силы;
  • устойчивость к коррозии и окислению;
  • прочность конструкции;
  • минимальные денежные расходы;
  • разнообразие строительных элементов.

Самоуплотняемость

Особенностью материала является самоуплотнение, поэтому влага не вызывает в нем разрушений.

Химический состав железобетона, разработанный специалистами, позволяет повышать свою прочность. Воздействующая на строительный материал влажность не вызывает в нем разрушений, а, наоборот, способствует еще большему уплотнению. За счет этой особенности конструкции, выполненные из монолитного железобетона, выделяются своей надежностью, которая повышается при эксплуатации.

Устойчивость и прочность

Использование цельного материала в строительстве позволяет снизить количество стыковых участков. Благодаря этому здание способно вынести повышенные механические нагрузки, которые возникают в процессе эксплуатации. Стены и основание, которые залиты монолитным раствором из цемента, песка, воды и внутреннего армирования, отличаются повышенной прочностью.

Не окисляется

После возведения армирующего каркаса, его заливают монолитной железобетонной смесью. Благодаря бетонному слою, которым ее покрывают, срок службы постройки увеличивается в несколько раз. Ингредиенты, которые используются при замешивании раствора, вызывают значительную реакцию щелочи. Протекающий процесс оберегает стальные части от возможного окисления.

Не поддается коррозии

Дефекты в скрепляющей смеси железобетона приводят коррозии металлических конструкций.

Деформация и разрушение металлических сооружений происходит из-за влияния определенных химических процессов. Состояние монолитного железобетона ухудшается при разрушении застывшей скрепляющей смеси. Это приводит к ненадежности постройки, что может вызвать аварийную ситуацию. Избежать нежелательных осложнений можно с помощью специализированной разновидности цемента.

Недостатки  монолитного подхода

Каждый строительный материал обладает не только положительными характеристиками. При строительстве важно знать слабые его стороны. Это поможет заранее подготовиться к решению возникающих задач. К главным минусам монолитного железобетона относятся:

  • проблематичный демонтаж;
  • потребность в прочном основании;
  • высокая вероятность деформации;
  • дополнительная теплоизоляция;
  • дополнительный уход в период застывания конструкции.

Проффесиональные строители предупреждают, высокая плотность монолитного железобетона требует предварительного моделирования отверстий для инженерных проводок.

Плохо пропускает воздух

Из-за плохой пропускаемости воздуха, на первых этапах строительства необходимо продумать вентиляционную систему.

Одной из главных проблем железобетонных монолитов заключает в плохой проводимости воздуха. При условии использования строительного материала этого типа специалисты заранее продумывают вентиляцию. Она закладывается на первом этапе, поскольку из-за повышенной плотности материала будет сложно проложить дополнительный воздуховод в здании.

Большой вес

Монолитные конструкции отличаются тяжелым весом, что увеличивает финансовые затраты в подготовительный и строительный периоды. При разработке плана проводится геологическое изучение местности. Это требуется для проверки грунта на прочность, поскольку на него будет возводиться мощный фундамент. К этому процессу стоит отнестись серьезно, так как ошибка или скупость могут испортить весь проект.

Необходимость опалубки при использовании

Строительство с помощью бетона требует сооружения опалубки, которая не позволяет ему растечься и потерять форму. Особенно актуально это при возведении сложных архитектурных зданий. Конструкция поддерживает раствор в процессе застывания и формирования его прочности. В зависимости от сложности проекта, рабочие используют различные способы установления опалубки.

Заключение

Возведение железобетонного монолита пользуется популярностью из-за долговечности и повышенной прочности конструкции. Однако стоит учитывать, что здания нуждается в дополнительной вентиляции, крепком фундаменте и дополнительных строительных принадлежностях. За счет этих особенностей, проект получается, с одной стороны, долговечным, с другой — затратным.

Монолитный железобетон в современном строительстве

С каждым годом в строительстве применяются все более усовершенствованные технологии при возведении зданий, применяют новые строительные материалы, которые будут эффективные, долговечные, дешевые. Монолитный железобетон(далее ж/б) в последние годы набирает наибольшую популярность при возведении торговых центров, крупных сооружений и многоквартирных домов, который подразумевает заливку конструкции непосредственно на территории застройки. Такую популярность данный материал получил благодаря надежной прочности при должной технологии, дешевыми затратами на строительные работы по сравнению с другими материалами, а также железобетон обладает экологически чистыми компонентами, которые играют свою роль при сооружении объектов.

К основным достоинствам монолитного железобетона можно отнести несколько факторов:

  1. Огнестойкость конструкции
  2. Простая технология возведения зданий, где можно обойтись без высококвалифицированных рабочих.
  3. Экономичность в строительстве, благодаря быстрым срокам возведения объекта и требуемом небольшого количества рабочих.
  4. Со временем прочностные характеристики бетона лишь увеличиваются, что благоприятно сказывается на сроке службы объекта.

Также хочется отметить, что конструкция из бетона с защитным слоем покрывается поверх армирующей сеткой, в результате чего монолитная железобетонная конструкция значительно увеличивает продолжительность срока службы возводимого здания. Помимо этого, с помощью цементного раствора, в котором добавлены специальные химические вещества , образуется реакция, предохранящая арматуру от окисления и соответственно не поддается коррозии.
Монолитный железобетон, как многие другие строительные материалы обладают целым рядом недостатков, которые в некоторых случаях играют огромную роль для отказа ж/б при возведении здания.

Во первых, монолитный железобетон имеет большой вес, из-за чего вытекают трудности при возведении и демонтаже. В зданиях, где применяется данный вид материала, плохая шумоизоляция, которая приводит к необходимости в изоляции от звукопроводности материала.

При возведении крупного торгово-офисного центра или других масштабных объектов,необходим монтаж фундамента, который сможет выдержать огромную нагрузке свыше. А также будет большая трудоемкость при возведении опалубки, которая необходима, чтобы бетон набрал нужную форму.

Одним из главных недостатков считается то, что при нормальных условиях, бетон набирает необходимую прочность после 28 суток и процесс застывания раствора железобетонный монолит требует тщательного ухода. Также уже при начальном этапе возведения здания требует позаботиться о мощной вентиляции, поскольку данный материал обладает плохой воздухопроницаемостью и соответственно не позволяет стенам дышать. И самый последний важный минус, это очень высокая теплопроводность бетона, которая не сравнится ни с кирпичом, ни с газоблоком.

Это значит, что здание необходимо будет утеплять гораздо сильнее, чем из других строительных материалов. В зимнее время работы с бетоном проводят крайне редко, поскольку в минусовую температуру прочность бетон не набирает и приходится его постоянно прогревать, не допуская замерзания воды. Это очень кропотливая и сложная работа, которая затратит куча времени для обеспечения и контроля необходимой прочности бетона. Затраты на строительство сразу же становятся гораздо выше, поскольку потребуется большое количество оборудования, энергии для прогрева бетона. Поэтому работы с бетоном должны проводиться несомненно в летнее время.

Монолит или сборный железобетон: что выбрать?

Интенсивный рост все новых и новых научно-технологических разработок дает строителям практически неограниченные возможности. Но на первый план выходит проблема выбора – как рационально определить наиболее подходящую вам технологию? Особенно жаркие споры разразились между приверженцами монолитного строительства и защитниками сборных железобетонных конструкций. Высказать свою точку зрения мы попросили представителей Евразия-Групп, которые активно используют и ту, и другую технологию, и могут объективно рассуждать о преимуществах каждой.

Монолит – за и против

Строительство из монолита в последнее время стало особенно активно использоваться. Его задействуют в основном на больших площадках, для возведения, например, торговых центров, многоэтажных зданий различного назначения, логистических терминалов. Параллельно с этим технология пробивает себе дорогу в частное строительство и, надо сказать, успешно с этим справляется. Кому из наших читателей и потенциальных клиентов будет особенно интересна тема монолитного строительства? Тем, для кого особенно важную роль играют архитектурные возможности. Этот материал благодаря своим специфическим качествам способен создавать уникальную по своим формам городскую и загородную архитектуру. Казалось бы, не первостепенная задача для современных застройщиков, ан нет. Одной из причин обострившегося интереса к монолиту мы считаем появление новых видов легких бетонов и несъемной опалубки. Отсюда и очень разные ценовые показатели на монолитное строительство – индустриальная база в разных регионах РФ развита неравномерно. Поэтому на сегодняшний день особенно высокими темпами строительство из монолита идет в Санкт-Петербурге, Москве, Нижегородской, Самарской и Томской областях. Наш город пока в этот список не входит, но имеет серьезное преимущество перед многими другими городами. Дело в том, что большую долю в структуре стоимости монолитного строительства имеет стоимость опалубки, и, как правило, она закупается за границей. А вот у EURASIATM такой необходимости нет – у компании в наличии все необходимые ресурсы и возможности для самостоятельного изготовления опалубки различных типов. Что, как вы понимаете, значительно снижает стоимость объекта из монолита.

Сборный железобетон – за и против

Главное отличие сборного железобетона от строительства из монолита – это изготовление строительных конструкций в заводских условиях при тщательном лабораторном контроле всего процесса. Влияние человеческого фактора на качество изделий сводится к абсолютному минимуму и, наверное, можно отнести это к серьезным преимуществам. Как, впрочем, и быстрый монтаж, не требующий большого количества квалифицированных рабочих на объекте. Благодаря системе пустот железобетонные изделия отлично заглушают шумы, превосходят различные технологии по несущей способности и некоторым другим механическим свойствам. Отметим высокую трещиностойкость, отличную способность сопротивляться динамическим нагрузкам и противостояние коррозийным воздействиям. Но для сравнения с монолитом отметим, что сборный железобетон преимущественно используется для создания унифицированных конструкций.

Что выбрать?

Давайте подведем итоги. Итак, если вам нужен эксклюзив и самовыражение, неповторимый эстетический облик, следует отдать предпочтение монолитному строительству, как более гибкому в архитектуре. Если же в приоритете скорость, требуется качественный и при этом недорогой объект в сжатые сроки, лучше остановиться на более традиционном и проверенном методе строительства из железобетона.

Если вы планируете создание крупной площадки – торгового центра, промышленных и логистических баз, возможно, монолитное строительство будет более целесообразно. Если же речь о небольших площадках, расходы на монолит автоматически становятся неоправданно большими, и здесь явно выгоднее обратиться к железобетонным изделиям. В любом случае, принять правильное решение вам помогут опытные специалисты, которые имели возможность на практике сравнить преимущества и строительства из железобетона и монолитного метода. Вот почему мы рекомендуем обратиться именно в Евразия-Групп.

Монолитный железобетон: технология возведения зданий

В отличие от блочного строительства, при котором используются предварительно изготовленные элементы разной формы и размера, монолитный железобетон заливается в опалубку непосредственно на объекте. При этом детали конструкции получаются целостными, а значит – более прочными и долговечными.

Конечно, данная технология достаточно сложна для реализации, однако в ряде случаев ее применение является не просто оправданным, а единственно возможным. В статье мы постараемся подробно описать методику возведения сооружений из бетонного монолита, а также приведем ряд рекомендаций по организации строительных работ.

Методика заливки в опалубку позволяет возводить самые сложные формы

Анализируем технологию

Общие характеристики

Технология возведения зданий из монолитного железобетона известна, пожалуй, практически столько же, сколько сам материал.

Для нее характерны такие особенности:

  • Все несущие элементы капитальной конструкции возводятся на месте путем заливки жидкого раствора в форму.

Внешний вид конструкции на промежуточном этапе

  • Конфигурация сооружения может быть произвольной, и зависит только от двух параметров: прочности застывшего бетона и возможностей по установке опалубки.
  • За механические характеристики и способность справляться с нагрузками отвечает внутреннее армирование конструкции, которое изготавливается непосредственно перед закладкой из стальных прутков разного диаметра.
  • В зависимости от объема элемента раствор можно готовить на площадке, либо же заказывать отдельно на производстве. Во втором случае существенно возрастает цена, но зато мы получаем возможность осуществлять заливку непрерывно, что радикально повышает качество материала.

Литой фундамент — самая распространенная конструкция

По данной технологии обычно производятся фундаменты зданий. Даже при использовании готовых блоков в качестве опор поверх них специалисты рекомендуют заливать железобетонный монолитный пояс с усиленным армированием для более равномерного распределения нагрузок.

В то же время эту методику можно использовать и для закладки стен, перекрытий, сводов и т.д.: дома из монолитного железобетона, опоры мостов, резервуары и другие сооружения в последнее время строятся весьма активно.

Ключевые достоинства

Если говорить о целостных железобетонных конструкциях, возводимых путем монолитной заливки, то для них характерны такие достоинства:

  • Во-первых, относительно малое количество соединительных швов делает систему весьма устойчивой к механическим нагрузкам. Прочность оснований и стен обеспечивается эффективным сочетанием цементного раствора и внутреннего многоконтурного армирования.

Обратите внимание!
Дом или коттедж из монолитного железобетона является значительно более сейсмоустойчивым, чем аналогичное строение, возведенное по другой технологии.

  • Во-вторых, для зданий характерны все плюсы, которые обеспечивает материал стен и фундамента: бетон не горит, не окисляется, практически не подвержен эрозии и т.д. При правильной эксплуатации сооружение может служить от 150 лет и более.

Железобетонные монолитные колонны отличаются высокой прочностью

  • Если исключить воздействие разрушающих факторов (пожары, подземные толчки, вибрация ит.д.), то со временем прочность материала увеличивается за счет уплотнения бетона и более полной гидратации входящего в состав цемента.
  • Еще одна группа плюсов напрямую связана с технологией строительства: мы можем придать конструкции практически любую конфигурацию, не ограничивая себя формой и габаритами готовых блоков.

Конечно, нужно отметить, что заливка бетонных стен обычно требует привлечения значительных ресурсов, потому ее используют при реализации масштабных проектов. В то же время изготовить монолитный железобетонный гараж может практически каждый, причем по трудозатратам задача не будет слишком сильно превосходить другие технологии.

Минусы и сложности

Естественно, данный метод строительства не является универсальным.

И для него, и для зданий, возведенных с его использованием, характерны такие минусы:

Для здания нужно закладывать мощный фундамент

  • Значительная масса. Под подобное сооружение необходимо закладывать мощный фундамент, поскольку и стены, и перекрытия получаются очень тяжелыми. Да и не любой грунт выдержит нагрузку, потому без геологических изысканий не обойтись.
  • Сами стены отличаются значительной звуко- и теплопроводностью. Практически все жилые и общественные здания из монолитного железобетона требуют дополнительной теплоизоляции.
  • Воздухопроницаемость стен, напротив, считается весьма низкой. Это приводит к нарушению естественного воздухообмена, и потому еще на этапе проектировки необходимо закладывать мощную вентиляцию.
  • У прочности материала тоже есть свой недостаток: конструкции после застывания практически невозможно обработать. Для монтажа незапланированных коммуникаций обязательно требуется алмазное бурение отверстий в бетоне, поскольку обычные перфораторы в большинстве случаев только царапают поверхность.

Обратите внимание!
Демонтаж подобных зданий тоже является весьма проблемным.
Даже для снесения одной стены используется резка железобетона алмазными кругами, и альтернатив этой дорогостоящей методике практически нет.

В процессе демонтажа применяется алмазная резка

  • Что касается самого процесса возведения, то наиболее сложным участком является опалубка. При большом масштабе работ инструкция рекомендует делать ее с запасом прочности, поскольку разрушение даже небольшого участка может надолго остановить процесс заливки.
  • Если сооружение возводится в зимний период, то обязательно требуется прогрев бетона. Принимая во внимание значительный объем материала, расходы можно оценить как весьма существенные: придется тратиться и на провода, и на электроэнергию.

Процесс заливки бетонных конструкций

Возведение опалубки

Железобетонные монолитные резервуары, колонны, своды, стены и фундаменты возводятся примерно по одной технологической схеме. Ниже мы опишем основные ее этапы.

Как мы отмечали выше, одним из главных достоинств монолитного строительства является возможность сооружения сложных архитектурных форм. Естественно, чтобы конструкция получилась такой, как нам нужно, следует использовать соответствующую опалубку.

Фото деревянной щитовой опалубки в готовом виде

Опалубка представляет собой форму, которая ограничивает растекание раствора и обеспечивает ему опору на этапе схватывания и первичного набора прочности. Для возведения горизонтальных, вертикальных, наклонных и других элементов используются разные опалубочные системы, основные типы которых охарактеризованы в приведенной ниже таблице:

Тип опалубки Особенности конструкции и использования
Разборная щитовая Наиболее простая и распространенная разновидность. Состоит из набора отдельных элементов (в зависимости от их размера иногда выделяют мелкощитовую и крупнощитовую опалубку), соединительных блоков и подпорок, которые придают ей жесткость. Применяется для бетонировки конструкций типового размера, обычно легко перемещается и монтируется своими руками или с применением легкой строительной техники.
Объемно-пересатвная Включает в себя несколько П-образных секций, используется для бетонировки стен и перекрытий одним монолитом. Используется в многоэтажном строительстве, монтируется и демонтируется исключительно с помощью автокрана.
Блочная Разновидность объемно-переставной опалубки. Задействуется для одновременной заливки нескольких (чаще всего трех или четырех) несущих стен без перекрытия. Обычно используется в комбинации с крупнощитовой, которая обеспечивает формирование наружных поверхностей.
Туннельная Разновидность, которая может перемещаться в горизонтальной плоскости. Предназначена для заливки двух стен с перекрытием над ними. С использованием туннельной опалубки, состоящей из двух разъемных сегментов, обычно заливаются железобетонные монолитные купола.
Скользящая Применяется в многоэтажном строительстве. Форма устанавливается по периметру сооружения, и по мере затвердения заливаемого бетона поднимается вверх гидравлическими домкратами.
Пневматическая Достаточно новая разновидность, которая представляет собой прочную, но эластичную воздухонепроницаемую оболочку. При использовании опалубка устанавливается внутрь конструкции, после чего в нее нагнетается воздух под избыточным давлением. Позволяет формировать сложные и криволинейные полости относительно небольшого объема.
Несъемная После полимеризации бетона становится частью конструкции. Иногда играет роль теплоизолятора или декоративной облицовки.

Туннельная опалубка для прямоугольных форм

Большинство описанных выше разновидностей используются в промышленном строительстве. Для самостоятельного возведения конструкций применяют щитовые модели с размером детали не более 3м2 и массой до 50 кг. С одной стороны, использование таких систем увеличивает строк работ, но с другой – мы можем обойтись своими силами, не привлекая к строительству тяжелую технику.

Сам процесс монтажа опалубки сложностей обычно не вызывает. Если нужна железобетонная монолитная плита, то под нее выкапывают котлован, вдоль бортов которого устанавливают щиты. Для наземных конструкций важным моментом является укрепление стенок, поскольку значительная масса раствора может их разрушить. Обычно спасаются использованием более толстых щитовых элементов и увеличением числа подпорок.

Система для заливки полукруглых сводов

Приготовление раствора

Когда опалубка выбрана и смонтирована, необходимо приготовить раствор.

Для заливки монолита применяется такое соотношение:

  • Цемент марки не ниже М350 – 1 часть.
  • Песок просеянный – 2 части.
  • Наполнитель (гравий из твердых горных пород) – 3 части.
  • Вода.

Количество жидкости в растворе определяют в каждом случае индивидуально. Лучше всего вначале перемешать до получения однородной массы сухие компоненты, а затем постепенно добавлять в раствор воду, доводя его до консистенции густой сметаны.

Приготовление раствора на объекте

Если вы хотите улучшить эксплуатационные свойства раствора, то в него можно добавить:

  • Моющие средства с антижировым эффектом. Чайная ложка на ведро жидкого бетона существенно снижает его усадку и увеличивает прочность.
  • Клей ПВА. 200 мл на ведро увеличивает текучесть, что существенно облегчает процесс заливки сложных форм. Кроме того, наличие клея в растворе улучшает адгезию между цементом и арматурой.
  • Жидкое стекло. Снижает пористость, ускоряет первичное схватывание, повышает термостойкость.

Обратите внимание!
Избыток жидкого стекла приводит к очень быстрому отвердению материала, потому использовать его при заливке больших объемов не стоит.

Как мы уже говорили, для частного строительства вполне можно готовить цементный раствор в бетономешалке. Если же вы возводите большое здание, то лучше сразу приобрести нужный объем и организовать его непрерывный подвоз к объекту.

Цистерна, готовая к заливке

Армировка и заливка

Параллельно с приготовлением раствора выполняется армировка конструкции:

  • Для изготовления арматуры используются металлические детали различного диаметра. Так, при формировании крупных несущих элементов могут применяться прутки сечением 15-25 мм, в то время как для обычных стен достаточно стального проката до 10 мм.

Опалубка с арматурой

  • Арматурный каркас связывается или сваривается, затем опускается в опалубку. В некоторых случаях горизонтальные закладные вводятся через специальные пазы в опалубочных щитах.
  • Арматура устанавливается таким образом, чтобы она находилась не менее чем в 30-50 мм от поверхности залитого бетона. Делается это как для увеличения прочности конструкции, так и для избегания коррозии.

Обратите внимание!
Параллельно с армированием выполняется монтаж закладных труб, по которым будут проходить коммуникации.
Также, если работы ведутся в зимний период, на этом этапе устанавливается система обогрева бетона.

Схемы армирования вертикальных конструкций

После завершения армирования выполняется заливка раствора:

  • Опалубка заполняется постепенно путем подачи жидкого бетона из желоба.
  • Для оптимизации процесса объект обычно делят на ярусы (вертикальное деление) и захватки (горизонтальное). Вначале заполняются все захватки одного яруса, затем переходят к следующему.

Процесс заливки

  • После заливки раствор уплотняется с помощью вибрационного инструмента.
  • Сушка бетона осуществляется таким образом, чтобы способствовать максимальному набору прочности. Для этого опалубка укрывается, что позволяет снизить теплопотери и уменьшить скорость испарения воды.
  • Демонтаж опалубки осуществляется только после того, как конструкция наберет не менее 50% прочности от значения, предусмотренного в проекте.

Вывод

Строительство коттеджей из монолитного железобетона, несмотря на всю свою трудоемкость, позволяет решать сложные инженерные задачи. Возведенные здания получаются надежными и долговечными, но в то же время, требуют дополнительной отделки для обеспечения комфорта. Более подробно используемые методики показаны на видео в этой статье.

Монолитные железобетонные конструкции: проектирование, правило армирования

Монолитные железобетонные конструкции были впервые применены в России в 1802 году. В качестве материала для армирования использовались металлические стержни. Первым строением, созданным с использованием данной технологии, стал Царскосельский дворец.

Монолитные железобетонные конструкции часто применяются при производстве таких изделий, как:

  • резервуары,
  • стены,
  • перекрытия,
  • фундаменты.

Железобетонные монолитные конструкции позволяют строить здания любой сложности и конфигурации. К тому же эта технология не ограничивается заводскими стандартами. Конструктор имеет невероятно широкое поле для творчества.

Зачем необходимо армирование?

Безусловно, бетон имеет множество преимуществ. Он обладает большой прочностью и спокойно переносит перепады температур. Даже вода и мороз не могут ему повредить. Тем не менее его сопротивление растяжениям находится на крайне низком уровне. Здесь в игру вступает арматура. Она позволяет добиться повышенной прочности ЖМК и сократить расход бетона.

В теории в качестве материала для армирования можно использовать всё что угодно, даже стебли бамбука. На практике же применяется всего два вещества: композит и сталь. В первом случае — это целый комплекс материалов. В основе изделия могут лежать базальтовые или углеродные волокна. Они заливаются полимером. Композитная арматура имеет небольшой вес и не поддаётся коррозии.

Сталь имеет несравнимо большую механическую прочность, к тому же её стоимость относительно невелика. В процессе армирования железобетонных монолитных конструкций используются:

  • уголки,
  • швеллеры,
  • двутавровые балки,
  • гладкие и рифленые стержни.

При создании сложных строительных объектов в основе монолитной железобетонной конструкции укладываются металлические сетки.

Строительная арматура может иметь разную форму. Но в продаже чаще всего можно найти только стержневую. Рифлёные стальные стержни чаще всего используются при строительстве малоэтажных зданий. Низкая цена и хорошее сцепление с бетоном делают их очень привлекательными для потенциальных покупателей.

Стальные стержни, используемые при создании железобетонных монолитных конструкций, в большинстве случаев имеют толщину от 12 до 16 миллиметров. Они отлично защищают структуру от разрывов. Нагрузку, создаваемую при сжатии, компенсирует сам бетон.

Особенности армирования в зависимости от типа устройства фундамента

Когда закладывается фундамент дома очень важно соблюдать правила армирования монолитных железобетонных конструкций. Это позволит избежать множества дефектов и гарантирует долгий срок эксплуатации объекта. Согласно устройству железобетонных монолитных конструкций выделяют три типа фундамента.

Плитный фундамент

При его армировании применяется стержневая рифлёная арматура. Толщина железобетонной монолитной конструкции (плиты фундамента) зависит от количества этажей и материала, используемого при строительстве. Стандартный показатель 15—30 сантиметров.

Важно! Если масса здания невелика, то в железобетонной монолитной конструкции допускается использование сетки с сечением стержней от 6 до 10 сантиметров.

Качественное армирование плитного фундамента должно иметь два слоя. Нижняя и верхняя решётки соединяются посредством подпорок. Они формируют зазор нужного размера.

Главным отличием профессионального армирования железобетонных монолитных конструкций — является полное сокрытие всех элементов стального каркаса. При этом в плиточном фундаменте арматура не сваривается между собой, а вяжется посредством проволоки.

Ленточный фундамент

Устройство данной железобетонной монолитной конструкции состоит из решётки, которая размещается в верхней части и берёт на себе все нагрузки, связанные с растяжением.

Сваривать элементы каркаса крайне не рекомендуется — это уменьшит его прочность. При этом слой бетона, разделяющий стальные элементы и грунт должен быть не менее пяти сантиметров. Это защитит металл от коррозии.

В железобетонной монолитной конструкции очень важно соблюдать правильную дистанцию между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечные элементы используются тогда, когда высота каркаса превышает 150 мм.

Дистанция между соседними стержнями в железобетонной монолитной конструкции не может превышать 25 миллиметров. Углы и соединения дополнительно усиливаются. Это позволяет придать фундаменту большую прочность.

Свайный фундамент

Данная технология используется при возведении строения на пучинистых грунтах. Оптимальная дистанция от ростверка до грунта 100—200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на утеплённость всего дома. К тому же воздушная подушка позволяет избежать образования на первом этаже сырости.

При создании свай используется бетон марки М300 и выше. Предварительно бурятся скважины, в которые вкладывается рубероид. Он также служит опалубкой. Каркас из арматуры опускается внутрь каждого отверстия.

Конструкция каркаса состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Крепление осуществляется посредством проволоки. Минимальный диаметр сваи — 250 мм.

Стены и перекрытия

Эти элементы также требуют особых правил армирования. В принципе они сходны с нормами создания фундаментов, но есть некоторые отличия:

  1. Минимальный продольный диаметры арматуры в стене — 8 мм, максимальный шаг в длину 20 сантиметров, поперечный — 35 см. Сечение поперечной арматуры не менее 25% от сечения продольной.
  2. Перекрытия. Диаметр арматуры определяется расчётными нагрузками. Минимальный показатель восемь миллиметров. Дистанция между стержнями не больше 20 мм.
  3. При создании как стен, так и перекрытий допускается использование сетки.

Нормы армирования для стен и перекрытий отличаются из-за разной степени нагрузок, которые испытывают эти железобетонные монолитные конструкции.

Главное правило армирования

Прочность всей железобетонной монолитной конструкции зависит от связи бетона и арматуры. Необходимо чтобы бетон передавал часть нагрузки стальной арматуре без потери энергии.

Главное правило армирования гласит, что в железобетонной монолитной конструкции не должно быть нарушения связи. Максимально допустимое значение данного параметра — 0,12 миллиметра. Надёжное соединение бетона и арматуры — гарантия прочности и долговечности всего здания.

Важно! Чтобы добиться нужных показателей, необходимо точно соблюдать все нормы строительства, которые указаны в СНиПах, а также внимательно проводить расчёты.

Проектирование

Что такое проектирование?

Проектирование железобетонных монолитных конструкций — это создание чертежей на основе собранных геодезических данных, имеющихся материалов и предназначения здания. Несущую систему монолитного каркасного здания составляют перекрытия, фундамент и колонны.

Задача конструктора правильно рассчитать нагрузки на все элементы и составить оптимальный проект с учётом особенностей грунтов и климатических условий. Сам процесс создания железобетонных монолитных конструкций включает в себя:

  • компоновку;
  • расчёт конструирования второстепенной балки;
  • расчёт нагрузок;
  • расчет перекрытий по предельным состояниям первой и второй группы.

Для упрощения математических расчётов используется специальное программное обеспечение, к примеру, AutoCAD.

Проектировка и расчёт согласно СНиПам

По факту пособие по проектированию монолитных железобетонных конструкций — это и есть СНиП. Это некий свод правил и норм, который содержит стандарты строительства жилых и нежилых зданий на территории РФ. Этот документ динамически обновляется в зависимости от изменений технологий строительства и подходов к безопасности.

СП по монолитным железобетонным конструкциям разрабатывался ведущими учёными и инженерами. СНиП 52-103-2007 касается ЖМК, сделанных на основе тяжелого бетона без предварительного напряжения арматуры. Согласно данному документу различают такие типы несущих элементов:

  • колонные,
  • стеновые,
  • колонно-стеновые.

При использовании железобетонных монолитных конструкций допускается проектировка этажей в разной конструктивной системе несущих элементов.

При расчёте параметров несущих элементов согласно СНиПам учитывается:

  1. Определение усилия, действующего на фундамент, перекрытия и другие элементы конструкции.
  2. Амплитуда вибраций перекрытий верхних этажей.
  3. Расчёт устойчивости формы.
  4. Оценка сопротивляемости процессу разрушения и несущей способности здания.

Данный анализ позволяет не только определить параметры железобетонных монолитных конструкций, но и узнать срок эксплуатации здания.

Особое внимание при проектировании уделяется несущей железобетонной монолитной конструкции. При этом учитываются такие параметры:

  1. Возможность и скорость образования трещин.
  2. Температурно-усадочные деформации бетона при затвердевании.
  3. Прочность ЖМК при снятии опалубки.

Если правильно произвести все расчёты, то созданное изделие прослужит десятки лет даже в самых экстремальных условиях.

Когда рассчитываются параметры несущих ЖМК используются линейные и нелинейные жёсткости железобетонных элементов. Вторые назначают для сплошных упругих тел. Нелинейная жёсткость вычисляется по поперечному сечению. При этом очень важно учитывать возможность образования трещин и других деформаций.

Порядок выполнения строительных работ с ЖМК

Каждая строительная компания старается достичь наилучшей организации производственного процесса. Для этого используются СНиПы и международные стандарты. Тем не менее существует сложившийся порядок работ, который позволяет гарантировать максимальное качество будущей постройки:

  1. Вначале осуществляется расчёт по четырём основным видам нагрузки: постоянная, временная, кратковременная, особая. К примеру, при создании фундамента для агрегатов, создающих сильные вибрации, используются исключительно железобетонные монолитные конструкции.
  2. Геодезическая разведка, составление плана, а также анализ общих показателей.
  3. Определение точек возводимого строения.
  4. Армирование конструкций. Оно бывает двух типов: предварительно напряжённое и обычное.
  5. Монтаж опалубки. Опалубка позволяет создать необходимую форму для будущей железобетонной конструкции. При этом она может классифицироваться по разборности, материалу, назначению и конструкции.
  6. Бетонирование. Есть четыре основных способа заливки бетона: с лотка миксера прямо на опалубку; посредством автобетононасоса; через желоб; при помощи колокола. Для уплотнения бетона применяют вибратор.

Очень важную часть в создании прочной и надёжной железобетонной монолитной конструкции играет уход за бетоном. Всё дело в том, что этот материал может застыть только при определённых условиях. Обычно полное затвердевание бетона занимает около 15—28 суток, если не используются специальные сорта цемента. Чтобы предотвратить испарение влаги в жаркое время года ЖМК поливают водой.

Важно! При работе в холодное время года необходимо специальное оборудование вроде прогревателей. Также не удастся обойтись без утеплителей.

Как проходит монтаж?

Данная технология позволяет экономить на материалах, ведь именно компания застройщик определяет целесообразность использования тех или иных элементов конструкции. Монтаж железобетонных монолитных конструкций проходит прямо на строительной площадке и состоит из таких этапов:

  1. На площадку укладывается материал для армирования. Важно соблюдать нормативные расстояния между элементами каркаса. Это гарантирует равномерность растекания бетона.
  2. Заливается бетон. На этом этапе необходимо следить, чтобы в смесь не попали масляные вещества. Они препятствуют связыванию бетона.
  3. При необходимости устанавливается дополнительное оборудование, ускоряющее сушку.

Железобетонные монолитные конструкции позволяют создавать кривые линии, что делает общую архитектуру здания в разы богаче и насыщеннее.

Итоги

Железобетонные монолитные конструкции позволяют строить здания в минимальные сроки, используя современные сорта бетона. Важным этапом строительства является проектирование. Именно правильные расчёты позволяют создать прочную постройку с длительным сроком эксплуатации.

Железобетонные монолитные конструкции используются как в промышленном строительстве, так и жилищном. Сравнительно небольшая стоимость и прочность делают их незаменимыми в производственных цехах и при возведении многоэтажных зданий.

Теплопроводность бетона (монолитного железобетона)

Монолитный железобетон: характеристики и применение материала

Монолитный железобетон связан с понятием монолитного строительства. Если сборные или монолитно-сборные конструкции выпускаются готовыми, то монолитные стены и фундаменты формируются непосредственно при строительстве. Давайте поговорим о таком материале, его характеристиках, технологии возведения зданий из монолитного железобетона.

Особенности материала

Основным отличием монолитного материала от сборного является способ изготовления. Сборный железобетон – сваи, стеновые панели, лестницы, производятся на заводе в формах и транспортируются на строительную площадку в готовом виде.

Монолитный предполагает иной метод.

  • На первом этапе сооружают арматурный каркас. Поскольку речь идет о несущих конструкциях, то обычно диаметр арматуры составляет 12 мм и больше. Кроме того, используются арматурные сетки, фиксаторы и прочее.
  • Затем вокруг будущей конструкции сооружают опалубку, выполняющую роль формы.
  • Заливают в форму бетон соответствующей марки – шлакобетон, керамзитобетон, тяжелый. Материал уплотняют механическим методом с помощью глубинных или поверхностных вибраторов.
  • Выдерживается необходимое время для отвердевания бетона.

Следующее видео расскажет вам о проверке прочности железобетонной конструкции:

Достоинства и недостатки

Монолитный железобетон имеет свои достоинства и недостатки. Связаны они именно с технологическим процессом. Характеристики же самой конструкции будут зависеть от марки бетона и качества арматуры.

  • Скорость возведения сооружения из бетона намного выше, чем из кирпича или камня.
  • Использование плит позволяет уменьшить толщину стен, а, значит, увеличить площадь квартиры. Монолитные работы позволяют усложнить планировку и отказаться от стандартных схем, так как блоки не привязаны к типовому размеру плит, как при строительстве из сборного железобетона.
  • Монолитная конструкция отличается большой прочностью и выдерживает землетрясение до 8 баллов без разрушения.
  • Минимальное количество или полное отсутствие швов увеличивает теплоизоляцию.

К недостаткам метода относят следующее.

  • Высокая трудоемкость сооружения, так как, по сути, на строительной площадке осуществляется весь производственный цикл, исключая только приготовление бетона, да и то не всегда.
  • Монолитный железобетон требует участия дополнительной грузоподъемной техники, особенно когда речь идет о надземной части здания.
  • Сооружение монолитной конструкции требует больших финансовых затрат.

Технические характеристики

Бетон характеризуется хорошей сопротивляемостью на сжатие, но недостаточной – на растяжение. Нивелировать это свойство и призван металлический каркас из монолитного железобетона, который, в свою очередь, показывает прекрасные результаты при растяжении, но недостаточные при сжатии. Комбинация обоих материалов позволяет при строительстве воспользоваться только достоинствами.

Остальные характеристики конструкций определяет вид бетона.

  • Легкие бетоны – керамзитобетон, опилкобетон и прочее, используются для облегченных конструкций и для уменьшения теплопроводности, так как по этим показателям бетон уступает глиняному кирпичу.
  • Тяжелые бетоны – с плотностью в 2200–2500 кг/ куб.м обеспечивают надежность несущих конструкций и фундамента. Смесь подбирают по кассам – B1, B2, B1,5.

А теперь давайте поговорим про теплопроводность монолитного железобетона. Теплопроводность камня зависит от наполнителя.

  • Максимальной теплопроводностью обладает именно монолитный бетон без присадок – 1,75 Вт/(м·град).
  • Чуть лучше показатели у смеси с добавкой щебня и гравия – 1,51 Вт/(м·град).
  • Показатели материала на песке, шлаках и с добавкой силикатов колеблются от 0,3 до .81 Вт/(м·град).
  • Максимальными теплоизоляционными характеристиками обладает специальный теплоизоляционный бетон – 0,18 Вт/(м·град), а также смесь на вулканическом шлаке – 0,2–0,5 Вт/(м·град), что соответствует показателям керамического щелевого и пустотелого кирпича.

Конструктивное решение монолитного железобетона регулируется ГОСТ и соответствующими требованиями СНиП. В документах указываются возможные схемы и те изделия, которые можно использовать для сооружения тех или иных элементов. По ГОСТ несущая система здания должна составлять единое целое из фундамента, вертикальных опор – стены и колонны, и горизонтальных плит – перекрытия и покрытия.

Стоит отметить, что плиты, по сути, являются уже элементами сборно-монолитного строительства. Однако в документации они также именуются монолитными конструкциями.

Для чего требуется получение монолитного железобетона, какова его область применения, читайте далее.

Среда применения

Конструкции из железобетона на сегодня являются базой строительства, поэтому сферой их применения можно смело назвать все мыслимые строительные работы (строительство частных домов из монолитного железобетона, коттеджей, других зданий и т.п.).

  • Тип фундамента зависит от геодезических условий. Однако основой большинства конструкций является монолитный железобетон.
    • Ленточный фундамент – плиты переменной толщины укладывают под колонны или под стены и колонны сооружения.
    • Монолитная плита под площадью всего здания – наиболее материалоемкий вариант.
    • Плитный фундамент при большой толщине можно модифицировать, если это допускает конструкционная схема. В этом случае используются ребристые и коробчатые плиты.
    • Свайный фундамент – применяют на слабых грунтах.
  • Колонны – выступают вертикальными опорами вместо или вместе со стенами. Сечение зависит от конструкционной схемы: колонны могут быть прямоугольными, круглыми, уголковыми, кольцевыми и так далее.
  • Из монолитного железобетона возводят несущие стены как наружные, так и внутренние.
  • Для перекрытий с балками и без используют сплошные, пустотные и ребристые плиты.
  • Лестничные марши – прямые, винтовые, комбинированные.
  • Декоративные архитектурные элементы – бетон отличается высокой пластичностью при кладке, что позволяет сооружать, арки, фронтоны, декоративные колонны без всяких ограничений.
  • Туннели – под дорогой, мостом и для метро.
  • В сооружении мостов монолитный железобетон незаменим.
  • Площадки, где предполагается высокая нагрузка – аэродром, испытательный полигон и прочее.

Далее вы узнаете, какие требуются документы для приемки монолитного железобетона.

Про технологию строительства зданий из монолитного железобетона расскажет следующий видеосюжет:

Документы для приемки

Сооружение монолитных железобетонных конструкций является частью строительных работ и принимается по мере возведения специальной приемной комиссией.

Обязательным условием является проведение лабораторного анализа готовой бетонной смеси перед заливкой. В акте приема есть соответствующие графы, где требуется указать технические характеристики материала – морозостойкость, водонепроницаемость и среднюю прочность, вычисленную по сериям контрольных образцов.

Проверке также подвергается стальная арматура. При отклонении от норм СНиП материал не может быть использован при строительстве.

Документом для приемки готовой конструкции является акт освидетельствования и приемки. В нем указываются:

  • номера использованных рабочих чертежей;
  • номера проведенных работ из журнала строительства и журнала авторского надзора;
  • акты приемки предварительных работ, если они были;
  • результаты лабораторных испытаний;
  • геометрические размеры конструкции и отклонения их от плановых, если они есть;
  • соответствие рабочему проекту и СНиП;
  • освидетельствование – здесь указываются возможные дефекты, оценивается состояние поверхности и прочее.

Акт приема проводится при сдаче любой промежуточной готовой конструкции, а не в целом стены или этажа.

Расчет монолитного железобетона

Наиболее важной характеристикой монолитной конструкции является величина расчетной нагрузки, то есть, максимум веса, который может выдержать плита без учета ее собственной массы. Определяется величина 3 факторами:

  • толщиной стены или перекрытия;
  • классом бетона – классификация по прочности на сжатие;
  • содержанием арматуры.

Для примера пустотная монолитная плита рассчитана на нагрузку в 800 кг/кв. м. Сплошная плита из напряженного бетона способна выдержать до 1250 кг/кв. м.

Расчеты при возведении многоэтажного здания чрезвычайно сложны, так как включают не только вычисление необходимой расчетной нагрузки, но учитывают и общую нагрузку на фундамент, характер стены – передающей фундамент нагрузку только своего веса или всего этажа, оценку сопротивления разрушению, степень деформации оснований и так далее.

В частном строительстве чаще всего сталкиваются с сооружением фундамента – ленточного или платного, расчеты которого более просты. Для определения площади фундамента, который должен быть чуть больше площади здания, используется формула:

S > γn F/γc Ro, где

  • γn – коэффициент надежности и равен 1,2;
  • F – нагрузка. Включает в себя вес всего здания и полезную нагрузку – мебель, бытовая техника, внутренние сооружения, отделка, люди. В стандартных случаях, если речь идет о жилом доме, полезная нагрузка составляет 150 кг/кв. м. Очевидно, что при облицовке камнем лестницы и полов нагрузка будет намного выше.
  • γc — коэффициент условий, определяется типом грунта. Для крупных песков, например, составляет 1,2, для пластичной глины – 1,0.
  • Ro – условное сопротивление грунта. В данном случае речь идет о мелкозаглубленном фундаменте. Величину берут из таблицы сопротивлений, где учитывается характер грунта и самого здания.

Получив величину, подбирают значения длины и ширины исходя из конфигурации дома.

Глубину основания вычисляют по справочнику СНиП для чего требуется установить три параметра.

  • Глубина фактического промерзания определяется как произведение нормативной глубины для региона и коэффициента отопления. Если зданием будут пользоваться зимой, то есть дом отапливается, то коэффициент будет меньше единицы. В противном случае его принимают равным 1,1.
  • Уровень грунтовых вод определяют самостоятельно, выкопав шурф. Принципиальным является положение воды выше или ниже на 2 м от точки промерзания.
  • По таблице 2 СНиПа 2.02.01-83 с учетом типа грунта и двух полученных величин определяют глубину фундамента.

Объем основания дает возможность вычислить необходимое количество бетона и арматуры.

В завершение мы поговорим про демонтаж монолитного железобетона.

Демонтаж конструкций

Причины демонтажа могут быть разными: перепланировка, изменение всей конструкции, уменьшение нагрузки на какие-то элементы конструкции и прочее. Мероприятие это нелегкое и в любом случае требует много времени и затрат.

Для демонтажа используются различные методы и инструменты. По их характеристикам различают следующие способы:

  • механический – предполагает применение спецтехники и вспомогательных механизмов – клин-молот, например;
  • полумеханический включает пневматический и электрический инструмент – алмазный бур, механическую пилу, канатную пилу, пневматический отбойный молоток;
  • для работы в небольших помещениях используются специальные мини-роботы. Их же применяют для демонтажа в опасных условиях;
  • взрывной способ – применяется при сносе, однако опасен и требует высокой профессиональности;
  • электрогидравлический метод разрешает применение гидроклинов. По степени воздействия он вполне сравним со взрывом, но безопаснее, так как не порождает взрывной волны;
  • комбинированный – объединяет при необходимости разные способы демонтажа.

Демонтаж осуществляется только после отключения и разборки любых инженерных коммуникаций. Если речь идет о сносе постройки, то обязательным является возведение временного ограждения опасного участка.

Монолитный железобетон составляет значительную часть конструкционных материалов, используемых при строительстве. Уступая сборному методу по скорости, монолитный превышает все известные способы по прочности и надежности сооружений. Подпорные стены из монолитного железобетона, возведение фундаментов — вот лишь малая толика того, что можно сделать при помощи подобного материала.

Следующее видео расскажет вам об одном из новых видов монолитного железобетона:


Какие показатели влияют на коэффициент теплопроводности бетона?

Важную роль при строительстве дома играет теплопроводность бетона. Это свойство указывает на способность строения удерживать тепловую энергию. Показатель изменяется в зависимости от вида и влажности материала. Стройматериал с высокой способностью удерживать тепло позволяет сэкономить на утеплении помещения. Пористые виды бетона чаще используют в качестве утеплителя, но при этом учитывают, что с повышением объема пор в материале происходит ухудшение устойчивости к механическим нагрузкам.

Что это такое?

При строительстве конструкций и домов со значительной нагрузкой на стены лучше выбрать конструкционный вид материала, а потом утеплить его с помощью полистирола.

Коэффициент теплопроводности бетона служит основной характеристикой при выборе теплоизоляционного сырья. Этот показатель указывает на способность стройматериала удерживать тепло внутри помещения. Высокое значение способствует более оперативному охлаждению дома в зимнее время и нагреванию летом. Блоки повышенной плотности быстрее передают тепло, в то время как поросодержащий материал задерживает нагретый воздух внутри сооружения. Поэтому материалы с более пористой структурой чаще всего применяют в качестве утеплителя.

Что влияет на показатель?

От теплопроводности материала, из которого построен дом, зависит микроклимат в нем. При выборе сырья для сооружения стен учитывают все факторы, влияющие на изоляционные способности. Выбрав бетон, как основной стройматериал, рекомендуется учитывать такие показатели:

  • Плотность. Высокое значение свидетельствует о близком расположении молекул материала друг к другу, что способствует более быстрой передаче тепла. Такой бетон является более прочным, но в то же время малоэффективен для утепления помещения. Плотный вид стройматериала требует дополнительных расходов на теплоизоляцию.
  • Пористость. Поризованная структура бетона делает материал неоднородным, что препятствует быстрой передачи тепла. Поэтому большое количество пустот свидетельствует о хороших теплоизоляционных свойствах. Теплопроводность керамзитобетона меньше чем у жестких бетонов в 5 раз. Минусом такого сырья является низкая прочность, что препятствует использованию материала при возведении несущих конструкций.
  • Влажность. Мокрые стены лучше проводят тепло, поэтому дома, построенные на влажном фундаменте без хорошей гидроизоляции склонны к повышению теплоотдачи.

Коэффициент теплопроводности

Значение показателя указывает на объем тепловой энергии, которую материал толщиной 1 м и площадью 1 м2 может провести за 1 секунду. При этом разница температур по обе стороны стройматериала составляет 1 °C. Значение показателя характеризует способность помещения из этого бетона удерживать тепло в зимнее время. Правильно подобранный материал при строительстве жилья позволит сэкономить на оплате за услуги тепла.

Как проводятся расчеты?

Чтобы определить этот показатель пользуются такими формулами:

  • Кауфмана. Применяется для определения коэффициента на сухом бетоне. Выглядит так: λ = 0,0935*(m)0,5*2,28m + 0,025;
  • Некрасова. При изменении влажности и показатель меняется. Поэтому для бетона с влажностью более 3% используют такую формулу: λ = (0,196 + 0,22 m2)0,5—0,14.

Для расчета нужно иметь сведения об исследуемых экземплярах. Знак m обозначает объемную массу объекта, а λ — непосредственно искомый коэффициент. Так как вес различных видов бетона при одинаковом объеме меняется, то и значение показателя также изменяется. Коэффициент теплопроводности керамзитобетона имеет одно из самых низких значений. Поэтому этот материал чаще всего применяют в качестве утеплителя.

Важную роль в строительстве играет влажность бетона, которая сказывается не только на теплопроводности стройматериала, но и его прочностных показателях. Гидроизоляционные мероприятия помогут предупредить такие побочные эффекты.

Утепление и показатели теплопроводности бетона

Сравнительная таблица теплопроводности различных видов материала:

В зависимости от вида стройматериала, используемого при строительстве дома, проводятся дополнительные изоляционные работы. Это приводит к повышению способности стен к удерживанию тепла. Бетон выступает, как самостоятельный стройматериал, который требует утепления, или утеплитель. Во втором случае материал не подходит для строительства несущих конструкций, так как имеет низкую прочность. Как видно из таблицы, теплопроводность монолитного железобетона самая высокая, поэтому из него строят ответственные объекты, а при необходимости повышения теплоизоляционных способностей здания применяют пенополистирол, минвату или керамзитобетон. Поэтому перед строительством дома оценивают возможные пути потери тепла и проводят утепление помещения.

Как определить коэффициент теплопроводности бетона и от чего он зависит?

При выполнении мероприятий по строительству зданий или ремонту ранее возведенных построек важно надежно теплоизолировать стены строения. Для уменьшения объема тепловых потерь и снижения затрат на поддержание комфортной температуры важно ответственно подойти к выбору теплоизоляционных материалов и выполнению тепловых расчетов. Решая задачи, связанные с обеспечением энергоэффективности бетонных строений, необходимо учитывать теплопроводность бетона. Этот показатель характеризует способность проводить тепло и является одной из наиболее важных характеристик.

Как влияет теплопроводность бетона на микроклимат внутри помещения

Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.

Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:

  • существенно сократить тепловые потери;
  • снизить затраты на обогрев помещения;
  • обеспечить внутри здания комфортный микроклимат.

Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:

  • при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
  • снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.

Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат

Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

  • коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
  • тепловое сопротивление строительных конструкций. Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Коэффициент теплопроводности бетона для различных видов монолита

Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м 2 х ºC для наиболее распространенных разновидностей материала.

Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:

  • для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м 3 коэффициент равен 0,14, а при плотности 1 т/м 3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
  • керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м 3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м 3 параметр теплопроводности возрастает до 0,66.

Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:

  • для тяжелого бетона плотностью 2,4 т/м 3 , содержащего щебеночный наполнитель, показатель составляет 1,51;
  • бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
  • керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.

Коэффициент теплопроводности бетона

надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.

Какие факторы влияют на коэффициент теплопроводности железобетона

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

  • структура бетонного массива. При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
  • удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
  • концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.

Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.

Коэффициент теплопроводности железобетона

Теплопроводность бетона и утепление зданий

Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:

  • конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
  • теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.

Таблица теплопроводности строительных материалов: коэффициенты

Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:

  • пенобетон – 25 см;
  • керамзитобетон – 50 см;
  • кирпичная кладка – 65 см.

Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:

  • поверхности пола;
  • капитальных стен;
  • кровельной конструкции;
  • оконных и дверных проемов.

При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.

Как производится расчет с учетом коэффициента теплопроводности бетона

Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м 3 и степенью теплопроводности, равной 0,31.

Алгоритм вычислений:

  • Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
  • Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Заключение

При выполнении проектных работ и осуществлении мероприятий по теплоизоляции зданий необходимо учитывать теплопроводность бетона. Она зависит от структуры, плотности и влажности стройматериала. Понимая определение теплопроводности, и владея методикой расчетов, несложно определить толщину утеплителя для бетонных стен здания. Правильно подобранный теплоизолятор позволит минимизировать тепловые потери, уменьшить затраты на отопление, а также обеспечить поддержание благоприятной температуры.

Что такое теплопроводность бетона, коэффициент теплопроводности монолитного железобетона

При возведении частного дома или проведении утепляющих работ необходимо ответственно подойти к вопросам покупки материалов. Чтобы уменьшить потери тепловой энергии и снизить расходы на обогрев, следует учитывать такой параметр, как теплопроводность бетона. Он определяет способность блоков пропускать тепло и считается важнейшей эксплуатационной характеристикой.

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки. Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.

Коэффициент теплопроводности

В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.

Коэффициент для различных видов монолита

Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:

  1. Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
  2. Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.

При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.

Факторы влияющие на коэффициент

Степень проводимости бетона любой марки определяется множеством факторов. В их числе:

  1. Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
  2. Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
  3. Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.

С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.

Теплопроводность и утепление зданий

Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:

  1. Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
  2. Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.

Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:

  1. Пенобетон — не больше 25 см.
  2. Керамзитобетон — до 50 см.
  3. Кирпичи — 65 см.

Как производится расчет

Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.

Она имеет следующую расшифровку:

  • R — показатель устойчивости к скачкам температуры;
  • p — толщина слоя в метрах;
  • k — Проводимость тепла монолитом.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Таблица показателей

Таблица значений для разных материалов выглядит следующим образом:

МатериалПлотность кг/м³Теплопроводность

Вт/(м/С)

Паро-

проницаемость

Сопротивление теплопередаче
Железобетон25001.690.037.10
Бетон24001.510.036.34
Керамзитобетон18000.660.092.77
Кирпич красный18000.560.112.35
Пенобетон3000.080.260.34
Гранит28003.490.00814.6
Мрамор28002.910.00812.2

Руководствуясь сведениями из этой таблицы, можно подобрать оптимальный строительный материал для возведения надежной и защищенной от холода постройки.

От чего зависит коэффициент теплопроводности бетона: влияние плотности и заполнителей, классификация бетонов, строительство

Способность различных бетонов сохранять тепло в помещении в первую очередь зависит от их плотности или внутренней структуры, то есть, материал делится на классы, например, B20 или В25. К тому же, в состав раствора могут входить различные заполнители, от которых тоже зависит термопередача у готовой продукции.

Обо всём этом мы поговорим ниже, а также продемонстрируем вам по нашей теме видео в этой статье.

Влияние плотности и заполнителей на термические свойства

Диаграмма теплопроводности материалов

Пояснение. Теплопроводностью материала называется его способность переносить внутреннюю энергию от горячих участков к холодным посредством хаотического движения молекул. Данное понятие является противоположностью термическому сопротивлению, которое означает способность верхних слоёв материала препятствовать распространению тепла.

Какие бывают бетоны

Примечание. Бетоном называют искусственный камень, получаемый при размешивании и твердении вяжущего компонента (в данном случае — цемент), воды, песка и более крупного заполнителя (щебень, гравий, керамзит, пластик). Его цена зависит от плотности материала и способа изготовления.

Монолитные ЖБ стены

  1. Бетоны в первую очередь классифицируются по своей плотности, так они бывают: 1) особо лёгкие, где плотность составляет менее 500кг/м 3 ; 2) лёгкие — от 500кг/м 3 до 1800кг/м 3 ; 3) тяжёлые — от 1800кг/м 3 до 2500кг/м 3 ; 4) особо тяжёлые — от 2500кг/м 3 и выше.
  2. Также материал классифицируется по структуре и бывает: 1) крупнозернистым; 2) ячеистым; 3) поризованным; 4) плотным. При этом коэффициент теплопроводности железобетона, который относится к четвёртому классу, является самым высоким и составляет от 1,28 Вт/м*K до 1,51 Вт/м*K, то есть, чем выше плотность, тем легче и быстрее внутренняя энергия (тепло) передаётся на более холодные участки.
  3. Бетоны могут классифицироваться по виду вяжущего вещества:
  • цементные;
  • силикатные;
  • гипсовые;
  • шлакощелочные;
  • полимербетоны;
  • полимерцементные.

Безусловно, полимеры обладают наиболее низкой теплопроводностью, поэтому коэффициент теплопроводности полистиролбетона самый низкий — от 0,057Вт*⁰C до 0,2Вт*⁰C (в зависимости от плотности), то есть, ним можно утеплять помещение.

  1. Ну и, конечно, все ЖБИ классифицируются по назначению и бывают:
  • конструкционными;
  • конструкционно-теплоизоляционными;
  • теплоизоляционными;
  • гидротехническими;
  • дорожными;
  • химически устойчивыми.

Нас в данном случае интересует 2-ой и 3-ий пункты, где ЖБК при сравнительно малой толщине способны обеспечить не только несущую способность, но и сохранить тепло в помещении. Например, коэффициент теплопроводности пенобетона в зависимости от наполнителя (песок, зола) и назначения составляет от 0,08Вт*⁰C до 0,29Вт*⁰C, а коэффициент теплопроводности газобетона, учитывая те же параметры, от 0,072Вт*⁰C до 0,183Вт*⁰C.

Строительство

ЗаполнительМасса (кг/м 3 )Средний коэффициент теплопроводности (Вт/м*⁰C)
Штыкованный бетон (цемент 165кг/м 3 )
Пемза7750,193
Кусковой пористый и доменный гранулированный шлак10450,324
Котельный шлак11900,314
Песок, котельный шлак14500,461
Песок, кирпичный щебень16600,620
Песок, гравий20551,319
Трамбованный бетон (цемент 165кг/м 3 )
Пемза8640,24
Кусковой пористый и доменный гранулированный шлак11400,327
Котельный шлак12580,335
Песок, котельный шлак13400,393
Песок, кирпичный щебень15600,544
Песок, гравий18160,733
Трамбованный бетон (цемент 245кг/м 3 )
Пемза8850,262
Кусковой пористый и доменный гранулированный шлак11650,317
Котельный шлак13000,348
Песок, котельный шлак13750,42
Песок, кирпичный щебень18200,7
Песок, гравий21271,372

Таблица теплопроводности бетонов в сухом виде

Стены из пеноблоков. Фото

Масса (кг/м 3 )Среднее количество ячеек/см 2 (штук)Средний диаметр ячеек (мм)Средний коэффициент теплопроводности (Вт/м*⁰C)
2532210,630,069
282531,280,087
314231,860,101
3682010,640,088
3731610,710,088
366880,970,098
370601,170,102
4151860,660,096
4151230,810,102
420421,380,112
5632840,510,129
5392020,610,11
5591450,710,127
580940,890,14
6113000,490,14
633701,070,154
620221,790,158
9133130,410,217
927580,960,234
956221,53

Таблица теплопроводности пенобетонов в сухом виде

В настоящее время, благодаря изобилию материалов на строительном рынке, при строительстве дома своими руками можно выбрать наиболее «тёплые» элементы для кладки, что в дальнейшем скажется на стоимости эксплуатации (меньший расход энергоносителей для отопительных приборов). Например, коэффициент теплопроводности керамзитобетонных блоков с плотностью 1000кг/м 3 составляет 0,41Вт/м⁰C, что вдвое меньше аналогичного показателя кирпичной кладки!

А вот коэффициент теплопроводности керамзитобетона с плотностью 1200кг/м 3 будет больше — 0,52Вт/м⁰C и так далее, но любой из таких блоков подойдёт для малоэтажного строительства, следовательно, настоящий материал как нельзя лучше подходит для частного сектора.

Конечно, здесь может возникнуть проблема из-за более высокой стоимости, но можно также использовать более дешёвые ячеистые блоки с другим наполнителем из пено-, газо- или шлакобетона. Конечно, очень важно учитывать способность материала впитывать волу — чем она больше, тем хуже, так как мокрая кладка превосходно проводит тепло и в таких случаях потребуется дополнительная лицевая отделка с гидробарьером.

Заключение

При выборе материала для строительства дома вы можете ориентироваться на таблицы, приведенные в этой статье, и это будет для вас инструкция по теплопроводности. Но, тем не менее, для проектировки нужны общие расчёты, где учитывается не только возможность стен удерживать тепло, но также среднегодовая температура воздуха в регионе и вид отопления, которое вы будете использовать при эксплуатации здания.

Монолитный бетон: характеристики, состав, изготовление, применение

Монолитная технология бетонирования сегодня активно применяется при возведении крупных объектов, таких как торговые центры, многоэтажные жилые и административные здания, терминалы, спортивные комплексы, а также для сооружения малоэтажного индивидуального жилья. В монолитном строительстве используют тяжелые и легкие бетоны и два вида опалубки: традиционную съемную и стремительно набирающую популярность несъемную.

Преимущества монолитного строительства

Монолитная технология возведения зданий из бетона позволяет:

  • Строить здания сложных архитектурных форм, в том числе криволинейных. Монолитное строительство активно ведется в Москве, Санкт-Петербурге, Самаре, Томске.
  • Создавать проекты с высокими потолками и большими пролетами.
  • Получать поверхности без швов и стыков, ослабляющих прочность строительной конструкции.
  • Возводить здания любой этажности.

Особенности монолитного строительства со съемной опалубкой

Возведение конструкций из монолитного бетона включает опалубочные, арматурные, бетонные работы.

Виды съемной опалубки

  • Деревянная. Для ее изготовления применяют пиломатериалы из древесины хвойных пород с естественной влажностью. Доски сколачивают в щиты. Вариант – водостойкая ламинированная фанера. Такой вид опалубки отличается низкой теплопроводностью, небольшой массой, простотой демонтажа, благодаря малым силам сцепления с бетонной смесью. Недостатки – гигроскопичность, слабая сопротивляемость деформациям, ограниченная оборачиваемость, невысокий эксплуатационный период.
  • Металлическая. Обычно ее изготавливают из «черной» углеродистой стали Ст3 в цехе по производству металлоконструкций. Стороны, которые соприкасаются с бетонной смесью, покрывают особой смазкой, облегчающей процесс демонтажа, противоположные поверхности окрашиваются. Все элементы опалубки маркируются. Преимущества – длительный эксплуатационный период, оборачиваемость от 50 раз, жесткость, устойчивость к деформациям. Недостатки – большая масса, теплопроводность и высокая стоимость.

Наиболее популярна, особенно в частном строительстве, деревянная опалубка. Правила установки опалубочных элементов зависят от вида строительной конструкции.

Арматурные работы

Для повышения устойчивости бетона к различным нагрузкам бетонные элементы усиливают арматурной сталью, которая разделяется на горячекатаные стержни (с гладкой поверхностью и периодическим профилем) и холоднокатаную проволоку (гладкую и периодического профиля).

Бетон, усиленный арматурной сталью, называют железобетоном. По назначению арматуру делят на рабочую, распределительную, монтажную. Арматура может располагаться штучно или соединяться в арматурные сетки и каркасы. Стержни и проволоку в сетки и каркасы соединяют связыванием или сваркой.

Бетонные работы

Основные этапы бетонных работ: изготовление бетонной смеси на месте строительства или ее доставка с бетонного завода, заливка в опалубку, обеспечение условий твердения, гарантирующих набор марочной прочности.

В общем случае для возведения стен, устройства фундаментов и плит перекрытия используется тяжелый бетон, в состав которого входят:

  • Вяжущее, чаще всего портландцемент марок М400 и М500.
  • Мелкий заполнитель – песок очищенный, карьерный или речной.
  • Щебень – гранитный, гравийный, известняковый.
  • Вода – из питьевого трубопровода или проверенная на качество в лаборатории.
  • Добавки – для обеспечения требуемых свойств пластичности продукта или отвердевшего бетонного элемента.

В рядовом монолитном строительстве для сооружения фундаментов, стен, покрытий и перекрытий чаще всего применяют бетон марок М200, М250, М300, которым соответствуют классы прочности В15, В20, В25. Пропорции компонентов зависят от требуемого класса прочности и марки вяжущего.

Таблица состава тяжелого бетона для монолитного строительства при использовании цемента марок М400 и М500

Пропорции компонентов Ц:П:Щ:В по массе

Расход компонентов на 1 м 3 , кг

В малых объемах бетонная смесь изготавливается на месте строительства с использованием бетономешалок. Большие объемы пластичного строительного материала заказывают на бетонном заводе. Смесь доставляют на место автобетоносмесителями или бетононасосами, если планируется укладка бетона в сложнодоступные места. Во время транспортировки пластичную смесь защищают от осадков, в летнее время – от жары, в зимнее – от замерзания. Смесь укладывают с уплотнением, необходимым для ликвидации воздушных пазух. Чаще всего для уплотнения используются электромеханические вибраторы.

После укладки смеси в опалубку начинается процесс твердения. Для обеспечения нормативных условий требуется:

  • В летнее время защищать бетонную поверхность от ярких солнечных лучей и слишком быстрого высыхания под воздействием ветра.
  • В зимнее время обеспечивать нормальные условия твердения до набора минимум 50% нормативной прочности. Этого добиваются с помощью утепления конструкций теплоизоляционными матами, шлаком, опилками. Для зимнего бетонирования в смесь добавляют противоморозные добавки, прогревают ее перед укладкой в опалубку, используют способ электрического прогрева.

Опалубку снимают в последовательности, которая указывается в проектной документации. Перед снятием опалубки открытые бетонные поверхности осматривают и простукивают. В слабых местах при простукивании молотком раздается глухой звук, а при увеличении силы удара на бетонном элементе остаются вмятины.

Особенности монолитного бетонирования с несъемной опалубкой

Монолитный бетон в несъемной опалубке – достаточно новая строительная технология, получающая все большее распространение. Чаще всего для осуществления такого строительства используется пенобетон. Это легкий ячеистый материал, получаемый в результате твердения смеси из вяжущего, песка, воды и пенообразователя. Структура пористая, поры закрытые, что обеспечивает достаточно высокую влагостойкость. В зависимости от вида используемой опалубки, применяют пенобетон различной плотности – D250-D800. Пенобетон должен быть хорошего качества, иначе застывшую внутри опалубки смесь заменить будет невозможно. Целесообразно приобретать готовый пенобетон у проверенных производителей. В его состав входят:

  • Портландцемент марок М400 Д0 (без минеральных добавок) или М500 Д0 первой группы активности при пропаривании. Если партия цемента имеет вторую или третью группу активности, что можно выяснить только с помощью лабораторных испытаний, количество цемента в смеси увеличивают в соответствии с рекомендациями специалистов.
  • Очищенный речной песок с модулем крупности 1-2,5 мм. Присутствие глины недопустимо, поскольку она снижает прочность затвердевшего пенобетона.
  • Пена. Концентрат должен соответствовать типу генератора.
  • Вода. Она должна быть чистой, а ее температура – соответствовать температуре пенообразователя.

Вид несъемной опалубки выбирается, в зависимости от этажности дома и климатических условий региона, в котором ведется строительство. Наиболее популярны:

  • Несъемная кирпичная опалубка – наиболее надежный вариант, используемый даже в многоэтажном строительстве. Кирпич – прочный строительный материал, поэтому в этом случае берут теплоизоляционный пенобетон низкой плотности. Кирпичная кладка может выполнять роль двусторонней опалубки (колодцевая кладка) или односторонней. Во втором случае функции внутренней опалубки выполняет листовой материал высокой прочности и жесткости.
  • Облегченный вариант. В этом случае используются листовые материалы – цементно-стружечные плиты, фанера, ОСП, влагостойкие и пожаростойкие листы ГВЛ.
  • Специальные системы для несъемной опалубки из пенополистироловых пустотелых блоков. Строители их называют лего-блоки. Они не могут служить фасадной облицовкой, но обеспечивают прекрасные теплоизоляционные характеристики.

Монолитные бетонные конструкции: проектирование, армирование правил

Монолитные железобетонные конструкции впервые были применены в России в 1802 году. В качестве материала для армирования использовались металлические стержни. Первым сооружением, созданным по этой технологии, стал Царскосельский дворец.

Монолитные бетонные конструкции часто используются при производстве таких изделий как:

  • танков,
  • стенка,
  • потолок,
  • фундаментов.

Монолитные железобетонные конструкции позволяют возводить здания любой сложности и конфигурации. К тому же эта технология не ограничивается заводскими стандартами. У дизайнера невероятно широкое поле для творчества.

Конечно, у бетона много преимуществ. Он обладает большой силой и спокойствием при перепадах температур. Даже вода и мороз не могут ему навредить. Однако его устойчивость к растяжению находится на очень низком уровне. Здесь вступает в игру приспособление.Это позволяет добиться высокой прочности и IMC для снижения расхода бетона.

Теоретически в качестве материала для армирования можно использовать что угодно, даже бамбук. На практике используются всего два материала: композит и сталь. В первом случае — это набор материалов. В основе изделия может лежать базальтовое или углеродное волокно. Они наполнены полимером. Композитная арматура имеет небольшой вес и не подвержена коррозии.

Сталь имеет гораздо большую механическую прочность, к тому же ее стоимость относительно невысока.В процессе армирования железобетонных монолитных конструкций используются:

  • углы,
  • каналов,
  • двутавр,
  • штанги гладкие и рифленые.

При создании сложных строительных объектов в основе монолитных железобетонных конструкций из штабелированной металлической сетки.

Строительная фурнитура бывает разной формы. Но в продаже часто можно встретить именно удочку. Стальные рифленые прутки часто используются при строительстве малоэтажных домов.Низкая цена и хорошее сцепление с бетоном, что делает их очень привлекательными для потенциальных покупателей.

Стальные стержни, применяемые при создании железобетонных монолитных конструкций, в большинстве случаев имеют толщину от 12 до 16 миллиметров. Они отлично защищают конструкцию от взрывов. Нагрузка при сжатии компенсирует сам бетон.

При закладке фундамента дома очень важно соблюдать правила армирования монолитных железобетонных конструкций.Это позволит избежать множества дефектов и гарантирует долгую эксплуатацию объекта. По конструкции железобетонных монолитных конструкций различают три типа фундамента.

Фундамент перекрытия ↑

При армировании используется гофрированная арматура. Толщина бетонной монолитной конструкции (плиты фундамента) зависит от этажности и материала, использованного при строительстве. Стандартная ставка 15 и 30 сантиметров.

Важно! Если масса постройки небольшая, то в железобетонной конструкции допускается использование сетки с сечением стержней от 6 до 10 дюймов.

Качественное армирование плитного фундамента должно состоять из двух слоев. Верхняя и нижняя решетки соединены подпорками. Они образуют щель нужного размера.

Основное отличие профессионального армирования железобетонных монолитных конструкций — это полное скрытие всех элементов стального каркаса.При этом в плитке фундаментная арматура не сваривается, а проходит сквозь проволоку.

Ленточный фундамент ↑

Устройство данной железобетонной монолитной конструкции состоит из сетки, которая размещается вверху и принимает на себя всю нагрузку, связанную с растяжением.

Сварку элементов каркаса не рекомендуется — это снизит его прочность. Слой бетона, разделяющий стальные элементы и грунт, должен быть не менее пяти сантиметров.Это защитит металл от коррозии.

В монолитных железобетонных конструкциях очень важно соблюдать правильное расстояние между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечины используются при высоте рамы более 150 мм.

Расстояние между соседними стержнями в монолитной железобетонной конструкции не может превышать 25 миллиметров. Углы и стыки еще больше усиливаются. Это позволяет придать фундаменту большую прочность.

Свайный фундамент ↑

Данная технология применяется при строительстве сооружений на пучинистых грунтах. Оптимальное расстояние от ростверка до почвы 100-200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на планету дома. Кроме того, воздушная подушка позволяет избежать образования на первом этаже сырости.

При создании свай использован бетон марки М300 и выше. Предварительно пробурена скважина, в которую заделан рубероид.Он также служит опалубкой. В каждое отверстие опускается каркас арматуры.

Конструкция рамы состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Приставка через провод. Минимальный диаметр ворса — 250 мм.

Стены и перекрытия ↑

Эти элементы также требуют специальных правил усиления. В принципе они похожи на правила фундаментов, но есть некоторые отличия:

  1. Минимальные диаметры продольной арматуры в стене — 8 мм, максимальная длина ступени 20 см, сечение — 35 см. Поперечная арматура составляет не менее 25% от сечения продольной.
  2. Потолок. Диаметр арматуры определяется расчетными нагрузками. Минимальная скорость восемь миллиметров. Расстояние между стержнями не более 20 мм.
  3. Стены и потолки допускают использование сетки.

Правила армирования стен и перекрытий различаются из-за разной степени нагрузок, испытываемых данной железобетонной монолитной конструкцией.

Прочность всей железобетонной конструкции зависит от связи бетона и арматуры.Вы хотите, чтобы бетон передавал часть нагрузки стальной арматуры без потери энергии.

Главное правило армирования гласит, что в железобетонном строительстве не должно быть нарушения коммуникаций. Максимальное значение этого параметра — 0,12 мм. Надежное соединение бетона и арматуры — залог прочности и долговечности всего здания.

Важно! Для достижения желаемых показателей необходимо точно соблюдать все правила строительства, указанные в СНиПах, а также тщательно проводить расчеты.

Что такое дизайн? ↑

Проектирование железобетонных монолитных конструкций заключается в создании чертежей на основе собранных данных изысканий, имеющихся материалов и назначения здания. Несущая система монолитного каркаса застройки этажей, фундаментов и колонн.

Задача проектировщика рассчитать нагрузки на все элементы и составить лучший проект с учетом особенностей почвенно-климатических условий. Процесс создания железобетонных монолитных конструкций включает:

  • макет;
  • расчет конструкции второстепенной балки;
  • расчет нагрузок;
  • расчет балок предельных состояний первой и второй групп.

Для упрощения математических расчетов используется специальное программное обеспечение, например AutoCAD.

Устройство и расчет по СНиП ↑

По сути инструкция по проектированию монолитных железобетонных конструкций — это СНиП. Это свод правил и норм, который содержит стандарты строительства жилых и нежилых зданий на территории Российской Федерации. Этот документ динамично обновляется в зависимости от изменения технологии строительства и подходов к безопасности.

СП на монолитные железобетонные конструкции разработана ведущими учеными и инженерами. СНиП 52-103-2007 на ИМК, изготовленные на основе тяжелого бетона без предварительного напряжения. Согласно этому документу различают следующие типы опорных элементов:

  • колонка,
  • стенка,
  • колонна-стенка.

При монолитных железобетонных конструкциях допускается проектирование перекрытий в различных конструктивных системах несущих элементов.

При расчете параметров несущих элементов по СНиП учитывается:

  1. Определение усилия, действующего на фундамент, перекрытия и другие элементы конструкции.
  2. Амплитуда колебаний плит верхних этажей.
  3. Расчет устойчивости.
  4. Оценка устойчивости к процессу разрушения и несущей способности здания.

Этот анализ позволяет не только определить параметры монолитных бетонных конструкций, но и проверить срок службы здания.

Особое внимание уделяется проектированию несущей железобетонной монолитной конструкции. При этом учитываются следующие параметры:

  1. Способность и скорость взлома.
  2. Температурно-усадочная деформация бетона при застывании.
  3. Прочность IMC при снятии опалубки.

Если правильно произвести все расчеты, произведенный продукт прослужит десятилетия даже в самых экстремальных условиях.

При расчетах параметры несущей были установлены с использованием линейной и нелинейной жесткости бетонных элементов. Второй назначают для сплошных упругих тел. нелинейная жесткость рассчитывается в поперечном сечении. Очень важно учитывать возможность появления трещин и других деформаций.

Каждая строительная компания старается добиться лучшей организации производственного процесса. Для этого нужны ножницы и международные стандарты. Однако существует установленный порядок, обеспечивающий максимальное качество будущей постройки:

  1. Сначала расчеты ведутся по четырем основным типам нагрузок: постоянным, временным, кратковременным, специальным.Например, при создании фундамента для агрегатов, генерирующих сильную вибрацию, используется исключительно монолитная железобетонная конструкция.
  2. Геофизические исследования, планирование и анализ общих показателей.
  3. Определение возводимого сооружения.
  4. Арматурные конструкции. Он бывает двух видов: преднапряженный и условный.
  5. Установка опалубки. Опалубка позволяет создать необходимую форму будущим бетонным конструкциям.Пока его можно классифицировать по размерам, материалу, назначению и конструкции.
  6. Бетонирование. Есть четыре основных способа заливки бетона тарельчатой ​​мешалкой прямо в опалубку через бетононасос; через желоб с помощью раструба. Для герметизации бетона используйте вибратор.

Очень важную роль в создании прочной и надежной монолитной железобетонной конструкции играет уход за бетоном. Дело в том, что этот материал может затвердеть только при определенных условиях.Обычно полное застывание бетона занимает около 15-28 дней, если не использовать специальные разновидности цемента. Для предотвращения испарения в самое жаркое время года ИМК поливают.

Важно! При работе в холодное время года требуется спецтехника вроде бы по назначению. Также не обойтись без утеплителя.

Как установка? ↑

Данная технология позволяет сэкономить на материалах, поскольку разработчик определяет целесообразность использования тех или иных элементов дизайна.Монтаж железобетонных монолитных конструкций происходит непосредственно на строительной площадке и состоит из следующих этапов:

  1. К участку подойдет материал для армирования. Важно соблюдать нормативное расстояние между элементами каркаса. Это обеспечивает равномерное распределение бетона.
  2. Бетон будет заливаться. На этом этапе нужно следить, чтобы в смесь не попадали маслянистые вещества. Они предотвращают заедание бетона.
  3. При необходимости установлено дополнительное оборудование для ускорения сушки.

Железобетонные монолитные конструкции позволяют создавать изгибы, делая общую архитектуру здания намного богаче и насыщеннее.

Монолитные железобетонные конструкции позволяют в кратчайшие сроки возводить здания с использованием современных разновидностей бетона. Важным этапом строительства является оформление. Правильные расчеты позволяют создать прочную конструкцию с долгим сроком службы.

Монолитные железобетонные конструкции, применяемые в строительстве и жилищном строительстве.Относительно низкая стоимость и долговечность делают их незаменимыми в производственных цехах и при строительстве многоэтажных домов.

Связанные с контентом

Перекрытие железобетонное ребристое монолитное. Ребристое монолитное перекрытие и его использование в частном строительстве

В случае, когда в строящемся доме будет больше одного этажа, вопроса укладки перекрытий избежать не удастся. На него функционально возложена задача — разделить этажи и нести на них полезную нагрузку в виде собственного веса, людей и мебели.Следовательно, их прочность и несущая способность должны быть достаточными, но в то же время крайне желательно снизить их общий вес, так как чрезмерные нагрузки нежелательны ни для стен, ни для фундамента. Для облегчения веса с сохранением прочностных характеристик используются самые разные конструкции, в том числе и так называемые ребристые перекрытия.

Конструктивные особенности ребристого монолитного перекрытия

Разберемся, что представляет собой данный вид строительства и каковы перспективы его использования в частном строительстве.

Ребристые монолитные перекрытия состоят из балок, которые могут идти в одном или двух направлениях, и пластин, соединенных с балками в единую конструкцию (т.е. балки работают вместе с лежащей на них печью). Применяются в строительстве зданий с большими пролетами (промышленные здания, торговые центры, метро, ​​водоохранные, хозяйственные постройки и т. Д.).


двунаправленное ребристое перекрытие

Опалубка для ребристого перекрытия

Применение вместо плоских железнодорожных плит связано с уменьшением расхода бетона при возведении перекрытия и, как следствие, снижением нагрузки на несущие стены и фундамент.Нагрузка на несущие конструкции Здания позволяет архитекторам создавать более интересные конструкции по своему дизайну. Не второстепенным фактором является снижение затрат на заливку бетона и арматуру. Для создания ребристых полов используйте бетон класса B15-B25 и арматуру следующих классов: A240, A300, A400, B500. Выбор класса зависит от выполнения конкретной конструктивной задачи. Изготовление межэтажных плит такого типа ничем не отличается от других. железобетонные конструкции, за исключением принципа использования специальной съемной опалубки.Принципиальная схема И внешний вид конструкции вы можете увидеть на картинке. Это за счет опалубки, которая создается в результате «ребер».

Межэтажное перекрытие По — экологичность в сочетании с экономией.

Мы разобрались с общими понятиями. Теперь поговорим о применимости ребристых монолитных перекрытий при строительстве коттеджей и загородных домов для постоянного проживания. Информации по созданию подобных конструкций своими руками достаточно большой объем.Такое внимание к наличию «нервюр» в межэтажном ж / б перекрытии определяется, прежде всего, желанием сэкономить на его строительстве. Однако стоит Учитывайте следующие моменты:

  • Требуется грамотный расчет конструкции;
  • Строительные компании Предлагают съемную опалубку и стойки, необходимые для изготовления оребренных плит, но заказ на аренду такой опалубки будет стоить намного дороже, чем классическая монолитная плоская плита, что со временем может нивелировать экономию на бетоне;
  • Создание опалубки своими руками (например, из досок или плит OSB) — довольно длительный и трудоемкий процесс, т.е.е. Придется учитывать высокую трудоемкость работы;
  • К тому же внешний вид потолка с балками не впишется ни в какой интерьер. Возможно, в последствии потребуется прострочка гипсокартоном или другими материалами.


Двунаправленное ребристое монолитное перекрытие

Перекрытие по профнастилу

Правильно уложенные перекрытия сделают конструкцию надежной.

Этапы строительства своими руками

Окончательная конструкция ребристого монолитного перекрытия должна представлять собой плиту, идеально ровную сверху, а снизу имеющую балочную армирующую конструкцию.А печь и балки заливаются одновременно, образуя монолитную монолитную конструкцию, отчего она приобретает максимально возможную прочность. Чаще всего самостоятельный монтаж В качестве опалубки используются специальные ящики из ударопрочного пластика. Сделать опалубку можно также из листов пенопласта, склеенных между собой. Их укладывают на специально построенный настил, который сзади к стойкам снизу — это предотвратит отслоение настила с момента заливки бетонной смеси и до ее полного схватывания.На настиле и стойках в целях сохранения леса, который впоследствии будет использован для постройки крыши. Более дорогим вариантом станет инвентарная опалубка.

Отростки, образующие балки, проложены по всей длине арматурного каркаса, состоящего из арматурных стержней диаметром 12-16 мм (в зависимости от предполагаемых нагрузок) и обвязки (примерно 6-8 мм). Вся верхняя плоская часть усилена армирующей сеткой (в 2 слоя) в 10-20 см. Арматура укладывается так, чтобы со всех сторон закрывать защитный слой бетона толщиной не менее 20 мм.После того, как все составляющие будущего перекрытия уложены и надежно закреплены стойками, начинается заливка бетона.



Идеально, чтобы перекрытия, плоскость которых была залита единовременно, поэтому самостоятельное замешивание раствора в бетономешалке крайне нежелательно. Это приведет к тому, что плита не будет иметь одинаковой прочности на всей площади А, следовательно, появятся аварийно-опасные места. Чтобы получить надежное перекрытие с максимальным запасом прочности, используйте покупной бетон, доставляемый на строительную площадку в «миксере» (соблюсти правильную дозировку всех компонентов бетонной смеси достаточно сложно).Таким образом, можно за один раз залить плиту, и получится абсолютно надежно.

Перекрытие под профнастил

К типу ребристых монолитных полов относятся плиты, заливаемые на профнастил, используемые в качестве некоординатной опалубки. Профнастил также работает как внешняя арматура (с грамотным сцеплением с бетоном). Стоит оговориться, что в таком виде плиты обязательно наличие должного армирования. Поэтому теоретические расчеты и подбор материала рекомендуем доверить специалистам в данной области техники.

Выход

Ребристое перекрытие позволяет получить прочную конструкцию, разделяющую перекрытия, с грамотным дизайном и исполнением. Конструктивные особенности позволяют сэкономить строительный материал и облегчить нагрузку на стены и фундамент дома, однако процесс опалубки будет намного сложнее и дороже, чем при других вариантах перекрытия, что также следует учитывать. Такой вариант перекрытия, сделанный своими руками, скоро придет тем, у кого много свободного времени и рабочих.В остальных случаях, на наш взгляд, выгоднее будет приобрести заводские ж / б плиты. А на небольших пролетах более рациональным решением будет просто заливка плоской тарелкой.

Федеральное агентство по образованию

Пермский государственный технический университет

Строительный факультет

Департамент строительных конструкций

Пояснительная записка

ТО срочный проект

Расчет монолитного ребристого перекрытия

Пермь, 2009.

Введение

Монолитное ребристое перекрытие состоит из монолитной плиты, несущей и главной балок, монолитно связанных между собой.

Суть монолитно-ребристого перекрытия состоит в том, что в целях экономии бетона его убирают из зоны растяжения и фокусируют преимущественно в зоне сжатия. В растянутой зоне бетон сохраняется только для размещения работающей растянутой арматуры.

Монолитная печь работает по короткой стороне как многолетняя недробимая балка, опирается на второстепенные балки и монолитно связана с ними.

Вторичные балки воспринимают нагрузку от монолитной плиты и передают ее на основные балки, монолитно связанные с ними.

Основные балки опираются на колонны и внешние стены.

1. Выбор экономичного варианта

1.1 Монолитное перекрытие магистральными балками по зданию

Мощность вторичной балки л. гб = 6600 мМ. ; Пролет основных балок л. gB = 8000 мМ.. Возьмем высоту тарелки ч. pL = 80 мМ. для кв. бП = 11,5 кН / м. 2 и шаг второстепенных лучей 1600 мм. ( рис. Один ).

Рис. 1. «Схема в монолитно-ребристом перекрытии»

.

Возьмем высоту второстепенной балки

.

.

Возьмем высоту дальнего света

.


Рис. 2 «Вырез 1-1. Исходная балка»


Рис. 3 «Вырез 2-2. Вторичная балка

Тогда вес всех основных балок:

Общий вес всего бетона, необходимый для монолитной оребренной печи При размещении основных балок вдоль здания:

3,2 Монолитное перекрытие с главными балками по зданию

Мощность вторичной балки л. гб = 8000 мМ. ; Пролет основных балок л. gB = 6600 мМ. . Возьмем высоту тарелки ч. pL = 80 мМ. для кв. бП = 11,5 кН / м. 2 и шаг второстепенных лучей 1650 мм. ( рис. Четыре ).


Рис. 4 «Схема в монолитно-ребристом перекрытии»

1. Определяем вес бетона, необходимый для печи:

2.Определите вес бетона, необходимый для несущей балки:

Определяем необходимую высоту второстепенной балки:

Возьмем высоту второстепенной балки

.

Определите требуемую ширину второстепенной балки:

Возьмем высоту второстепенной балки

.

Тогда вес всех второстепенных балок:

2. Определите вес бетона, необходимый для основных балок:

Определяем необходимую высоту главной балки:

Возьмем высоту дальнего света

.

Определите желаемую ширину дальнего света:

Возьмем высоту дальнего света

.


Пожалуй, не об одном аспекте строительства нашего дома я не думал так много, как о перекрытии . Во-первых, когда мои познания в матчах этого вопроса были невысокими, я склонился в пользу варианта от очень известного одного из первых поездов , Андре777 . У него до сих пор есть сайт в Интернете, где он уже пишет об устройстве своего дома и участке.

Суть его технологии сводилась к заливке бетонных балок И на них уже отлили печку.

Как можно медленно наливать одну балку, кажется, так проще. Но я уже готовил изрядное ожидание с тизерным фундаментом, я не хотел так бездельничать и стал сторонником других технологий, а именно заливки всего и сразу по максимуму товарным бетоном.

Также андрюхинская технология сильно уступает заливке всего сразу (балки вместе с печкой), теряя большую несущую способность.Печь становится нагрузкой на балки. Балки из-за этого должны иметь большее сечение в поперечном сечении и вообще на выходе, малую несущую способность и большой вес самого пола.

На втором этаже хотели перекрыть деревянные балки. Деревянные перекрытия Это не айс. Очень плохая шумоизоляция. Если потом разобраться с этим вопросом, то это будет намного дороже, чем вы думали.

То ли дело я получил намного позже и в итоге вошел в свой план строительства.Им стал легкий монолитный железобетонный ребристый перекрытие из Winder`A. с Forumhouse. .

Это перекрытие рассчитано для полезной нагрузки 550 кг / м2 везде. Это как раз уже полезная нагрузка за вычетом стяжки, перегородок и собственного веса.

Winder рассчитал перекрытие для разных пролетов. Выбираем схему под свой пролет и вперед. Там вы также можете прочитать километры обсуждения этого совпадения. Это займет не один день, но вы можете скачать руководство (FAQ) с mAX68.2011 , который сэкономит ваше время.

Так как оба перекрытия у нас рибор монолитный из железобетона, то вы имеете ввиду похожие, опишу в одном посте:

  • Перекрытие. Одноразовый, разделенный на две части.
  • Перекрытие первого этажа. Мультиплет.

Имеем пролеты в зоне 3,4 м и 4,4 м. Выше первого этажа немного больше, так как стены уже выросли на 3 475 и 4 475. Поэтому выбирайте схемы под пролет 4м и 4.5 м (ближайший из расчетных ВЕТРОВ). Схема в начале статьи под пролет 4м (арматура Ф12). Для пролета 4,5 м схема такая же, только арматура F14.

Армирование в схемах Windraa рассчитывается для обоих случаев (одноразового или многолетнего).


В нашем доме есть эркер, это дополнительные сложности в плане перекрытия. Если при перекрытии фундамента тут проблем нет, потому что Скарлет идет по периметру зоны самолета, а проблема появляется над затоплением этажей.

Он обратился с этим вопросом к Виндеру, и он мне очень помог.

Было решено, что для эркера требуется балка, которая будет встроена в перекрытие, а также остальные ребра и будет находиться на одном уровне с ними. Ребра монолитного перекрытия будут опираться на эту балку эркера, которая продолжит стену, примыкающую к эркеру.

Winder также рассчитал саму балку Эркера. Оказалось, что если мы хотим, чтобы балка была заподлицо со всем перекрытием, то имеется в виду 23см (21 + встроенный теплый пол), нужно усилить стержни F18 на четыре снизу и четыре сверху.Плюс зажимы (поперечное армирование) от фурнитуры F8 через 15 см.

Эта балка должна опираться на стены не менее 90 см. Поэтому, чтобы в этом месте не было Холодного моста с использованием ЭППС 5 + 2см. Смотрим фото.

Любителям «рисования» материалов не бойтесь использовать Epps на небольших сайтах. Даже если вы закроете ряд газобетонных блоков, влага все равно будет испаряться из закрытых блоков в указанном выше диапазоне.

При использовании встроенного теплого пола высоту перекрытия обычно увеличивают до диаметра трубы ТЦ.Труба располагается между верхом внахлест.

Брали итальянскую трубу TIEMME COBRA-PEX 16х2 мм. До кризиса не намного дороже отечественного Ростема от стоил , Сейчас дороже более чем вдвое 8). С нашими не сравнить, намного жестче и по характеристикам более стоковая. На первом этаже видимо придется поддержать отечественного производителя :).

Начался строительный сезон, так как полагается на заготовки провинции.Вот решил попробовать армейскую пайку русской армии. Очень вкусно.


Вяжем арматурные рамки.

Остался нюанс. Если делать сразу по всей площади, то это многолетнее перекрытие (с упором на среднюю и внешнюю стены), см. Рис. Выше. Если делать детали внахлест. Сначала одна половина внешней стены на внутреннюю, потом вторая, потом это одноразовое перекрытие. Армирование однолетнего и многолетнего перекрытия бывает разным.

Здесь нужно сделать предварительный заказ. Дело в том, что если использовать мультиплетную схему на один пролет, то все будет хорошо, кроме перерасхода арматуры. Схема Windraa такая (универсальная с «защитой от дурака»).

Выбор одноразового или многолетнего перекрытия решается в зависимости от исходной длины вашей арматуры, чтобы поставить ее максимально эффективно и с меньшим количеством обрезки. А также зависит от технологии бетонирования.Может удобнее или иметь возможность заливать бетонные детали, тогда выбираем однопролетный контур.

Также определены места, где можно сломать фурнитуру. При перекрытии фундамента (у нас одноразовое перекрытие) на одной половине дома арматура F12 (пролет 3,4 м), а на другой F14 (4,4 м).


А вот над первым этажом арматура в балках на большом пролете F14 проходит без прорыва через среднюю стену и все равно должна доходить до четверти следующего пролета, но у меня немного короче.Фитинги A500 F12 ведутся на меньшем пролете и связаны с F14.


Пункты от A500 F6 сначала по четверти пролета с каждой стороны идут с шагом 200мм, потом ближе к центру с шагом 400мм (немного сэкономили). Скрученный хомут должен находиться наверху рамы.


Район Эркера. Видна металлическая балка, элементы F18 которой изогнуты в обоих направлениях на стене и связаны с остальной частью рамы.


Чтобы подставки под подлокотники из БП 5мм 100х100 не выполнялись в пенопласт, есть обычные крышки для банок.


На Земле сделали каркасы из арматуры для перекрытия фундамента. При перекрытии первого этажа рамы вяжутся уже на месте.


Довольно утомительное занятие вязать рамки для этого внахлест.


Кадр крупным планом. Все картинки щелкнули, щелкни для увеличения.


Гоночная балка, с другой стороны, входит в стену более чем на метр и связана с общей арматурой. Для холодильной зоны в зоне оппорции используется утеплитель EPPS 5 + 2 см.Места с утеплителем на время заливки армируют досками.


Двойные балки сделаны над лестницей. То есть подкрепления вдвое больше и ширины тоже. Как будто рядом две обычные балки.


Перекрытие фундамента на год. Только что видел несъемную опалубку из газобетона в центре внутреннего ленточного каркаса (фундамента).


Возможен нахлест за расчет 15см. Хотя на таких маленьких пролетах можно и больше (Виндер в пересчете).



Пенопласт и бронетехника сращенная. Поднялся сильный ветер, пришлось скинуть доски. Доски были удалены как разметка сетки первого слоя.


Поднял сетку с БП Ф5ММ с 1 до 2 метров ячейки 100х100мм на второй этаж. Большего на тот момент не было. Удобнее использовать сетку 2 х 3 м. Режем 1,3м х 3м и 0,7м х 3м. Ставим 1,3 м вниз, внахлест два ребра и между ними, и 0,7 м ставим через край. То есть без обрезки и без стыков между ребрами.

Доски плановые, чтобы полиэтилен не порвался над пеной.


Армирование в зоне подъезда двойными ребрами жесткости.


Полная сетка первого ряда. На верхнем листе было сделано минимум полторы ячейки, почти везде удавалось около двух. Лучше поставить больше опор, и тогда масса бетона даже с крышками сильно вдавится в пену.



Многократное перекрытие первого этажа, здесь ребра Армокаркаси проходят по внутренней стене дома.Для обеспечения зазора между сетками нарезают трубу ПНД 25мм. Дешево и эффективно.


Такие кольца крепятся спицами. Проволоку разрезаем пополам, обхватываем стержни нижней сетки, пропускаем кольцо от ПНД и закручиваем по верхней сетке над стержнем.


Люки и отверстия могут быть выполнены в ребристом монолитном перекрытии в любом месте между ребрами .

Схема усиления периметра зависит от расстояния до края.

Фото с трубами теплого пола пока не нашел, добавлю позже.

Опалубка производилась следующим образом.


Очищенная пена Knauf толщиной 10 и 5 см.


Над котлованом подвала стояла горящая балка из четырех досок 100х40, так что опалубка великолепна.

При перекрытии фундамента допускались доски 150х40 по периметру по краю и прикреплялись к маляру. Скрик, я не дышал, в нем уже были шпильки Ф8ММ, которые остались от крепления опалубки оголовья.

На втором перекрытии (первом этаже) такие доски крепились к стенам на саморез 120мм. В одном месте насадки прикручены двумя винтами под разными углами.


Затем на кромку кладем доски 150х40, хотя можно и такие пролеты, чтобы они оказались под ребрами будущего монолитного перекрытия. Поимели их на стальных уголках разной формы, в среднем 100х90х100. Уголки крепились на саморез Ф6мм белый, впоследствии на кровлю и еще куча.


Чтобы бэкапы не уходили при заливке в землю, лег поединки досок.




Спикеры под землей.








Первые блоки несъемной опалубки из газобетона.


Отверстие в опалубке для заполнения доски пола подвала.Заливка производилась одновременно с перекрытием.


Поверхность каркаса (фундамента) сначала оклепали битумной грунтовкой, затем гидроизоляцию лайнером Технониколь.








На среднюю часть решетки (под средней стеной) положить в середину секционные блоки 100x250x625 211 KZHBI SERTOLOO D500, оставшиеся от постройки домика, подведены.Плавно копать вряд ли получится, все убавляет раствор.



При строительстве перекрытия по каркасу, по периметру не снимали опалубку из газобетонных блоков. Б / у AEROC 250x200x625 D500. . Блок перевернули, так что высота стала 200. Вместе со слоем цементной подстанции получилось всего около 21см. Блоки укладывались на летний клей AEROC.


Поверх первого этажа для ребристого монолитного перекрытия также изготовлена ​​несъемная опалубка. GB AEROC 250x150x625 D400 .Блок не перевернулся, т.е.высота опалубки составила 25 см. После укладки в него опалубки по периметру на монтажную пену утеплитель приклеили экструдированным пенополистиролом 50мм.

Также здесь мы решили использовать вариант со встроенным водяным теплым полом (поэтому высота перекрытия увеличивается, а именно где-то на диаметре трубы). Согласно религии классических стяжек с теплым полом так делать нельзя. На большой площади есть разделенные деформационные швы.В соответствии с религией фондов, UCP могут быть получены. Заливают большие площади теплого пола топкой фундамента.

На практике одновременное литье довольно прокатное. Утеплитель в опалубке также выполняет функцию демофора при тепловом расширении бетона перекрытия. Хотя как показывает практика (она почему-то не подтверждает теорию), без демона его бы и не случилось.

Дешевый китаец CMI отлично показал себя в работе, оказался намного удобнее бытового Bosch и до сих пор переносит мои нагрузки.Потом взял перкуссионную дрель CMI за копейку спец на стройку. Чувствуется, что не с точки зрения комфорта, а жестоко по фигуре. Терпеть все мои издевательства

Оффтоп загнал, теперь к делу. Настил насивед 70. Над каждым краем гвоздь. Помните, что вы все равно разбираете эту конструкцию.

Опалубка для формирования нервюр практически полностью взяла на себя мою вторую половину. Для нее использовали пенопласт Knauf. С неясными до конца характеристиками (плотностью).Уложили на него два листа 100мм и 50мм с клипсой по инструкции на край 20мм. Между ребрами жесткости ширина листа пенопласта равна 1 метру.

Пенопласт

ориентирован не на опалубку и между собой тоже. Удерживается за счет полиэтилена, который степлером щедро крепится к деревянной опалубке. Зажим 8мм. В будущем он по-прежнему будет соответствовать по весу Армокаркасу.

Взяли простой не плотный дешевый полиэтилен.Частично использованный полиэтилен из полиэтиленовой упаковки.

При работе с опалубкой могут возникнуть проблемы. У нас они возникли 🙂

  • Пока не будет собран Армокаркас, на пенополиэтилен необходимо положить утяжелители (мы использовали доски и обрезку ГБ), иначе при сильном ветре конструкция пытается улететь.
  • Птицы пробивают полиэтилен и со страшной силой крошат пену. Она умерла с скотчем все это дело, чтобы сделать вид менее нормальным.Пластиковые тарелки подвесили. Их колышки на ветру, что немного улучшает ситуацию, отпугивая птиц.

Заливка перекрытия бетоном.

Раньше все пытался растянуть. Части отгрузки. Сейчас я не сторонник таких методов и вы, конечно, не советуете, если нет особых обстоятельств. Бывает, например, что товарный бетон ни как доставить, то нужно разливать по частям самцы.

Оба рифленых монолитных перекрытия залили товарным бетоном M350 (B25) с помпой (смеситель со встроенным бетононасосом).Хотя перекрытие рассчитывается под марку бетона М200 .

Но сначала более высокая марка уменьшает косяки, если они были — это запас прочности. Во-вторых, некогда ждать месяц, пока бетон наберет нужную прочность.

Бетон марки

М350 наберет необходимую прочность для продолжения строительства в течение недели. В-третьих, производитель может быть маленьким налогом.

Первое перекрытие было наводнено семьей подряд: я, жена и Бат.Заполнить с помощью pumility было очень легко. Я легко справляюсь практически с одной рукой. Это профессионализм водителя, который правил стрелой. Он практически прочитал мои мысли. Так бывает не всегда. Когда мы затопили Скаррет, все хоботы ели вместе. К насосу много водила — торопилась и плохо смотрела на работе.

Так как внутренняя стена тоже опалубка, то взяли шестиметровое укрепление и выровняли поверхность.

На заливку второго перекрытия позвонил друг.Это перекрытие — это уже мультиплет, как именно долго приходилось думать. Сначала хотел вытащить кабель, но не успел. В итоге перед самой заливкой натянули несколько капроновых ниток. Не совсем точно, но это оказалось лучше, чем ничего.

Даджа наверх не использовал. Держать ствол было тяжелее, чем при первом перекрытии, но все равно это намного проще, чем покрасить. Учитывая предыдущий опыт запчастей Лили. Залили сектор, отключили помпу, обыскали.Растаял излишек. Жена пошла раскалывать верх, а мы продолжили заливку следующего сектора.


Когда перекрытие было решено из-за того, что несъемная опалубка из GB выше поверхности перекрытия более чем на 2-3 см, в перекрытии собралась дождевая вода. Для слива проделывались отверстия и вставлялись трубки (отрезки трубы от теплого пола).

Демонтаж опалубки.

На разборку было много времени. В разобранном виде на большие пролеты.Вес пролетов играет на руку. Немного раскололись и детки. Главное не стоять под ней.



Поверхность внахлест гладкая, как стекло.



Ребристое перекрытие в зоне подъезда.

Сначала он черный, что удивило, но оказывается, если он в состоянии исчерпать пленку, она сохнет и становится серой привычной.

Федеральное агентство по образованию

Пермский государственный технический университет

Строительный факультет

Департамент строительных конструкций

Пояснительная записка

К срочному проекту

Расчет монолитного ребристого перекрытия

Пермь, 2009.

Введение

Монолитное ребристое перекрытие состоит из монолитной плиты, несущей и главной балок, монолитно связанных между собой.

Суть монолитно-ребристого перекрытия состоит в том, что в целях экономии бетона его убирают из зоны растяжения и фокусируют преимущественно в зоне сжатия. В растянутой зоне бетон сохраняется только для размещения работающей растянутой арматуры.

Монолитная печь работает по короткой стороне как многолетняя недробимая балка, опирается на второстепенные балки и монолитно связана с ними.

Вторичные балки воспринимают нагрузку от монолитной плиты и передают ее на основные балки, монолитно связанные с ними.

Основные балки опираются на колонны и внешние стены.

1. Выбор экономичного варианта

1.1 Монолитное перекрытие магистральными балками по зданию

Мощность вторичной балки л. vb = 6600 мМ. ; Пролет основных балок л. ГБ = 8000 мМ. . Возьмем высоту тарелки ч. PL = 80 мМ. за кв. Б.П. = 11,5 кН / м 2 и шаг второстепенных балок 1600 мм. ( рис. Один ).

Рис. 1. «Схема в монолитно-ребристом перекрытии»

. , . ,

Возьмем высоту второстепенной балки

. . , . ,

Возьмем высоту дальнего света

.

Рис. 2 «Вырез 1-1. Исходная балка»


Рис. 3 «Вырез 2-2. Вторичная балка

Тогда вес всех основных балок:

.

Общий вес всего бетона, необходимый для монолитной оребренной плиты, когда основные балки расположены вдоль здания:

.

3,2 Монолитное перекрытие с главными балками по зданию

Мощность вторичной балки л. vb = 8000 мМ. ; Пролет основных балок л. ГБ = 6600 мМ. . Возьмем высоту тарелки ч. PL = 80 мМ. за кв. Б.П. = 11,5 кН / м 2 и шаг второстепенных балок 1650 мм. ( рис. Четыре ).

Рис. 4 «Схема в монолитно-ребристом перекрытии»

1. Определяем вес бетона, необходимый для печи:

.

2. Определите вес бетона, необходимый для несущей балки:

Определяем необходимую высоту второстепенной балки:

,

Возьмем высоту второстепенной балки

.

Определите требуемую ширину второстепенной балки:

,

Возьмем высоту второстепенной балки

.

Тогда вес всех второстепенных балок:

.

2. Определите вес бетона, необходимый для основных балок:

Определяем необходимую высоту главной балки:

,

Возьмем высоту дальнего света

.

Определите желаемую ширину дальнего света:


, г.

Возьмем высоту дальнего света

.

Рис.5 «Прорезь 3-3. Вторичная балка

Рис. 6 «Сечение 4-4. Исходная балка»

Тогда вес всех основных балок:

.

Общий вес всего бетона, необходимый для монолитной оребренной плиты, когда основные балки расположены поперек здания:

.
, За окончательный вариант расчета берем монолитную оребренную плиту с основными балками, расположенными вдоль здания.

2. Расчет монолитной плиты

2.1 Заготовка грузов на плиту

Таблица 3.

Имя

Коэффициент надежности

А) напольное исполнение

1. Пластины УРСА.

,

2. Пергамент 1 слой

3.Цементно-песчаная стяжка

,

4. керамическая плитка

,

B) Табличка собственного веса

Выделяем полосу пропускания 1 м. Тогда расчетная нагрузка

.

рис. 7.

Рис. 7. «Продольный разрез пластины. Расчетная схема»

Печь рассчитана как многолетняя неразрезная балка, на которую действует равномерно распределенная нагрузка. (рис.7). Расчетный пролет принимается равным: крайний — расстояние от центра опоры до выступа второстепенной балки, средний — расстояние между второстепенными балками:

; .

Определяем наибольшие моменты возникающие в печи:


; ; .

4.2 Подготовка арматуры в среднем

Для расчета плит выделяем полосу шириной 1 м. Тогда расчетное сечение пластины будет следующим ( рис. Восьмерка ).

В первом приближении беру арматуру от В500 диаметром 6 мм.

Рис. 8. «Расчетное сечение плиты»

— ширина расчетного сечения — расчетная высота сечения; — коэффициент, учитывающий продолжительность работы нагрузки..

По ассортименту подбираем диаметр арматуры и количество стержней: n = 7 стержней арматуры В500 диаметром d = 4 мм для чего

.

Определяем шаг стержней:

.

Рабочие стержни ложатся вдоль пластины в соответствии с осью моментов. Комплектующие штанги Подбираем конструктивно: штанги арматурные В500 диаметром д. = 3 мм с шагом 300 мм.

Наконец, примите сетку S-1:

.

Рис. 9 «Сетка С-1»

4.3 Повторить выбор в крайнем диапазоне

В крайнем пролете, помимо сетки С-1, по пластинам дополнительно скатывается сетка С-2.

Для расчета плит выделяем полосу шириной 1 м. В первом приближении беру вентиль диаметром 6 мм в первом приближении.

.

Определите желаемую площадь фурнитуры:

По ассортименту подбираем диаметр арматуры и количество стержней: n = 4 стержня арматуры В500 диаметром d = 3 мм, для чего

.

Берём шаг прутков конструктивно 200 мм.

Рабочие стержни разрушаются по пластине.

Стержни продольные. Подбираем конструктивно: стержни арматуры диаметром 500 мм d. = 3 мм с шагом 300 мм.

Наконец, примите сетку S-2:

.

Фиг.10 «Сетка С-2»

3. Расчет второстепенной балки

3.1 Уборочные грузы для второстепенной балки

Таблица 4.

) )

Имя

Коэффициент надежности

А) напольное исполнение

1. Пластины УРСА.

,

2. Пергамент 1 слой

3. Стяжка цементно-песчаная

,;

4.Керамическая плитка

,;

Б) вес плиты перекрытия

3. Собственная масса второстепенной балки

Конверты проверок моментов строим по формулам:


; .- середина; — Экстрим.

Итоговые баллы моментов сводятся к Таблице 5.

Таблица 5.

крайний пролет

средний Поли.

Расчетная схема перекрытия представлена ​​на рис.одиннадцать.

Рис. 11. «Расчетная схема перекрытия»

Рис. 12. «Ослепляющие мгновенные моменты, крест сил Эпура»

Вторичная балка рассчитывается как неразборная мультиплетная балка с равномерно распределенной нагрузкой. Расчетный пролет принимается равным: крайний — от центра тяжести опоры до края кромки главной балки; Среднее — это расстояние до света между краями основных лучей.

Определяем наибольшие моменты, возникающие во второстепенной балке:

;
; .

3.2 Выбор нижней арматуры крайнего пролета

Статья представляет собой рассуждение на тему расчета монолитных железобетонных конструкций в различных расчетных комплексах.

Многие проектировщики сталкивались с проблемой расчета монолитных железобетонных плит армированных балок (другие названия: монолитное ребристое перекрытие, балки с поперечным сечением жаровни, балка монолитного перекрытия и т. Д.). С балкой на двух опорах проблем нет — тут все просто: схема расчета, нагрузка, формула, усилие, арматура, трещины. Проблемы возникают при моделировании такой балки (оребрения) в конечно-элементной модели каркаса здания. Многие над ними ломают головы, я тоже ломаюсь. Для получения объективных данных я решил рассчитать такую ​​конструкцию в двух разных программных комплексах: Lira и Microfe.

Исходные данные для задания: перерывы 9 м.Опоры — жестко защемлены с двух сторон. Для чистоты эксперимента собственный вес не учитывается. Модуль упругости материала 29420 МПа. Нагрузка — распределенная по верхней плите 1 т / м 2. Поперечное сечение изображено на рисунке

.

Несколько слов о моделировании этой конструкции в программных комплексах. Начнем с ПК Lira CAPR. Если почитать форумы конструкторов, то практически везде можно найти советы по моделированию балки (стержня) в плоскости пластины, а затем указать ее эксцентриситет жесткими вставками.При этом официальная техподдержка Lira CAD рекомендует устанавливать балку ниже плоскости пластины, а главное, снимать пластину пластины над стержнем с равной шириной выступа, чтобы не было нет двойного учета бетона при расчете прочности и выборе арматуры. Таким образом, балка и печь живут как бы отдельно друг от друга. Это устраняется введением абсолютно твердых тел (ЛДТ) в каждый треугольник узлов (плита-балка-печь).Метод довольно трудоемкий, так как LDT вводится для каждого узла тройки отдельно. В результате в PC Lira конструкция была смоделирована двумя способами: с жесткими вставками и твердыми телами.


В программе Microfe дизайн моделировался с использованием элементов «Пилоты». Разбивка плиты по конечным элементам в каждой расчетной модели задавалась одинаковой — 0,5х0,5 м. Ниже представлены основные результаты расчета. Собственный вес при расчете не учитывался.

Общий вид расчетной схемы


Жесткость конечных элементов. Толщина плиты во всех случаях равнялась толщине секции полки.


Первая проверка — это общая реакция опоры, которая должна быть равна величине нагрузок, приложенных к конструкции. По всем трем задачам получилось 720 кН = 72 машины.

Монолитные бетонные конструкции и альтернативы — тенденции и решения в строительных технологиях

Одна из самых больших проблем в строительных технологиях сегодня — это своевременное строительство высококачественных зданий с использованием наиболее энергоэффективных и экономичных решений.

Но что мы понимаем под строительной техникой? Строительная технология — это весь рабочий процесс, связанный со строительной деятельностью, так называемое ноу-хау строительного процесса.

Помимо выбора правильной технологии, необходимо учитывать несколько аспектов:

  • технические требования и параметры здания, такие как высота, несущая способность, тип грунта
  • различных стоимостных факторов, таких как технология, используемые материалы, затраты на рабочую силу и другие непредвиденные затраты
  • требования ко времени: здесь мы можем подумать, например, о времени, необходимом для реализации выбранной технологии, к которому добавляется время строительных работ и других непредвиденных событий
  • технико-экономическое обоснование строительства имеет основополагающее значение, здесь важно выбрать правильные инструменты и технологии с учетом имеющегося опыта
  • требования к оборудованию, например, какое оборудование следует арендовать во время рабочих процессов или что имеется в наличии
  • адекватное обучение, какова практика у профессионалов, какие у них знания

При выборе технологии нужно хорошо продумать конструкцию, инструменты и выбор материалов.

Важный вопрос: почему монолитные бетонные конструкции преобладают в бытовых постройках?

Преимущества и недостатки монолитных конструкций

В конструкции торговых центров, офисных зданий и многоэтажных зданий часто используются монолитные железобетонные конструкции. В основном потому, что эта технология отличается низкими затратами на строительство и предсказуемостью, ее проще рассчитать с учетом ваших инвестиций, поэтому нет никаких сюрпризов.Его преимущество в том, что он может быть изготовлен относительно быстро, любой формы и не требует специальных инструментов. Одним из основных недостатков является то, что перед бетонированием железобетонных конструкций, сделанных на месте, необходимо построить опалубку, которую необходимо снести после завершения конструкции.

Альтернативы — какие еще технологии есть?

  • Композиты — Во многих областях, от аэронавтики до автомобильной промышленности, мы уже можем найти армированные волокном пластмассовые композиты в строительной отрасли.Армирующий материал может быть углеродом, арамидом или даже стекловолокном. В строительной отрасли, в основном, для замены стали и бетона, а в высокой архитектуре — для замены стальных стержней в сборных каркасных стенах. Недостатком является то, что физические и механические свойства этих материалов чувствительны к колебаниям температуры; они могут деформироваться при более высоких температурах. Кроме того, хотя бетон можно измельчать и использовать в процессах строительства дорог после сноса, пластик чрезвычайно загрязняет окружающую среду, и после разрушения образуется огромное количество отходов.

  • 3D-печать — эта технология еще очень молода и требует значительного дальнейшего развития, прежде чем ее можно будет использовать более широко. Его преимущество больше в тех областях, где требуется меньшее здание с уникальным замысловатым дизайном. В случае массивных мостов или высоких зданий это все еще очень медленное и дорогое применение.

  • Легкие стальные конструкции — эта технология сейчас используется во всем мире в высотных домах.Его преимущество в том, что он обеспечивает прочную однородную структуру; он безотходный, так как все может быть изготовлено с точными размерами, и к нему можно подключить множество дополнительных систем кровли и стен. В Венгрии ее культура не особо развита; его использование не получило распространения. Одна из основных причин этого — недостаточная теплоемкость конструкции.

  • Технология CLT — поперечно-клееный брус — в отличие от облегченной технологии, эти конструкции обладают теплоемкостью, тяжелее, стабильнее, но все же в пять раз легче бетона.Эта технология сухого строительства работает очень быстро; по этой причине рабочая сила и ее стоимость намного дешевле. Благодаря исключительно экологически чистой сухой конструкции отпадает необходимость в большом количестве контейнеров для мусора. Эта технология начинает распространяться все больше и больше.

Поскольку использование новых нераспространенных технологий чревато значительным увеличением проектных затрат, строительные компании, как правило, уделяют больше внимания экономичному строительству здания. Поэтому чаще всего мы используем монолитные железобетонные конструкции.Поскольку факторы затрат и времени известны точно, они не требуют специальной подготовки специалистов и дорогостоящего оборудования.

Однако, если технология будет распространяться при правильном образовании, обучать нужную рабочую силу, новая технология станет более доступной при гораздо меньших затратах через 5-10 лет.

Роль DASHCOAR — что мы можем вам предложить?

Мы анализируем объекты и строительные материалы, включая внутреннюю структуру или геометрию поверхности, используя различные методы получения изображений.Мы консультируемся со строительными и архитектурными фирмами, чтобы помочь им применять правильные инновационные решения в их повседневной работе, анализируя сгенерированные ими ДАННЫЕ для более эффективной и удовлетворительной рабочей среды. Мы способствуем построению и укреплению взаимовыгодных отношений между муниципальным и деловым сектором. Используйте анализ больших данных, чтобы стать частью цифровой трансформации вместе с нами!

#dashcoar #construction #webuildwithdata #datascience #ctltechnology # 3dprint

#projectoptimization

#innovatewithdata #steelstructures #monolithconcrete #alexandrakapitany

/2020.11.30 /

Проблемы формирования сложных монолитных железобетонных конструкций

[1] Педрески, Р., Ли, Д. С. Х .: Структура, форма и конструкция. Тканевая опалубка для бетона. В: Proceedings of Across: Architectural Research through to Practice: 48th International Conference of the Architectural Science Association, (2014).

[2] Педрески, Р .: Тканевые бетонные конструкции и архитектурные элементы. В: Proceedings of Structures and Architecture: New Concept, Applications and Challenges, ICSA 2013 Second International Conference on Structures and Architecture, Guimarães, Portugal, (2013).

DOI: 10.1201 / b15267-126

[3] Марковский М.Ф., Теория и практика создания опалубочных систем и технологий для интенсивного строительства зданий из железобетона, Строительная наука и технологии. 1 (2005) 43–52.

[5] Ампилов С.М., Опалубочные системы для монолитного строительства, АКБ, Москва (2005).

[6] СТРОИТЬ. Безопасный монтаж и демонтаж опалубки и опалубки.CONSTRUCT Concrete Structures Group, Camberley, 2007. (www.construct.org.uk/hands.asp).

Экспериментальная оценка соединений немонолитных плит и колонн

Ангел: Ахмед Абд эль-Хади Амер: — кандидат наук, в настоящее время работает инженером по материалам в Институте прочности и контроля качества материалов Национального исследовательского центра жилищного строительства и строительства. Center, он получил степень бакалавра.Получил степень магистра в Университете Айн-Шамс в 2009 году. Получил степень в том же университете в 2014 году. Его исследовательские интересы включают проектирование железобетонных конструкций, немонолитных соединений между новой плоской плитой и существующим бетоном.

Доктор Энг: Шади Салам : является членом комитета ASCE по оценке рисков и устойчивости и комитета по принятию решений в области социальных наук, политики, экономики и образования. Он также является членом комитета по стандартам защиты зданий от взрывов SEI.Д-р Салем был удостоен награды Института инженерной механики за объективную устойчивость. Он работал рецензентом в Journal of Structural Engineering (ASCE) и Construction and Buildings Materials Journal.

Проф. Айман Халил: — профессор железобетонных конструкций в университете Айн-Шамс, он получил степень доктора философии в Университете штата Айова в 1998 году. Он имеет более чем 25-летний опыт работы в области проектирования конструкций. Он преподает как на уровне бакалавриата, так и на уровне магистратуры.Его исследовательские интересы включают проектирование железобетонных конструкций, предварительно напряженный бетон и мостостроение.

Проф. Хазам Абдель-Латиф: — профессор кафедры строительных материалов в Институте прочности и контроля качества материалов Национального исследовательского центра жилищного строительства и строительства. Он имеет очень большой опыт в области проектирования конструкций, свойств строительных материалов и усиления зданий. Он также является членом комитета по кодексу Египта.

© 2021 Университет Айн-Шамс.Производство и хостинг Elsevier B.V. Это статья в открытом доступе по лицензии CC XX (http://creativecommons.org/licenses/xx/4.0/).

Монолитный железобетон в бизнесе и финансах от AcronymsAndSlang.com

MRC означает монолитный железобетон


Что такое аббревиатура для монолитного железобетона?

Монолитный железобетон может сокращаться до MRC

Самые популярные вопросы, которые люди ищут перед тем, как перейти на эту страницу

Q:
A:
Что означает MRC?
MRC расшифровывается как «Монолитный железобетон».
Q:
A:
Как сократить «монолитный железобетон»?
Сокращенное обозначение «Монолитный железобетон» — MRC.
Q:
A:
Что означает аббревиатура MRC?
Аббревиатура MRC означает «Монолитный железобетон».
Q:
A:
Что такое аббревиатура MRC?
Одно из определений MRC — «Монолитный железобетон».
Q:
A:
Что означает MRC?
Аббревиатура MRC означает «Монолитный железобетон».
Q:
A:
Что такое стенография Монолитный железобетон?
Наиболее распространенное сокращение от «Монолитный железобетон» — MRC.
Вы также можете просмотреть сокращения и акронимы со словом MRC в термине.

Сокращения или сленг с аналогичным значением


Соединения монолитной балки с внешними колоннами в железобетоне: WestminsterResearch

Преимущества высокопрочного бетона (HSC) при строительстве многоэтажных зданий общепризнаны. Предыдущие исследователи исследовали пригодность кодов проектирования

для использования HSC [1].Однако есть опасения по поводу сдвига балок HSC и BCJ, используемых при строительстве этих зданий

. Балки HSC имеют равное или меньшее сопротивление сдвигу по сравнению с обычными балками из бетона прочности

(NSC) [2], а хрупкость материала HSC может составлять

, непригодный для BCJ, поскольку ограничивающие хомуты могут быть не такими эффективными, как NSC в колонне из-за к меньшему коэффициенту Пуассона.

В этом исследовании изучается поведение балок HSC, BCJ и передаточной балки

, соединения колонн (TBCJ) и разрабатываются соответствующие модификации конструкции для повышения их прочности на сдвиг.

Балки

HSC были усилены горизонтальными перемычками (HWB), а балки TBCJ были

усилены центральными вертикальными стержнями (CVB).

Модели конечных элементов (КЭ) были разработаны для этих структур, и численные результаты были сопоставлены с результатами опубликованных экспериментов, в результате чего было достигнуто хорошее согласие.

были проанализированы соотношение пролет / глубина (a / d) пучка 1,5≤a / d

≤3,02 и отношение BCJ балки к глубине колонны (db / dc) 1,33 ≤ db / dc ≤3,1.Модели FE сравнивались с опубликованными результатами испытаний, и были разработаны дополнительные модели для проведения различных параметрических исследований.

Распорки и связи были смоделированы механически для балок с HWB и для TBCJ с

.

CVB используются, чтобы рекомендовать модификации расчетных уравнений для расчета балок HSC

с HWB и TBCJ с CVB.

Было обнаружено, что HWB и CVB эффективны в балках и BCJ только с HSC, так как

они мало влияют, когда они использовались с NSC.Использование HWB в балках HSC

и CVB в HSC TBCJ улучшило сдвиговую способность этих структур на 130% и

31% соответственно.

1 — Реган П. Э., Кеннеди-Рид И. Л., Пуллен А. Д., Смит Д. А. «Влияние типа заполнителя на сопротивление сдвигу железобетона» — Строительный инженер

. 6 декабря 2005.

Ответить

Ваш адрес email не будет опубликован.