Преднапряженные железобетонные конструкции – Предварительно напряженные железобетонные конструкции: использование

Автор

Содержание

Предварительно напряженные железобетонные конструкции: использование

Железобетонные конструкции — основа современного строительства. Однако они имеют существенные изъяны, связанные, в первую очередь, с недостаточной нагрузочной способностью и образованием трещин в камне при эксплуатационных нагрузках. Усовершенствование технологии изготовления изделий из бетона и стальной арматуры привело к созданию преднапряженного железобетона, который обладает рядом преимуществ.

Определение

Предварительно напряженные железобетонные конструкции — строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Вернуться к оглавлению

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать расход арматуры (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.

Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент — преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Вернуться к оглавлению

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Вернуться к оглавлению

Материалы для конструкций

Железобетон — многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Вернуться к оглавлению

Бетон

Формы для заливки бетона с прутьями для передачи предварительного напряжения.

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Вернуться к оглавлению

Арматура

Стальная начинка должна оставаться напряженной в железобетонном изделии на всем интервале эксплуатации, выдерживая без вытяжения длительно приложенные нагрузки. В преднапряженных изделиях из железобетона используется высокопрочная сталь с незначительной текучестью, соответствующей параметрам ползучести бетона.

С целью компенсирования эксплуатационной потери некоторой величины преднапряжения при изготовлении ее значение устанавливают чуть выше, чем предусмотрено строительными требованиями для конструкционного элемента. В продукции применяют горячекатаную упрочненную, холоднодеформированную арматуру, арматурную проволоку (пучки, пакеты, пряди), канаты, сварные каркасы и пр. Поперечное сечение арматуры может быть гладким, периодическим, а укладка проволоки и канатов серповидной и кольцевой.

Сталь должна гарантированно соответствовать установленному классу относительно прочности по преднапряженному растяжению (текучесть металла должна находиться в пределах 0,2% относительного удлинения) с вероятностью от 0,95 и выше. Арматуре необходимо быть пластичной, хладостойкой, свариваемой и пр. Надежное сцепление с бетонной смесью обеспечивается формированием арматурой сложных пространственных поверхностей.

Вернуться к оглавлению

Области использования конструкций

Предварительно напряженный бетон позволяет сократить до 50% расхода арматурной стали.

Преднапряженные изделия используются, когда применение обычного железобетона нецелесообразно (перерасход материалов, рост веса и стоимости, невозможность обеспечить несущую прочность и пр.). Сферами их использования являются гражданское, промышленное, специальное и гидротехническое строительство. Объекты — каркасы и мосты с широкими пролетами, напорные трубопроводы, плотины, водонепроницаемые емкости и пр.

А также из них создают подпорные стены, ограждающие панели, лестничные марши, подкрановые балки, фундаменты, колонны, столбы ЛЭП, каркасы тоннелей, междуэтажные перекрытия и пр. Такая продукция незаменима и при возведении построек в условиях взрыво- и сейсмоопасности. Особенно эффективна она при формировании сборно-монолитных конструкций, когда отдельные преднапряженные сборные элементы соединяются в проектном положении арматурой так, что работают как одно целое.

Вернуться к оглавлению

Вывод

Преднапряженные изделия из железобетона имеют много достоинств. Их недостатки могут быть нивелированы качеством проектирования, производства и монтирования, способствующим длительной эксплуатации.

kladembeton.ru

Предварительно напряженные железобетонные конструкции

Преднапряженный бетон относится к категории строительных материалов, для производства которого применяется стальная арматура высокой прочности и бетонная смесь. Благодаря особой технологии производства он сопротивляется значительному растягивающему напряжению. Преднапряженный железобетон характеризуется прочностью и повышенной трещиностойкостью.

Определение

Предварительно напряженными железобетонными конструкциями называют стройматериал, во время производства которого бетон поддается начальной расчетной напряженностью сжатия. Во время изготовления материала предварительно формируется напряжение растяжения в стальной арматуре, которая характеризуется высоким уровнем прочности. Она используется для обжатия бетона на участках, которые будут поддаваться напряжению во время эксплуатации.

При сжатии не наблюдается проскальзывания арматуры, так как она скрепляется с материалом и в торце имеет анкерное закрепление. Железобетонный состав армируется, что позволяет уравновесить напряженность. Если в процессе эксплуатации на стройматериал воздействуют полезные нагрузки, то это не приводит к образованию трещин, что продляет срок его службы.

Преимущества


Бетон предварительного напряжения по сравнению с аналогичными материалами обладает определенными преимуществами:

  • Железобетонные балки хорошо работают на сжатие и прогиб относительно центра тяжести. Они характеризуются высоким уровнем прочности по всей длине, что предоставляет возможность увеличения длины перекрываемых пролетов. Это обеспечивает уменьшение размеров поперечного сечения, а также сокращение веса и размеров комплектующих.
  • Бетон является химически нейтральным материалом, что исключает возможность коррозии и деформаций арматуры.
  • Арматура обжимает бетон сборочных единиц, что исключает сопротивление сцепления и позволяет сократить расход металла на стыке.
  • Железобетонные конструкции могут состоять из стыкуемых частей и иметь одинаковое поперечное сечение, что обеспечивает стойкость к внешней нагрузке. Конструкции характеризуются повышенной выносливостью, что обеспечивается компенсацией повторяющихся динамических воздействий.
  • Призменная прочность дает возможность демпфирирования изменений в арматуре и бетоне, которые появляются при колебаниях внешней нагрузке.
  • При использовании стройматериала исключается возможность деформаций бетона и арматуры, что гарантирует повышенную сейсмическую стойкость здания.


Предварительно напряженный вид конструкции является безопасным. Благодаря запредельному прогибу, который сигнализирует об исчерпании прочности, она не разрушается.

Недостатки

Для того чтобы обеспечить предварительное напряжение железобетонных конструкций, нужно использовать специальное оборудование. Продукция нуждается в бережном хранении, правильной транспортировке и профессиональном монтаже. Это не приведет к аварийному состоянию строительного материала еще до его эксплуатации.


Производство требует точного расчета предварительно напряженных железобетонных конструкций, который проводится высококвалифицированными специалистами. При просчетах в проектировании и неточностях в производстве создаваемая железобетонная конструкция может полностью разрушиться.

Продольное растягивающее усилие приведет к появлению трещин, которые снизят несущую способность.

Для обеспечения прочности на осевое растяжение нужно использовать  металлоемкую опалубку. Это увеличивает расход стали.

Для того чтобы обеспечить тепло- и звукопроводность,  нужно использовать компенсирующие материалы. Такие конструкции характеризуются более низким порогом огнестойкости.

В соответствии с сущностью предварительно напряженного железобетона можно сделать выводы, что он не переносит воздействие щелочей, солей, кислот и т.д. При этом наблюдается снижение несущей способности изделий, а также их разрушение. Недостатком конструкции является их внушительный вес.

Материалы для конструкций

Железобетон относится к категории многокомпонентных строительных материалов. Он состоит из бетона и стальной арматуры. Во время проектирования железобетона определяются параметры качества материалов в соответствии со стандартами ГОСТ.

Бетон


Для обеспечения предварительного напряжения и сопротивления бетона используются только тяжелые составы, плотность которых составляет 220-2500 килограмм на квадратный метр.

Смесь настаивается не менее 28 дней, что позволит получить предварительное напряжение материала. На начальном этапе эксплуатации может наблюдаться частичная утрата напряженного качества бетоном, что объясняется снижением напряженности стальных элементов. Определение нормального сечения железобетонного элемента осуществляется в соответствии с проектом и требованиями дальнейшей эксплуатации.

Арматура

Стальная арматура должна быть напряженной и стойкой к растяжению в процессе всего срока эксплуатации. Она способна выдерживать нагрузки длительное время, что исключит возможность раскрытия трещин на бетоне. Для производства стройматериала применяют высокопрочную сталь, которая имеет незначительную текучесть. Расчетные характеристики стали должны полностью соответствовать ползучести бетона.


Для того чтобы компенсировать эксплуатационную потерю определенной величины преднапряжения, во время производства устанавливается величина чуть выше, чем указана в проектной документации и требованиях к готовому материалу. 

Изготовление железобетонных конструкций проводится с использованием арматурной проволоки:

  • Пакетов;
  • Прядей;
  • Пучков.

Железобетонные конструкции изготавливаются с использованием холоднодеформированной, горячекатаной упрочненной арматуры, сварных каркасов, канатов. Площадь сечения арматуры напрямую зависит от размеров готового железобетонного изделия. Проволока и канаты имеют серповидное и кольцевое сечение, а арматура – гладкое и периодическое. Сталь должна иметь соответствующую поперечную силу. Текучесть металла по отношению к удлинению должна составлять 0,2 процента.

В соответствии с параметрами растянутого волокна класс прочности арматуры должен быть 0,95 и больше. Она должна характеризоваться холодостойкостью и пластичностью. Оптимальное усилие в напрягаемой арматуре обеспечивается благодаря формированию сложной пространственной поверхности. Именно поэтому материал должен поддаваться свариванию.

Напряжение арматуры во время производства обеспечивается механическими или электротермическими способами. В первом случае это достигается с применением грузов, домкратов и рычагов. Электротермический способ требует заготовить стержни нужной длины, на концах которых располагаются анкера. Их нагревают до 400 градусов, что приводит к их удлинению. В таком состоянии проводится закрепление арматуры на опорах. При охлаждении стержни укорачиваются, но анкера не дают это сделать, что приводит к появлению напряжения.

Области использования конструкций

Применение преднапряженных конструкций рекомендуется при нецелесообразности использования обычного железобетона. Они являются идеальным вариантом при необходимости обеспечения несущей прочности. Применение напряженных железобетонных конструкций осуществляется в различных сферах строительства – промышленной, гражданской, специальной, гидротехнической.

Железобетонные конструкции применяются для сооружения мостов, которые имеют широкие пролеты. Их рекомендовано использовать для строительства напорных трубопроводов и плотин. С помощью ЖБИ проводится монтаж водонепроницаемых емкостей.

Конструкции широко применяются для создания подпорных стен и ограждающих панелей. Если возникает необходимость в возведении фундамента или лестничного марша, то применяются железобетонные конструкции. Их используют для строительства помещений в сейсмо- и взрывоопасных районах. С помощью ЖБИ формируются сборно-монолитные конструкции. Они заключаются в соединении арматурой отдельных преднапряженных сборных элементов. С применением железобетонных конструкций возводятся колонны, а также столбы линий электропередач. С их применением создаются каркасы тоннелей.

Вывод

Преднапряженные ЖБИ характеризуются наличием большого количества преимуществ, поэтому их широко применяют в строительстве. Наличие недостатков объясняется недостаточным качеством проектирования, изготовления и монтажа. Благодаря положительным характеристикам конструкций они широко применяются в возведении разнообразных сооружений.

1beton.info

Преднапряженные конструкции в каркасном строительстве



Преднапряжение железобетона

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции — железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части, или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2 – 3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

 

Преимущества технологии преднапряжения железобетона


Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно, или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

 



Телебашня в Торонто

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

 


Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

 



Платформа «Тролл»

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

 



Мост «Нормандия»

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Технология преднапряжения монолитного железобетона в России


В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.

www.enerprom.ru

Понятие о предварительно напряженных железобетонных конструкциях

Основными достоинствами железобетона являются: высокая проч­ность, огнестойкость, долговечность, простота формообразования. Бетонная балка (рис. ниже), испытывающая при изгибе растяжение ниже нейтральной оси и сжатие выше нее, имеет низкую несущую способность вследствие слабого сопротивления бетона растяжению. При этом прочность бетона в сжатой зоне используется не полностью. В связи с этим неармированный бетон не рекомендуется применять в конструкциях, предназначенных для работы на изгиб или растяжение, так как размеры таких элементов были бы непомерно большими. 

Бетонные конструкции применяют преимущественно при их работе на сжатие (стены, фундаменты, подпорные сооружения, ус­той и др.) и только иногда при работе на изгиб при малых растяги­вающих напряжениях, не превышающих предела прочности бето­на при растяжении. 

Железобетонные конструкции, усиленные в растянутой зоне арматурой, обладают значительно более высокой несущей способ­ностью. Так, несущая способность железобетонной балки (рис. ниже) с уложенной внизу арматурой в 10-20 раз больше, чем несущая способность бетонной балки таких же размеров. При этом прочность бетона в сжатой зоне балки используется полностью.

Схемы работы элементов под нагрузкой

В качестве арматуры применяют стальные стержни, проволо­ки, прокатные профили, а также стекловолокно, синтетические ма­териалы, деревянные бруски, бамбуковые стволы. 

Конструкции армируют не только при их работе на растяжение и изгиб, но и на сжатие (рис. выше). Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в сжатые эле­менты значительно повышает их несущую способность. Совмест­ная работа таких различных по свойствам материалов, как бетон и сталь, обеспечивается следующими факторами: 

  1. сцеплением арматуры с бетоном, возникающим при твердении бетонной смеси; благодаря сцеплению оба материала деформи­руются совместно; 
  2. близкими по значению коэффициентами линейных температур­ных деформаций (для бетона 7·10-6-10·10-6 1/град, для стали 12·10-6 1/град), что исключает появление начальных напряже­ний в материалах и проскальзывание арматуры в бетоне при изменениях температуры до 100 °С;
  3. надежной защитой стали, заключенной в плотный бетон, от кор­розии, непосредственного действия огня и механических по­вреждений. 

Особенностью железобетонных конструкций является возмож­ность образования трещин в растянутой зоне при действии внешних нагрузок. Раскрытие этих трещин во многих конструкциях в стадии эксплуатации невелико (0,1-0,4 мм) и не вызывает коррозии арма­туры или нарушения нормальной работы конструкции. Однако име­ются конструкции и сооружения, в которых по эксплуатационным условиям образование трещин недопустимо (например, напорные трубопроводы, лотки, резервуары и т. п.) или ширина раскрытия должна быть уменьшена. В этом случае те зоны элемента, в кото­рых под действием эксплуатационных нагрузок появляются растя­гивающие усилия, заранее (до приложения внешних нагрузок) под­вергают интенсивному обжатию путем предварительного натяже­ния арматуры. Такие конструкции называют предварительно напряженными. Предварительное обжатие конструкций выполня­ют в основном двумя способами: натяжением арматуры на упоры (до бетонирования) и на бетон (после бетонирования).  

В первом случае перед бетонированием конструкции арматуру натягивают и закрепляют на упорах или торцах формы (рис. ниже). Затем бетонируют элемент. После приобретения бетоном необхо­димой прочности для восприятия сил предварительного обжатия (передаточная прочность) арматуру освобождают от упоров и она, стремясь укоротиться, сжимает бетон. Передача усилия на бетон происходит благодаря сцеплению между арматурой и бетоном, а также посредством специальных анкерных устройств, находящих­ся в бетоне конструкции, если сцепления недостаточно. 

Во втором случае сначала изготовляют бетонный или слабоармированный элемент с каналами или пазами (рис. ниже). При дос­тижении бетоном требуемой передаточной прочности в каналы (пазы) заводят арматуру, натягивают ее с упором натяжного при­способления на торец элемента и заанкериваюг. Таким образом, бетон оказывается обжатым. Для создания сцепления арматуры с бетоном в каналы инъектируют цементный или цементно-песчаный раствор. Если напрягаемая арматура располагается на наружной поверхности элемента (кольцевая арматура трубопроводов, резер­вуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. После натя­жения арматуры на поверхность элемента наносят торкретирова­нием защитный слой бетона. Натяжение арматуры может произво­диться механическим, электротермическим, комбинированным и физико-химическим способами.

Способы создания предварительного напряжения

а — натяжение на упоры; б — натяжение на бетон; I — натяжение арматуры и бетонирование элемента; II, IV — готовый элемент; III — элемент во время натяжения арматуры; 1 — упор; 2 — домкрат; 3 — анкер

При механическом способе арматуру натяг ивают гидравличес­кими или винтовыми домкратами, намоточными машинами и дру­гими механизмами. При электротермическом способе арматуру нагревают электрическим током до 300-350 °С, заводят в форму и закрепляют на упорах. В процессе остывания арматура укорачива­ется и получает предварительные растягивающие напряжения. Ком­бинированный способ натяжения сочетает электротермический и механический способы натяжения арматуры, осуществляемые од­новременно. При физико-химическом способе натяжение арматуры достигается в результате расширения бетона, приготовленного на специальном напрягающем цементе (НЦ), в процессе его гидро­термической обработки. 

Арматура, заложенная в бетоне, препятствует увеличению его объема и растягивается, а в бетоне возникают сжимающие напря­жения. Натяжение арматуры на упоры производится механическим, электротермическим или комбинированным способами, а на бе­тон — только механическим способом. 

Основное достоинство предварительно напряженных конструк­ций — высокая трещиностойкость. При загружении предварительно напряженного элемента внешней нагрузкой в бетоне растянутой зоны погашаются предварительно созданные сжимающие напряжения и только после этого возникают растягивающие напряжения. Чем выше прочность бетона и стали, тем большее предварительное обжатие можно создать в элементе.

Применение высокопрочных материалов позволяет сократить рас­ход арматуры на 30-70% по сравнению с ненапрягаемым железобето­ном. Расход бетона и масса конструкции при этом также снижаются. Кроме того, высокая трещиностойкость предварительно напряженных конструкций повышает их жесткость, водонепроницаемость, морозо­стойкость, сопротивление динамическим нагрузкам, долговечность. 

К недостаткам предварительно напряженного железобетона следует отнести то, что процесс составляет значительную трудоем­кость изготовления конструкций. Помимо этого создается необхо­димость в использовании специального оборудования и рабочих высокой квалификации. 

Напряженно-деформированные состояния предварительно на­пряженных элементов после образования трещин в бетоне растяну­той зоны сходны с элементами без предварительного напряжения. 

ros-pipe.ru

Предварительно-напряженные железобетонные конструкции



Значительное распространение в настоящее время получают так называемые предварительно-напряженные железобетонные конструкции. В этих конструкциях арматура, натянутая до начала работы элемента под нагрузкой, стремится сжаться и передает при этом часть сжимающих усилий окружающему бетону. Поэтому прежде чем бетон в предварительно-напряженной конструкции, воспринимая расчетную нагрузку, начнет работать на растяжение, в нем должно быть погашено предварительно созданное сжатие. Таким образом, наличие предварительного напряжения позволяет увеличить нагрузку на конструкцию, по сравнению с конструкцией, армированной обычным способом, или при прежней величине нагрузки уменьшить размеры конструкции, т. е. достичь экономии бетона и стали. Следует отметить, что впервые идея предварительного напряжения (обжатия) элементов, работающих на растяжение, была предложена в 1861 г. русским ученым-артиллеристом, акад. А. В. Гадолиным.

Преимущества предварительно-напряженных железобетонных конструкций перед обычными следующие:

1. При работе на изгиб под нагрузкой в элементах конструкций из обычного железобетона, например в балках (см. рис. 32), прочность бетона используется не в полной степени, так как в зоне растяжения он почти не работает, а передача усилий осуществляется одной арматурой.

В балке с предварительно-напряженной арматурой способность бетона хорошо работать на сжатие используется во всем сечении. Это позволяет уменьшать сечения,  а следовательно, объем и вес предварительно-напряженных элементов и сократить расход материалов, в частности цемента.

2. Благодаря лучшему использованию свойств арматурной стали в предварительно-напряженных конструкциях по сравнению с обычными сокращается расход арматуры. Это сокращение особенно эффективно при применении для арматуры сталей с высоким пределом прочности.

3. Конструкции с предварительно-напряженной арматурой (напряженно-армированные) обладают повышенной трещино-устойчивостью, что, помимо предохранения арматуры от ржавления, важно для сооружений, находящихся под постоянным давлением воды или каких-либо других жидкостей и газа (трубы, плотины, резервуары и т. п.).

4. Вследствие уменьшения объема и веса напряженно-армированных железобетонных элементов облегчается применение сборных конструкций и увеличивается величина пролетов, которые целесообразно ими перекрывать.

В качестве арматуры предварительно-напряженных железобетонных конструкций наиболее часто применяют проволоку диаметром 3—5 мм, но может быть применена и круглая арматура других диаметров, а также стержни периодического профиля.

www.stroitelstvo-new.ru

Предварительно напряженный железобетон в конструкциях мостов

Предварительно напряженный железобетон в конструкциях мостов

В железобетоне без предварительного напряжения при правильном проектировании и изготовлении конструкций можно предотвратить раскрытие трещин до предела, опасного с точки зрения коррозии арматуры и бетона, если применять арматуру из стали класса A–I – А–III. Целесообразное использование арматуры более высокой прочности в железобетоне без предварительного напряжения невозможно из–за возникновения уже при эксплуатационной нагрузке трещин недопустимого раскрытия, несмотря на повышение сцепления арматуры с бетоном путем применения стержней периодического профиля.

Для получения экономичной конструкции без трещин или с трещинами ограниченного раскрытия при использовании высокопрочной арматуры применяют предварительно напряженный железобетон.

Идея предварительно напряженного железобетона заключается в том, что при изготовлении в конструкции создают наиболее рациональное напряженное состояние. Применяют в основном два способа создания предварительного напряжения в конструкции: натяжение арматуры на бетон и натяжение арматуры на упоры.

Для изгибаемых элементов наиболее целесообразно создавать в сечении неравномерно распределенные предварительные напряжения так, чтобы максимальные сжимающие напряжения были в наиболее растянутых от внешних сил частях конструкции. Для этого напрягаемую арматуру располагают эксцентрично. От действия усилия преднапряжения в сечении возникает внецентренное сжатие, причем, кроме сжимающего усилия, в сечении действует изгибающий момент, обратный по знаку моменту от внешней нагрузки. При изготовлении элемент получает изгиб, обратный прогибу от внешней нагрузки, для чего предварительно напрягаемую арматуру располагают в сечении у наиболее растянутого волокна. Таким образом, преднапряженная арматура выполняет две функции: при эксплуатации сооружения создает сжимающие напряжения в бетоне, препятствуя появлению трещин, а при нагрузках, близких к разрушающим, когда растянутая зона бетона пересечена трещинами, воспринимает растягивающие усилия, как и арматура в ненапрягаемых элементах.

Предварительное напряжение создают для исключения или уменьшения не только основных растягивающих напряжений в сечениях, перпендикулярных к оси элемента, но и главных растягивающих напряжений, особенно при применении наряду с продольной арматурой также поперечной или наклонной преднапряженной арматуры. Предварительное напряжение препятствует и появлению местных растягивающих напряжений.

В бетоне может быть создано одноосное, двухосное или трехосное напряженное состояние. Размеры поперечного сечения сжатых элементов можно существенно уменьшить, если применить поперечное обжатие в двух направлениях, например, навивкой на бетонный сердечник спирали из высокопрочной проволоки под напряжением (косвенное напряженное армирование). В плите сборных пролетных строений можно создавать горизонтальное поперечное преднапряжение, одновременно объединяя балки в единую конструкцию.

Напряженное состояние элемента можно регулировать в широких пределах, создавая искусственные поля напряжений, благоприятные для конструкции, целесообразно назначая величину, направление и точки приложения усилий преднапряжения.

Таким образом, предварительно напряженный железобетон целесообразно применять в изгибаемых,  растянутых и внецентренно растянутых элементах, а также во внецентренно сжатых элементах с большим эксцентриситетом сжимающей силы. В сжатых элементах предварительное напряжение можно создавать в косвенной арматуре.

Предварительно напряженные конструкции мостов имеют преимущества в сравнении с конструкциями из железобетона без предварительного напряжения. К ним относится прежде всего экономия металла (его требуется в 1,5–2,5 раза меньше), достигаемая в основном за счет применения высокопрочной арматуры. Наряду с экономией металла уменьшается расход бетона за счет снижения главных растягивающих напряжений. В результате в ряде случаев уменьшается вес частей сооружения и облегчаются перевозка и монтаж сборных конструкций.

Предварительно напряженная арматура позволяет применять обжатые стыки в сборных конструкциях, что дает экономию металла, идущего на закладные части, и повышает качество стыков. Только при использовании преднапряженной арматуры становится возможным применение таких прогрессивных способов сооружения железобетонных мостов, как навесное бетонирование  и навесная сборка, обеспечивающих резкое снижение трудоемкости и сокращение сроков строительства. Однако в балочных конструкциях, проектируемых с исключением растяжения в бетоне под эксплуатационной нагрузкой, требуется увеличение размеров нижнего пояса для восприятия сил преднапряжения. Следует помнить, что высокие предварительные напряжения в бетоне может вызвать появление в нем трещин, направленных вдоль усилия обжатия. Поэтому предварительное напряжение следует применять осторожно, не перенапрягая без необходимости бетон.

Представляется целесообразным в ряде случаев не требовать исключения расчетных растягивающих напряжений в бетоне. Предварительное напряжение может быть задано таким, чтобы обеспечить отсутствие трещин, опасных в отношении коррозии арматуры (неполное обжатие бетона).

Технология изготовления преднапряженных мостовых конструкций сложнее, чем конструкций без предварительного напряжения, так как требует специальных обустройств для натяжения арматуры и квалифицированного обслуживающего персонала. Этот недостаток компенсируют развитием производственной базы для изготовления элементов мостовых конструкций с предварительным напряжением, созданием высокопроизводительного оборудования и совершенствованием технологии изготовления конструкций и монтажа преднапряженных железобетонных мостов.

vse-lekcii.ru

Предварительно напряжённый железобетон. История развития конструкции, изготовление, области применения

eilukha

размещено: 03 Апреля 2016

В настоящей книге даётся общий краткий обзор развития способов производства предварительно напряжённого железобетона и .применяемого для этого оборудования. Способы изготовления предварительно напряжённых железобетонных конструкций и деталей зависят от последовательности осуществления совместной работы бетона с арматурой после предварительного её натяжения.
Особый раздел книги посвящён некоторым способам предварительного натяжения, не получившим пока широкого распространения, а именно: предварительному напряжению, создаваемому в конструкции за счёт нагрузки от собственного веса, натяжению арматуры в результате укорочения её после нагрева и предварительному напряжению железобетонных изделий путём применения расширяющегося цемента.
Наряду с характеристикой стальной арматуры, применяемой для предварительно напряжённых конструкций, в книге описываются различные типы арматурных пучков, а также стеклянные волокна, обладающие высокой прочностью на растяжение. Очевидно, их применение получит распространение в недалёком будущем. Кроме того, приводятся примеры сооружений из предварительно напряжённого железобетона.
В книге даётся перечень немецких патентов в области предварительно напряжённого железобетона, заявленных после 1930 года.
Книга рассчитана на лиц, работающих в области производства предварительно напряжённого железобетона как сборного, заводского изготовления, так и монолитного, а также на конструкторов, рационализаторов и изобретателей. Автор стремился предоставить специалистам сводный, обобщённый материал о состоянии техники в данном вопросе. Более подробные сведения можно получить из литературы, перечень которой приведён в конце книги.
В целях освещения развития техники предварительно напряжённого железобетона были использованы издания немецкого патентного ведомства в Мюнхене. Эти материалы в значительной мере пополнены и обогащены данными, представленными в распоряжение автора инженерами и строительными организациями, занимающимися проектированием и возведением сооружений из предварительно напряжённого железобетона. Автор выражает глубокую благодарность всем, кто помог ему в работе над книгой.

Оглавление

Предисловие 4

1. Основные определения предварительно напряжённого железобетона 6

2. Краткий исторический очерк развития предварительно напряжённого железобетона 9

3. Предварительное напряжение с натяжением арматуры до затвердения бетона 18

3.1. Предварительно напряжённые строительные детали 18

3.1.1 Плиты Веттштейна 18

3.1.2. Предварительно напряжённые железобетонные детали и мачты Глезера 20

3.1.3. Предварительно напряжённые балки системы Фрейссине 21

3.1.4. Однослойные и многослойные пустотелые плиты системы Шефера 29

3.1.5. Комбинированные плиты фирмы Рем и из пемзобетона и тяжёлого бетона с предварительно напряжённой арматурой 32

3.1.6. Предварительно напряжённый железобетон без анкеров по Xойеру 33

3.2. Способы заводского производства предварительно напряжённых сборных железобетонных деталей и применяемые устройства 37

3.2.1. Напряжение стальных проволок путём растяжения их на определённую длину 37

3.2.2. Натяжение стальных проволок при помощи натяжных салазок и упоров 38

3.2.3. Натяжение стальных проволок путём скручивания или свивания 40

3.2.4. Способ натяжения с непрерывным армированием 42

3.3. Предварительно напряжённый железобетон в сочетании с керамическими блоками 43

4. Предварительное напряжение арматуры без сцепления с бетоном 47

4.1. Расположение напрягаемой арматуры вне сечения бетона 47

4.2. Напряжённые элементы, расположенные вне сечения бетона 53

4.2.1. Треугольные фермы 53

4.2.2. Железобетонные арки со стальной или железобетонной затяжкой 53

4.2.3. Несущая конструкция заданного очертания в виде балок на двух и более опорах 54

4.2.4. Защемлённая балка 57

4.2.5. Защемлённая плоская арка 58

4.2.6. Предварительно напряжённая трёхшарнирных плоская арка 60

4.2.7. Конструкция неразрезной балки, предложенной в Англии 61

4.2.8. Предварительно напряжённые, балки Бетеа 61

5. Предварительное напряжение с натяжением арматуры на затвердевший бетон 66

5.1. Немецкие способы натяжения 66

5.1.1. Анкеровка при помощи натяжных муфт и пластин, предварительно напряжённый железобетон «дивидаг» 66

5.1.2. Анкеровка клиньями и зажимами 72

5.1.2.1. Способ натяжения фирмы Поленски и Целльнер 72

5.1.2.2. Способ натяжения фирмы Филипп Гольцман 75

5.1.2.3. Крепление проволочных пучков стальной арматуры, выпускаемых металлургическим заводом Рейнгаузен 78

5.1.2.4. Способ натяжения фирмы Гельд и Франке 82

5.1.2.5. Способ натяжения фирмы Хохтиф 84

5.1.2.6. 40-тонная арматура фирмы Грюй и Бильфингер 89

5.1.3. Петлевая анкеровка 89

5.1.3.1. Способ натяжения Баур — Леонгардта 89

5.1.3.2. Способ натяжения Кани и Хорват. Предварительно напряжённая деталь из двух сопряжённых или смежных, взаимно подвижных составных элементов 98

5.1.4. Анкеровка арматуры за счёт использования сил сцепления и трения 102

5.1.4.1. Способ натяжения фирмы Бетон и Моньебау 102

5.1.4.2. Способ натяжения фирмы Грюни Бильфингер 106

5.2. Предварительно напряжённый железобетон системы Фрейссине, фирмы Вайс-Фрейтаг и Гийона 107

5.3. Бельгийские способы натяжения арматуры 113

5.3.1. Предварительно напряжённый железобетон по Маньель Блатон 113

5.3.2. Способ натяжения Франки-Смет 116

5. 4. Швейцарский способ напряжения В. В. R. V. 118

5.5. Предварительно напряжённый железобетон в Англии 121

5.5.1 Способ натяжения Ли-МакКолл 121

5.5.2. Анкеровка стальных проволок с помощью клиньев 124

5.6. Предварительно напряжённый железобетон в Швеции 125

5.7. Развитие предварительно напряжённого железобетона с натяжением арматуры на бетон в Италии 127

5.8. Предварительно напряжённый железобетон с натяжением арматуры на бетон в Советском Союзе 130

5.9. Предварительно напряжённый железобетон в Америке 132

6. Влияние сил трения при криволинейной арматуре 139

7. Особые случаи предварительного напряжения арматуры или бетона 141

7.1. Предварительное напряжение конструкций за счёт использования собственного веса 141

7.2. Натяжение арматуры путём её нагрева 146

7.3. Предварительное напряжение бетона за счёт расширяющегося цемента 147

8. Напряжённая арматура 155

8.1. Стали для напряжённого армирования 155

8.2. Армирование с применением предварительно напряжённых элементов 162

8.2.1. Гибкая предварительно напряжённая арматура по Шореру (США) 162

8.2.2. Предварительно напряжённый арматурный элемент конструкции Ленка (Германия) 164

8.2.3. Предварительно напряжённый арматурный стержень конструкции Беккера (Голландия) 167

8.2.4. Гибкая предварительно напряжённая арматура, конструкции Шало и Бет ей (Франция) 169

8.3. Арматура из стекла и нейлона 172

9. Области применения предварительно напряжённого железобетона 177

9.1. Многоэтажное строительство 177

9.2. Мостостроение 194

9.2.1. Мосты из сборных предварительно напряжённых железобетонных элементов 195

9.2.2. Мосты из монолитного предварительно напряжённого железобетона 201

9.2.3. Навесная сборка (без подмостей) мостов из предварительно напряжённого железобетона 217

9.2.4. Висячие мосты 230

9.3. Дорожное строительство 231

9.4. Гидротехническое строительство 241

9.5. Предварительно напряжённые железобетонные трубы 252

9.6. Железнодорожные шпалы 262

9.7. Сваи 272

Дополнение 276

5.1.2.6. 40-тоннын пучок напряжённой арматуры фирмы Грюн и Бильфингер 276

5.1.2.7. Способ натяжения фирмы Загер и Вёрнер 278

Приложение. Перечень немецких патентов в области предварительно напряженного железобетона, заявленных после 1930 г. 281

Литература 296

Оглавление 304

dwg.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о