Приборы для определения прочности бетона – Измеритель прочности бетона: виды, характеристики и производители

Автор

Содержание

Измеритель прочности бетона: виды, характеристики и производители

Определить, насколько эффективно бетонная конструкция будет противостоять внешним нагрузкам, позволяют специальные приборы. С их помощью можно узнать величину прочностных показателей бетона разными способами.

Назначение

Измеритель прочности бетона используется для расчета предельных нагрузок, которые способен выдержать бетон или кирпич в определенных условиях. Для установления прочностного параметра применяются два метода:

  1. Разрушающий способ позволяет определить величину прочности путем раздавливания образцов в форме кубика, полученных из поверхности бетона, в специальном прессе.
  2. Неразрушающий метод позволяет получить этот параметр без механического разрушения.

Второй способ более популярен. Для этого применяются приборы ударного импульса, упругого отскока, ультразвуковые и с частичным разрушением.

Вернуться к оглавлению

Виды и характеристики

Портативные измерители прочности бетона позволяют точно определить соответствующий параметр с минимальными затратами времени. Существует несколько разновидностей таких механизмов, отличающихся по принципу действия. Приборы наделены определенным набором функций.

Вернуться к оглавлению

Электронные

Электронный склерометр (измеритель прочности бетона) ОНИКС-2.5.

Приборы для электронного измерения прочности отличаются:

  • высокой точностью;
  • способностью зафиксировать до 5 тысяч измерений одновременно;
  • возможностью получения сведений по заранее введенным параметрам;
  • наличием функции передачи информации на компьютер;
  • способностью сортировки данных по заданным характеристикам.

Классифицируются электронные механизмы по принципу воздействия. Основанные на отрыве упругого типа предназначены для измерения прочности образцов толщиной более 10 см. Измерители параметров по импульсу удара отличается низким процентом погрешности — 7%. Двухпараметрическая модификация передает измерения и от удара, и от отрыва. Двухцилиндровые гидропрессы компонуются специальными измерительными опорами, куда вмонтирована вся электронная система. Электронным измерителем вымеряется отрыв со скалыванием.

Вернуться к оглавлению

Склерометры

Устройства для экспресс-анализа измеряют удар стального бойка о бетонную поверхность по импульсу или по величине. Склерометр используется при нехватке сведений о поверхностной прочности, для проведения измерений в условиях, неподходящих для применения других методов. Отличаются агрегаты простотой эксплуатации, высокой скоростью определения по стандартным градуировочным зависимостям. При измерении учитывается вид наполнителя, возраст изделия и условия затвердения камня. Возможна ручная настройка направления удара.

Вернуться к оглавлению

Механические

Механические процессы для измерения прочностных характеристик применяются к легким и тяжелым классам бетона. Предельные показатели устройств, работающих на этом методе, равны 5—100 МПа. Замеры осуществляются на основе показаний, полученных от:

  • величины отскока бойка ударника;
  • энергии удара;
  • размеров полученного следа от бойка.

Предел погрешности механических приборов прочности составляет 15%.

Вернуться к оглавлению

Ультразвуковые

Механизмы ультразвукового действия определяют прочностные показатели при затвердении бетона, отпускную, передаточную прочность. Процесс измерения производится по скорости распределения звуковых колебаний по поверхности бетона, определяемой способами прозвучивания сквозного — датчики располагаются с двух сторон, и плоскостного — датчики находятся с одного бока. Ультразвуковыми устройствами определяют прочность в приповерхностных слоях и в теле бетона. Также их используют при дефектоскопии, для контроля качества цементирования и определения глубины бетонирования. Скорость распространения ультразвука — 4500 м/с. Недостатком является погрешность при пересчете акустических характеристик в прочностные.

Вернуться к оглавлению

Примеры производителей

Российская компания СКБ Стройприбор — популярный производитель измерителей прочности на строительном рынке. Предлагается широкий ассортимент от торговых марок Beton Pro, ADA.

Вернуться к оглавлению

Ипс-мг4.03

Ипс-мг4.03 используется при определении прочностных показателей тяжелого и мелкозернистого бетона, керамзитобетона, шлакопемзобетона, бетонных растворов, кирпича. Принцип действия основан на получении данных от ударного импульса. С учетом условий твердения и возраста материала измеритель Ипс-мг4.03 определяет:

  • физико-механические параметры образца, включая прочностные показатели, твердость, пластичность;
  • величину неоднородности;
  • зоны низкого уплотнения.

Особенности Ипс-мг4.03:

  • возможность ввода коэффициента совпадения для сравнения с градуировочными характеристиками;
  • наличие выбора типа образца;
  • опция определения класса бетона;
  • возможность исключения ошибки измерения;
  • наличие выходов для подключения к компьютеру;
  • объемная память, вмещающая 999 участков и 15 тысяч результатов;
  • возможность ввода градуировочных характеристик вручную;
  • регулировка 100 настроек по выбору типа наполнителя, материала и возраста бетона.
Вернуться к оглавлению

Beton Pro Condtrol

Измеритель прочности бетона beton pro condtrol подходит для оперативного анализа на месте и в целях лабораторного контроля прочностных колебаний, однородности цементного состава, бетонных растворов, кирпича. Принцип действия основан на измерении ударного импульса. Преимущества работы:

  • получение высокоточных величин;
  • удобство эксплуатации;
  • повышенная энергия удара;
  • автозавод ударного механизма;
  • большое количество настроек;
  • наглядность вывода информации;
  • на результат практически не влияют возраст, состав, условия твердения бетона.

В Beto Pro CONDTROL имеется 100 связанных с прочностью градуировочных зависимостей, пять направлений удара, функция присвоения признака исследуемому образцу, память на 5 тысяч измерений с возможностью сортировки и отбраковки полученных величин, выход для подключения к компьютеру, опция постройки диаграммы среднеквадратического отклонения и вариативного коэффициента.

Вернуться к оглавлению

ОНИКС-ОС

Прибор используется для определения прочностных показателей и величин однородности легкого бетона и кирпича. Относится к классу электронных склерометров. Оникс-ОС отличается такими преимуществами:

  • двухпараметрический метод контроля прочностных показателей по ударному импульсу и отскоку, что позволяет получить максимально точные результаты;
  • легкость, компактность и эргономичность;
  • максимальная точность измерительного тракта.

В устройстве реализованы основные градуировочные характеристики с возможностью уточнения на основании коэффициента совпадения. Имеется возможность настройки требуемых параметров измерения и названия образцов. Измерения проводятся с учетом состава, условий упрочнения, карбонизации и возраста бетона.

В памяти ОНИКС-ОС сохраняются все результаты измерений, сведения об образцах, вариативные коэффициенты, время и дата исследований. При этом необходимые данные с диаграммами быстро выводятся на подсвечиваемый экран. Оникс-ОС имеет опции автоотключения устройства, автоудаления устаревших данных, определения класса бетона.

Вернуться к оглавлению

NOVOTEST ИПСМ-У Т Д

Ультразвуковой агрегат производит:

  • контроль прочностных параметров бетонов, кирпича и композиционных конструкций;
  • измерение глубины пор, трещин, дефектов в бетоне;
  • контроль плотности с упругостью углеграфитов и стеклопластика;
  • определение возраста бетона.

Особенностью является возможность ручной обработки результатов, отсутствие влияния внешних факторов на точность измерения, сверхчувствительный датчик прозвучивания.

Вернуться к оглавлению

Заключение

Точность измерения прочности современными устройствами позволяет качественно производить ремонтные, строительные работы, мероприятия по укреплению бетонных конструкций.

Полученные данные с измерителей гарантируют правильность выбора дальнейших действий, определения необходимости прибавления бетону прочностных характеристик, что существенно облегчает работу строителей.

kladembeton.ru

Для определения марки бетона прибор


Прибор для измерения прочности бетона – основные виды. Механический и ультразвуковой методы применения

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для этого используются различные методы и виды оборудования, именно их мы и рассмотрим в рамках данного обзора.

На фото — благодаря появлению высокотехнологичных приборов определение прочности в наши дни стало намного проще

Основные способы проверки бетона

Стоит отметить, что оборудование данной группы может использоваться для проверки прочности, как бетона, так и кирпича. Под прочностью понимается способность материала противостоять разрушению под действием внутреннего напряжения и различным внешним факторам, чем стойкость выше, тем надежнее и долговечнее конструкция.

Оборудование для проверки прочности может быть и очень большим

Провести проверку можно посредством двух способов:

  • Разрушающий: суть этого метода заключается в том, что в специальном прессе раздавливаются предварительно подготовленные заготовки. Это могут быть кубы, которые отливаются из контролируемого бетона или керны – фрагменты цилиндрической формы, получить которые помогает алмазное бурение отверстий в бетоне и изъятие фрагмента.

Чтобы получить керн, необходимо проводить бурение бетона

  • Второй вариант – использовать прибор для определения прочности бетона неразрушающим методом. Такое оборудование измеряет физические величины, оказывающие прямое влияние на прочность бетона, и пересчитывает их, выдавая нужные показатели. Естественно, чем качественнее оборудование, тем меньше погрешность и выше точность исследований.

Виды приборов

При проведении измерительных мероприятий чаще всего используется один из двух основных типов измерительного оборудования. Естественно, проведение работ своими руками подразумевает именно этот вариант, так как цена специального пресса очень велика, да и нет смысла держать его, если у вас нет специальной испытательной лаборатории по оказанию услуг по измерению прочности и других показателей.

Определение прочности механическим методом

Если проводится неразрушающий контроль (НК) механическим способом, то главный нормативный акт, которым обязательно следует руководствоваться, это ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами НК». В данном документе изложены правила испытаний как тяжелых, так и легких бетонов с предельными значениями прочности, не выходящими за рамки диапазона от 5 до 100 Мпа.

В данную группу приспособлений входит несколько основных разновидностей оборудования, которое отличается по способу определения тех или иных косвенных характеристик.

Это могут быть следующие показатели:

  • Энергия удара специальным бойком.
  • Значение отскока бойка от прижатого к стене ударника.
  • Размер оставленного следа от удара.
  • Показатель усилия, необходимого для разрушения небольшого участка на ребрах конструкции или при вырыве закрепленного анкерного болта.

Прибор может состоять из бойка и блока управления, или все может располагаться в бойке (самые современные варианты реализуются именно так)

Особенности проведения измерений с помощью того или иного метода зависят от множества факторов, поэтому инструкция по эксплуатации прибора обязательна к изучению. Рассмотрим самый популярный вариант проведения испытаний – метод упругого отскока.

Технология выглядит следующим образом:

  • Измерительный узел должен располагаться перпендикулярно поверхность, чем больше перекос, тем больше погрешность измерений, не стоит забывать об этом.

Сила должна прилагаться перпендикулярно, это гарантирует точность измерений

  • Проверку нужно провести на разных участках поверхности, для корректности измерений следует иметь как минимум 5 значений и определить среднее арифметическое.
  • С помощью специальной формулы высчитывается показатель прочности той или иной конструкции. На самом деле, все достаточно просто и, следуя рекомендациям и требованиям инструкции, можно проводить качественные измерения, даже не имея соответствующей практики.

Современные приборы очень компактны и удобны в работе

Важно! Чтобы показатели были точными и корректными, не стоит забывать, что минимальная толщина бетонной конструкции не должна быть менее 100 мм.

Использование ультразвукового метода

При использовании данного способа расчета показателей прочности бетона или кирпича все требования к измерениям и порядок их проведения определяет ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Стоит отметить, что с помощью такого метода можно проводить измерения практически всех видов бетона, это делает данный вариант максимально универсальным.

Ультразвуковой прибор для определения прочности бетона отличается простотой и удобством работы

С помощью ультразвука можно измерять как показатели готовых конструкций, так и материала, который еще не набрал оптимальные показатели прочности. То есть, можно отслеживать процесс отвердения материала.

Особенности данного вида измерений заключаются в следующем:

  • Сам метод основан на физической взаимосвязи значения прочности бетона и скорости распространения по нему звуковых колебаний. Эта взаимосвязь может выражаться в виде формулы, графика или таблицы, специалисты называют ее «градуировочная характеристика». Этот показатель определяется отдельно для каждого объекта измерений, в процессе проверки используется поверхностное либо сквозное прозвучивание.
  • По результатам проверки и подбора градуировочных характеристик проводятся основные испытательные мероприятия, причем проводиться они должны тем же способом, что и проверочные.
  • На основе полученных показателей и определяется фактическая прочность того или иного участка бетонной конструкции.

Важно! Чем точнее будет определена градуировочная характеристика, тем выше будет точность окончательных результатов.

Проверка может понадобиться в самых различных случаях: от определения надежности конструкции до расчета

vest-beton.ru

Прибор для измерения прочности бетона: особенности ультразвуковых изделий

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для этого используются различные методы и виды оборудования, именно их мы и рассмотрим в рамках данного обзора.

На фото — благодаря появлению высокотехнологичных приборов определение прочности в наши дни стало намного проще

Основные способы проверки бетона

Стоит отметить, что оборудование данной группы может использоваться для проверки прочности, как бетона, так и кирпича. Под прочностью понимается способность материала противостоять разрушению под действием внутреннего напряжения и различным внешним факторам, чем стойкость выше, тем надежнее и долговечнее конструкция.

Оборудование для проверки прочности может быть и очень большим

Провести проверку можно посредством двух способов:

  • Разрушающий: суть этого метода заключается в том, что в специальном прессе раздавливаются предварительно подготовленные заготовки. Это могут быть кубы, которые отливаются из контролируемого бетона или керны – фрагменты цилиндрической формы, получить которые помогает алмазное бурение отверстий в бетоне и изъятие фрагмента.

Чтобы получить керн, необходимо проводить бурение бетона

  • Второй вариант – использовать прибор для определения прочности бетона неразрушающим методом. Такое оборудование измеряет физические величины, оказывающие прямое влияние на прочность бетона, и пересчитывает их, выдавая нужные показатели. Естественно, чем качественнее оборудование, тем меньше погрешность и выше точность исследований.

Виды приборов

При проведении измерительных мероприятий чаще всего используется один из двух основных типов измерительного оборудования. Естественно, проведение работ своими руками подразумевает именно этот вариант, так как цена специального пресса очень велика, да и нет смысла держать его, если у вас нет специальной испытательной лаборатории по оказанию услуг по измерению прочности и других показателей.

Определение прочности механическим методом

Если проводится неразрушающий контроль (НК) механическим способом, то главный нормативный акт, которым обязательно следует руководствоваться, это ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами НК». В данном документе изложены правила испытаний как тяжелых, так и легких бетонов с предельными значениями прочности, не выходящими за рамки диапазона от 5 до 100 Мпа.

В данную группу приспособлений входит несколько основных разновидностей оборудования, которое отличается по способу определения тех или иных косвенных характеристик.

Это могут быть следующие показатели:

  • Энергия удара специальным бойком.
  • Значение отскока бойка от прижатого к стене ударника.
  • Размер оставленного следа от удара.
  • Показатель усилия, необходимого для разрушения небольшого участка на ребрах конструкции или при вырыве закрепленного анкерного болта.

Прибор может состоять из бойка и блока управления, или все может располагаться в бойке (самые современные варианты реализуются именно так)

Особенности проведения измерений с помощью того или иного метода зависят от множества факторов, поэтому инструкция по эксплуатации прибора обязательна к изучению. Рассмотрим самый популярный вариант проведения испытаний – метод упругого отскока.

Технология выглядит следующим образом:

  • Измерительный узел должен располагаться перпендикулярно поверхность, чем больше перекос, тем больше погрешность измерений, не стоит забывать об этом.

Сила должна прилагаться перпендикулярно, это гарантирует точность измерений

  • Проверку нужно провести на разных участках поверхности, для корректности измерений следует иметь как минимум 5 значений и определить среднее арифметическое.
  • С помощью специальной формулы высчитывается показатель прочности той или иной конструкции. На самом деле, все достаточно просто и, следуя рекомендациям и требованиям инструкции, можно проводить качественные измерения, даже не имея соответствующей практики.

Современные приборы очень компактны и удобны в работе

Важно!
Чтобы показатели были точными и корректными, не стоит забывать, что минимальная толщина бетонной конструкции не должна быть менее 100 мм.

Использование ультразвукового метода

При использовании данного способа расчета показателей прочности бетона или кирпича все требования к измерениям и порядок их проведения определяет ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Стоит отметить, что с помощью такого метода можно проводить измерения практически всех видов бетона, это делает данный вариант максимально универсальным.

Ультразвуковой прибор для определения прочности бетона отличается простотой и удобством работы

С помощью ультразвука можно измерять как показатели готовых конструкций, так и материала, который еще не набрал оптимальные показатели прочности. То есть, можно отслеживать процесс отвердения материала.

Особенности данного вида измерений заключаются в следующем:

  • Сам метод основан на физической взаимосвязи значения прочности бетона и скорости распространения по нему звуковых колебаний. Эта взаимосвязь может выражаться в виде формулы, графика или таблицы, специалисты называют ее «градуировочная характеристика». Этот показатель определяется отдельно для каждого объекта измерений, в процессе проверки используется поверхностное либо сквозное прозвучивание.
  • По результатам проверки и подбора градуировочных характеристик проводятся основные испытательные мероприятия, причем проводиться они должны тем же способом, что и проверочные.
  • На основе полученных показателей и определяется фактическая прочность того или иного участка бетонной конструкции.

Важно!
Чем точнее будет определена градуировочная характеристика, тем выше будет точность окончательных результатов.


Проверка может понадобиться в самых различных случаях: от определения надежности конструкции до расчета динамики застывания бетонного материала. Если будет осуществляться резка железобетона алмазными кругами,также желательно измерить прочность и подобрать оптимальный тип круга по бетону.

Приборы могут иметь самую различную конфигурацию, важно, чтобы точность измерений была как можно выше

Вывод

В некоторых случаях от правильности измерений зависит очень многое, особенно если дело касается ремонтных работ и мероприятий по укреплению конструкции. Только корректные данные гарантируют, что будет выбран нужный вариант дальнейших действий. Видео в этой статье поможет разобраться в некоторых особенностях использования измерительных приборов.

masterabetona.ru

Измерители прочности бетона

Измерители прочности бетона различаются методами оценки прочности бетона. методы принято разделять на разрушающие и неразрушающие.

 В этом разделе представлены приборы основанные на следующих методах:

Косвенные неразрушающие:

  • метод ударного импульса
  • ультразвуковой импульсный метод

Прямые неразрушающие
(с частичным разрушением бетона конструкций):

  • метод отрыва со скалыванием
  • метод скалывания угла

Разрушающие:

  • испытание контрольных образцов кубов по ГОСТ 10180
  • испытание кернов, отобранных из конструкций по ГОСТ 28570

Приборы ИПС-МГ4.01, ИПС-МГ4.03 и ИПС-МГ4.04 предназначены для оперативного неразрушающего контроля прочности и однородности бетона и раствора методом ударного импульса по ГОСТ 22690. Область применения прибора - определение прочности бетона, раствора на предприятиях стройиндустрии и объектах строительства, а также при обследовании эксплуатируемых зданий и сооружений. Приборы могут применяться для контроля прочности кирпича и строительной керамики, также позволяет оценивать физико-механические свойства строительных материалов в образцах и изделиях (прочность, твердость, упруго-пластические свойства), выявлять неоднородности, зоны плохого уплотнения и др.

В модификации ИПС-МГ4.04 электронный блок закреплен на корпусе склерометра с возможностью поворота на 90° относительно его продольной оси.

Утвержден тип средства измерения
Внесен в Госреестр РФ под № 60741-15,
также внесены в Госреестры Казахстана, Беларуси.


 
 

Приборы УКС-МГ4, УКС-МГ4С предназначены для контроля дефектов, определения прочности бетона в сборных и монолитных бетонных и железобетонных изделиях и конструкциях по ГОСТ 17624, определения прочности силикатного кирпича по ГОСТ 24332 и других твердых материалов на основе измерения времени распространения импульсных ультразвуковых колебаний (УЗК) на установленной базе прозвучивания.

При работе с прибором УКС-МГ4 используется поверхностный, а при работе с прибором УКС-МГ4С поверхностный и сквозной методы прозвучивания.

Утвержден тип средства измерения
Внесен в Госреестр РФ под № 38169-08 (продлен до 2023 года)
Внесен в Госреестр Казахстана, Беларуси.


 
 

Приборы ПОС-50МГ4 предназначены для неразрушающего контроля прочности бетона методом отрыва со скалыванием и скалывания ребра по ГОСТ 22690.

Область применения приборов - определение прочности бетона на объектах строительства, при обследовании зданий и сооружений, а также для уточнения градуировочных характеристик ударно-импульсных и ультразвуковых приборов, в соответствии с Приложением №9 ГОСТ 22690.

Отличительной особенностью приборов является устройство для измерения величины проскальзывания анкера и электронный силоизмеритель, обеспечивающий индикацию текущей нагрузки и скорости нагружения с фиксацией усилия вырыва.

Утвержден тип средства измерения
Внесен в Госреестр РФ под № 27498-09 (продлен до 2019 года)
Внесен в Госреестры Казахстана, Беларуси.


 
 

Испытательные прессы ПГМ-МГ4 предназначены для испытания образцов строительных материалов при скоростях нагружения, нормируемых соответствующим стандартом. Прессы снабжены электрическим приводом и тензометрическим силоизмерителем. Отличительной особенностью прессов ПГМ-МГ4 являются малые габариты и масса, малошумная работа электропривода и отсутствие пульсаций в гидросистеме за счет применения многоплунжерных насосов импортного производства. Микропроцессорное управление процессом нагружения, обеспечивает автоматическое поддержание скоростей нагружения в МПа/с, кН/с и мм/мин (в зависимости от метода испытаний), фиксацию разрушающей нагрузки и вычисление прочности с учетом масштабного коэффициента.

Утвержден тип средства измерения прибора ПГМ-МГ4
Внесен в Госреестр РФ под № 49130-12 (продлен до 2022 года).
Внесен в Госреестры Казахстана, Беларуси.


 
 

Прессы ПМ-МГ4 предназначены для испытаний образцов из пенополистирола, пенопластов, минераловатных плит и других теплоизоляционных материалов по ГОСТ 15588, 20916, 22950, 2694, 9573 на сжатие при 10 % линейной деформации и на изгиб.

Утвержден тип средства измерения прибора ПМ-МГ4 
Внесен в Госреестр РФ под № 74127-19


 
 

Приборы ПСО-ХМГ4А и ПСО-ХМГ4АД предназначены для определения физико-механических характеристик анкеров и анкерных креплений фасадных систем по ГОСТ Р 56731-2015 и СТО 44416204-2010.

Область применения приборов – определение несущей способности анкеров различных типов, натурные испытания анкерных креплений элементов несущих конструкций навесных фасадных систем к строительным основаниям из бетона и каменной кладки

Прибор внесен в Госреестр РФ под №32173-11 (продлен до 2021 года), также внесен в Госреестры Казахстана, Беларуси.


 
 

Приборы ПСО-ХМГ4С предназначены для контроля прочности сцепления керамической плитки, фактурных покрытий, штукатурки, защитных, лакокрасочных покрытий с основанием, методом нормального отрыва стальных дисков (пластин) по ГОСТ 28089, 28574, 31356, 31376 и др.
Приборы ПСО-ХМГ4К предназначены для контроля прочности сцепления кирпича (камней) в кладке по ГОСТ 24992.

Отличительной особенностью приборов является электронный силоизмеритель, обеспечивающий индикацию текущего значения приложенной нагрузки с фиксацией максимального значения, а также индикацию скорости нагружения в процессе испытаний.

Прибор внесен в Госреестр РФ под №32173-11 (продлен до 2021 года), также внесен в Госреестры Казахстана, Беларуси.


 
 

Установки ПСО-ХМГ4АДМ предназначены для определения физико-механических характеристик анкеров и анкерных креплений фасадных систем по ГОСТ Р 56731-2015 и СТО 44416204-2010.


 
 
  • Электронный силоизмеритель
  • Возможность корректировки результатов в зависимости от влажности
  • Память результатов измерений
  • Погрешность ± 2%

Утвержден тип средства измерения
Внесен в Госреестр РФ под № 27498-09 (продлен до 2019 года)
Внесен в Госреестры Казахстана, Беларуси.


 
 

Вас также может заинтересовать раздел: испытательное оборудование.

www.stroypribor.com

приборы и методы для определения прочности

Определение прочности бетона неразрушающим способом

Какими бы качественными сырьевые материалы не были, и даже если найден идеальный подбор состава, крайне необходимо систематическое определение прочности бетона: ГОСТ 10180 — 2012, ГОСТ 22690 — 2015, ГОСТ 18105 — 2010, ГОСТ 28570 — 90 и прочая техническая документация, поможет не только протестировать, но и правильно произвести расчеты полученных данных подобной характеристики.

Содержание статьи

Многоликая прочность бетона

Бетонный образец в процессе испытания

Такое понятие, как прочность бетона довольно обширно.

Существует несколько видов прочности бетона:

  • Проектная — допускает полную нагрузку на бетон выбранной марки. По умолчанию, подобное значение должно быть у изделия после стандартного испытания образца в 28 — суточном возрасте при естественной выдержке.
  • Нормированная определяется по нормативным документам и стандартам.
  • Требуемая — символизирует минимальное значение, которое допускается при запроектированных нагрузках. Выявляется в строительных лабораториях.
  • Фактическая — прочность, узнаваемая непосредственная в процессе испытаний. Именно она и является отпускной — не менее 70% от проектной.
  • Разопалубочная — значение данной характеристики показывает когда можно без деформаций разопалубливать образцы или изделия.

Испытание бетонного образца

В общепринятом смысле, под прочностью подразумевается кубиковая на сжатие.

Но в особо узких кругах бетонщиков всегда уточняют, с какой именно качественной характеристикой имеют дело:

  • на сжатие;
  • на изгиб;
  • на осевое растяжение;
  • передаточная.

Рассмотрим подробнее каждую из них в отдельности.

Прочность на сжатие

За основу маркировки бетона традиционно принята кубиковая прочность бетона. Ее значения получают путем испытания на прессе образцов кубической формы с размерами ребер 150х150 мм в 28-суточном возрасте. Такое значение признанно эталонным для определения стойкости бетона на осевое сжатие.

Допускается использование образцов и других размеров. В соответствии с изменением масштаба, полученные данные разнятся.

В таком случае приводятся дополнительные расчеты, которые уравнивают полученные значения, до кубиковых. Делается это довольно просто: умножаются значения на масштабный коэфициент С, значение которого можно узнать из ГОСТ 10180 — 2012.

Образец кубической формы с размером ребра 150 см

Не смотря на то, что на всех крупных заводах производятся именно такие стандартные испытания образцов кубической формы, основной прочностью для сжатых бетонных элементов является призменная прочность (RB). Она показывает меньшие значения, чем при испытании стандартных образцов с ребром 150 мм (R). Что интересно, при увеличении отношения высоты (h) к площади основания призмы (a), прочность уменьшается.

При значении h/a=4 значение прочности становится относительно стабильным. Поэтому призменную прочность считают как временное сопротивление осевому сжатию при соотношении сторон h/a=4.

По графику видно зависимость призменной прочности от изменения размеров образца

Если призменная прочность более точно отражает основные характеристики бетонных образцов, то почему же используется только кубиковая? Ответ на такой неоднозначный вопрос довольно прост.

Внимание! На прочность бетонного образца влияет много факторов, ключевые из которых — непосредственно сырьевые компоненты, подбор состава, условия выдержки. Но, показывать “плохую” прочность образец также может по причине плохого уплотнения. И это, к сожалению, не редкость.

Уплотненные бетонные образцы

Если с более подвижными смесями такой проблемы нет, то изготовить из жесткого бетона хорошо уплотненный образец в лабораторных условиях тяжело физически. Из этого соображения, чтобы не искажать полученные значения из-за человеческого фактора, принято считать кубиковую прочность основной. Хотя при проектировании железобетонных конструкций используют именно призменную прочность.

Прочность на растяжение при изгибе

Прибор определения прочности бетона на растяжение при изгибе

Основная задача бетона любой марки — стойко выдерживать любые сжимающие нагрузки. Именно в этом его сила. Поэтому такая характеристика, как прочность бетона на растяжение при изгибе, используется в “строительном, производственном обиходе” редко. Подобные показатели применимы при проектных работах.

Поэтому определение прочности бетонной смеси на растяжение при изгибе — это довольно редкое испытание в любой строительной лаборатории, так как создать необходимые нагрузки для образца довольно непросто. Поэтому такие характеристики больше расчетные. Используются проектировщиками давно выведенные в проектных институтах цифры и значения.

Передаточная прочность

Прибор для напряжения бетонных изделий

Существует такое понятие, как передаточная прочность бетона. На строительной площадке подобная терминология не применяется, да и прорабы не всегда представляют “что это такое, и с чем его едят”. Это определение чисто производственное, которое обозначает прочность бетона в момент обжатия при передаче напряжения арматуры бетону.

Это важная характеристика, без которой нельзя качественно изготовить любое преднапряженное изделие. Подобное значение нормируется проектной документацией и прочими техническими документами на производимое железобетонное изделие. Обычно она назначается не ниже 70% от проектной прочности.

Как определить прочность бетона? Да очень просто.

Для этого используется нехитрая формула определения прочности бетона передаточной:

  • Rbp = 0,7B,
  • Где:  Rbp — передаточная прочность;
  • B — проектная прочность;
  • 0,7 — неизменяемый коэффициент.

Внимание! Если значение при испытании удовлетворяет расчетному, то изделие рекомендуется снять с напряжения. Если же нет, то на усмотрение технолога или заведующего лабораторией принимается решение о продлении времени предварительного напряжения изделия.

Приборы и оборудование для определения прочности бетона

Приборы для неразрушающего контроля прочности бетона

Сегодня существуют различные методы определения прочности бетона.

В зависимости от них, применяются и требуемые приборы:

  • Пресс — стандартное оборудование любой строительной лаборатории. Бывает различного принципа действия, но самый надежный и популярный — гидравлический. Существует масса моделей и видов подобного оборудования. С помощью одних можно тестировать только бетонные образцы: кубики на сжатие, и растяжение цементных балочек. Другие же расширяют область своего использования до испытаний крупноразмерных блоков, кирпичей и прочих материалов. Определить прочность бетона с его помощью можно буквально за пару минут, только нужно уметь с ним работать и фиксировать необходимые значения.

Пресс для определения прочности бетона

  • Приборы для определения прочности бетона неразрушающим методом, сегодня получили небывалую популярность. Склерометром можно проверить прочность бетона конструкций при обследовании в строящихся объектах, и в зданиях, уже давно сданных в эксплуатацию. Не нужно выпиливать из массива кубики. Все делается гораздо проще. При этом цена на подобные приборы довольно высокая — в зависимости от типа и функций, которыми обладает прибор для определения прочности бетона неразрушающим методом. Протестировать необходимую конструкцию можно своими руками, без помощи специалистов. Нужно только четко следовать всем параметрам, которые предусматривает инструкция по использованию. Как пользоваться склерометром, можно подробнее посмотреть в видео в этой статье.
  • Еще один прибор, предназначающийся для выявления основных характеристик — молоток для определения прочности бетона. До широкого распространения стеклометров, на стройплощадках и в лабораториях постоянно пользовались эталонным молотком Кашкарова. Проводить испытание методом упругого отскока довольно сложно. Подобная методика определения прочности бетона требует определенного навыка и знаний. 229690-88 ГОСТ по определению прочности бетона неразрушающими методами позволит сориентироваться в подобной области. Но лучше всего осваивать упругий отскок на практике — так больше шансов научиться правильно производить подобное тестирование.

На фото молоток Кашкарова

Методика проведения испытания неразрушающим методом

Поскольку определить среднюю прочность бетона неразрушающим методом можно без специальной подготовки, прямо на объекте, с помощью современных электронных приборов, рассмотрим именно такой метод, который заключает в себе несколько этапов:

  • Этап 1. Необходимо выбрать ровную грань изделия без трещин, сколов и прочих дефектов. Именно на ней и будут производиться дальнейшие испытания.
  • Этап 2. В зависимости от типа прибора, следующий порядок действий может отличаться, но основные принципы едины для любого прибора. А именно, после включения склерометра и выбора необходимой функции необходимо расположить его по отношению к поверхности бетонного изделия строго под прямым углом, и нажать на соответствующую кнопку.
  • Этап 3. На экране высветится полученное значение. В инструкции к прибору будет указано общее число проведения вышеописанной операции для получения среднего значения.
  • Этап 4. По необходимости можно составить акт определения прочности железобетонных конструкций неразрушающим методом, который будет иметь законную силу.

Правильное расположение прибора относительно испытуемой поверхности



После того, как определение прочности бетона неразрушающим способом закончено, необходимо полностью отключить прибор. Очень удобный “гаджет” для любого прораба, да и простого мастера. Он точно не “соврет” о качестве бетона на любом этапе строительства. Только нужно не забывать о его постоянной поверке.

beton-house.com

Методы и приборы неразрушающего контроля бетона

Для оценки состояния бетонных конструкций необходим всесторонний анализ факторов, влияющих на их эксплуатационные характеристики, такие как прочность, толщина защитного слоя, диаметр арматуры, теплопроводность, влажность, адгезия покрытий и т.д. Неразрушающие методы контроля особенно актуальны, когда характеристики бетона и арматуры неизвестны, а объёмы контроля значительны. Методы НК дают возможность контроля как в лабораторных условиях, так и на строительных площадках в процессе эксплуатации.

В чём плюсы неразрушающего контроля:

  • Возможность не организовывать на площадке лабораторию оценки бетона.
  • Сохранение целостности проверяемой конструкции.
  • Сохранение эксплуатационных характеристик сооружений.
  • Широкая сфера применения.

При всем многообразии контролируемых параметров контроль прочности бетона занимает особое место, поскольку при оценке состояния конструкции определяющим фактором является соответствие фактической прочности бетона проектным требованиям.

Процедура обследований регламентирована ГОСТ 22690-2015 и ГОСТ 17624-2012. Общие правила проверки качества бетона изложены в ГОСТ 18105-2010. Неразрушающий контроль прочности бетона подразумевает применение механических методов (удар, отрыв, скол, вдавливание) и ультразвукового сканирования.

Контроль прочности готовых бетонных конструкций как правило проводится по графику, в установленном проектом возрасте, либо при необходимости, например, когда планируется реконструкция. Контроль прочности строящихся конструкций даёт возможность оценить распалубочную и отпускную прочность, сравнить реальные характеристики материала с паспортными.

Методы неразрушающего контроля прочности бетона делят на две группы.

Прямые (методы местных разрушений) Косвенные
  • Скалывание ребра
  • Отрыв со скалыванием
  • Отрыв металлических дисков
  • Ударный импульс
  • Упругий отскок
  • Пластическая деформация
  • Ультразвуковое обследование

Прямые методы испытания бетона (методы местных разрушений)

Методы местных разрушений относят к неразрушающим условно. Их основное преимущество – достоверность. Они дают настолько точные результаты, что их используют для составления градуировочных зависимостей для косвенных методов. Испытания проводятся по ГОСТ 22690-2015.

Метод Описание Плюсы Минусы
Метод отрыва со скалыванием Оценка усилия, которое требуется, чтобы разрушить бетон, вырывая из него анкер (видео). - Высокая точность.
- Наличие общепринятых градуировочных зависимостей, зафиксированных ГОСТом.
- Трудоёмкость.
- Невозможность использовать в оценке прочности густоармированных сооружений, сооружений с тонкими стенами.
Скалывание ребра Измерение усилия, которое требуется, чтобы сколоть бетон на углу конструкции. Метод применяется для исследования прочности линейных сооружений: свай, колонн квадратного сечения, опорных балок. - Простота использования.
- Отсутствие предварительной подготовки.
- Не применим, если слой бетона меньше 2 см или существенно повреждён.
Отрыв дисков Регистрация усилия для разрушения бетона при отрыве от него металлического диска. Способ широко использовался в советское время, сейчас почти не применяется из-за ограничений по температурному режиму. - Подходит для проверки прочности густоармированных конструкций.
- Не такой трудоёмкий, как отрыв со скалыванием.
- Необходимость подготовки: диски нужно наклеить на бетонную поверхность за 3-24 часа до проверки.

 


Основные недостатки методов местных разрушений – высокая трудоёмкость, необходимость расчёта глубины прохождения арматуры, её оси. При испытаниях частично повреждается поверхность конструкций, что может повлиять на их эксплуатационные характеристики.

Косвенные методы испытания бетона

В отличие от методов местных разрушений, методы, основанные на ударно-импульсном воздействии на бетон, имеют большую производительность. Однако, контроль прочности бетона ведется в поверхностном слое толщиной 25-30 мм, что ограничивает их применение. В упомянутых случаях необходима зачистка поверхности контролируемых участков бетона или удаление поврежденного поверхностного слоя.

Неразрушающий контроль прочности бетона на заводах ЖБИ и в строительных лабораториях осуществляется после приведения градуировочных зависимостей приборов в соответствие с фактической прочностью бетона по результатам испытания контрольных партий в прессе.

Метод Описание Плюсы Минусы
Ударного импульса Регистрация энергии, которая появляется при ударе специального бойка. Для обследований используется молоток Шмидта.
Как работает молоток Шмидта
- Компактное оборудование.
- Простота.
- Возможность одновременно устанавливать класс бетона.
- Относительно невысокая точность
Упругого отскока Измерение пути бойка при ударе о бетон. Для обследования используют склерометр Шмидта и аналогичные устройства. - Простота и скорость исследования. - Жёсткие требования к процедуре подготовки контрольных участков.
- Техника требует частой поверки.
Пластической деформации Измерение отпечатка, оставшегося на бетоне при ударе металлическим шариком. Метод устаревший, но используется часто. Для оценки применяют молоток Кашкарова и аппараты статического давления.
Оценка прочности бетона молотком Кашкарова.
- Доступность оборудования.
- Простота.
- Невысокая точность результатов.
Ультразвуковой метод Измерение скорости колебаний ультразвука, проходящего сквозь бетон. - Возможность проводить массовые изыскания неограниченное число раз.
- Невысокая стоимость исследований.
- Возможность оценить прочность глубинных слоёв конструкции.
- Повышенные требования к качеству поверхности.
- Требуется высокая квалификация сотрудника.

 


Метод ударного импульса

Метод ударного импульса – самый распространённый среди неразрушающих методов из-за простоты измерений. Он позволяет определять класс бетона, производить измерения под разными углами к поверхности, учитывать пластичность и упругость бетона.

Суть метода. Боёк со сферическим ударником под действием пружины ударяется о поверхность. Энергия удара расходуется на деформации бетона. В результате пластических деформаций образуется лунка, в результате упругих возникает реактивная сила. Электроме¬ханический преобразователь превращает механическую энергию удара в эле¬ктрический импульс. Результаты выдаются в единицах измерения прочности на сжатие.

К достоинствам метода относят оперативность, низкие тру¬дозатраты, отсутствие сложных вычислений, слабую за¬висимость от состава бетона. Недостатком считается определение прочности в слое глубиной до 50 мм.

Метод упругого отскока

Метод упругого отскока заимствован из практики определения твёрдости металла. Для испытаний применяют склерометры – пружинные молотки со сферическими штампами. Система пружин допускает свободный отскок после удара. Шкала со стрелкой фиксирует путь ударника при отскоке. Прочность бетона определяют по градуировочным кривым, которые учитывают положение молотка, так как величина отскока зависит от его направления. Среднюю величину вычисляют по данным 5-10 измерений, выполненных на определённом участке. Расстояние между местами ударов – от 30 мм.

Диапазон измерений методом упругого отскока – 5-50 МПа. К достоинствам метода относят простоту и скорость измерений, возможность оценки прочности густоармированных конструкций. Ключевые недостатки такие же, как у других ударных методов: контроль прочности в поверхностном слое (глубина 20-30 мм), необходимость частых поверок (каждые 500 ударов), построение градуировочных зависимостей.

Ниже представлены измерители прочности бетона, работающие по принципу ударного импульса, из ассортимента нашей компании


Метод пластической деформации

Метод пластической деформации считается одним из самых дешёвых. Его суть – в определении твёрдости поверхности посредством измерения следа, который оставляет стальной шарик/стержень, встроенный в молоток. При проведении испытаний молоток располагают перпендикулярно поверхности бетона и совершают несколько ударов. С помощью углового масштаба измеряют отпечатки на бойке и бетоне. Для облегчения измерений диаметров используют листы копировальной или белой бумаги. Полученные характеристики фиксируют и вычисляют среднее значение. Бетонная прочность определяется по соотношению размеров отпечатков.

Принцип действия приборов для испытаний методом пластических деформаций основан на вдавливании штампа при помощи удара либо статического давления. Устройства статических давлений применяются ограниченно, более распространены приборы ударного действия – ручные и пружинные молотки, маятниковые устройства с шариковым/дисковым штампом. Твёрдость стали штампов минимум HRC60, диаметр шарика — минимум 10 мм, толщина диска — не меньше 1 мм. Энергия удара должна быть равна или больше 125 H.

Метод прост, может применяться в густоармированных конструкциях, отличается быстротой, но подходит для оценки прочности бетона не больше М500.

Ультразвуковое обследование

Ультразвуковой метод – это регистрация скорости прохождения ультразвуковых волн. По технике проведения испытаний можно выделить сквозное ультразвуковых прозвучивание, когда датчики располагают с разных сторон тестируемого образца, и поверхностное прозвучивание, когда датчики расположены с одной стороны. Сквозной метод позволяет, в отличие от всех остальных методов НК прочности, контролировать прочность в приповерхностных и глубоких слоях конструкции.

Ультразвуковые приборы неразрушающего контроля бетона могут использоваться не только для контроля прочности бетона, но и для дефектоскопии, контроля качества бетонирования, определения глубины  и поиска арматуры в бетоне. Они позволяют многократно проводить массовые испытания изделий любой формы, вести непрерывный контроль нарастания или снижения прочности.

На зависимость «прочность бетона – скорость ультразвука» влияют количество и состав заполнителя, расход цемента, способ приготовления бетонной смеси, степень уплотнения бетона. Недостатком метода считается довольно большая погрешность при переходе от акустических характеристик к прочностным.

Ниже даны ссылки на приборы неразрушающего контроля бетона, представленные в ассортименте нашей компании.

Кроме перечисленных способов контроля прочности существуют менее распространённые. На стадии экспериментального использования метод электрического потенциала, инфракрасные, вибрационные, акустические методы.

Опыт ведущих специалистов по неразрушающему контролю прочности бетона показывает, что в базовый комплект специалистов, занятых обследованием, должны входить приборы, основанные на разных методах контроля: отрыв со скалыванием (скалывание ребра), ударный импульс (упругий отскок, пластическая деформация), ультразвук, а также измерители защитного слоя и влажности бетона, оборудование для отбора образцов.

Погрешность методов неразрушающего контроля прочности бетона:

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластическая деформация 5 ... 50 ± 30 ... 40%
2 Упругий отскок 5 ... 50 ± 50%
3 Ударный импульс 10 ... 70 ± 50%
4 Отрыв 5 ... 60 нет данных
5 Отрыв со скалыванием 5 ... 100 нет данных
6 Скалывание ребра 10 ... 70 нет данных
7 Ультразвуковой 10 ... 40 ± 30 ... 50%
* по ГОСТ 17624 и ГОСТ 22690;
** источник: Джонс Р., Фэкэоару И. Неразрушающие методы испытаний бетонов. М., Стройиздат, 1974. 292 с.

Процедура оценки

Общие правила контроля прочности бетона изложены в ГОСТ 18105-2010. Требования к контрольным участкам приведены в следующей таблице:

Метод Общее число измерений на участке Минимальное расстояние между местами измерений на участке, мм Минимальное расстояние от края конструкции до места измерения, мм Минимальная толщина конструкции, мм
Упругий отскок 9 30 50 100
Ударный импульс 10 15 50 50
Пластическая деформация 5 30 50 70
Скалывание ребра 2 200 -0 170
Отрыв 1 2 диаметра диска 50 50
Отрыв со скалыванием при рабочей глубине заделки анкера:
40 мм
< 40 мм

1
2

5h

150

2h


Наиболее сложными для контроля бетонных конструкций являются случаи воздействия на них агрессивных факторов: химических (соли, кислоты, масла), термических (высокие температуры, замораживание в раннем возрасте, переменное замораживание и оттаивание), атмосферных (карбонизация поверхностного слоя). При обследовании необходимо визуально, простукиванием, либо смачиванием раствором фенолфталеина (случаи карбонизации бетона), выявить поверхностный слой с нарушенной структурой. Подготовка бетона таких конструкций для испытаний неразрушающими методами заключается в удалении поверхностного слоя на участке контроля и зачистке поверхности наждачным камнем. Прочность бетона в этих случаях необходимо определять преимущественно методами местных разрушений или путём отбора образцов. При использовании ударно-импульсных и ультразвуковых приборов шероховатость поверхности не должна превышать Ra 25.

Прочность бетона по маркам:

Класс бетона (В) по прочности на сжатие Ближайшая марка бетона (М) по прочности на сжатие Средняя прочность бетона данного класса кгс/см² Отклонения ближайшей марки бетона от средней прочности бетона этого класса,%
В3,5 М50 45,84 +9,1
В5 М75 65,48 +14,5
В7,5 М100 98,23 +1,8
В10 М150 130,97 +14,5
В12,5 М150 163,71 -8,4
В15 М200 196,45 +1,8
В20 М250 261,94 -4,6
В22,5 М300 294,68 +1,8
В25 М350 327,42 +6,9
В27,5 М350 360,16 -2,8
В30 М400 392,90 +1,8
В35 М450 458,39 -1,8
В40 М500 523,87 -4,6
В45 М600 589  
В50 М650 655  
В55 М700 720  
В60 М800 786  

Измерение защитного слоя и диаметра арматуры

Основная задача защитного слоя – обеспечить надежное сцепление бетона с арматурой на этапах монтажа и эксплуатации бетонной конструкции. Кроме того, он выполняет функцию защиты от перепадов температур, повышенной влажности, агрессивных химических реагентов. Толщина защитного слоя бетона диктуется условиями эксплуатации конструкции, видом и диаметром используемой арматуры.

При создании защитного слоя бетона руководствуются указаниями СНиП 2.03.04-84 и СП 52-101-2003. Контроль толщины защитного слоя проводится по ГОСТ 22904-93.

Для оперативного контроля качества армирования железобетонных конструкций и определения толщины защитного бетонного слоя используют приборы для поиска арматуры в бетоне - локаторы арматуры. Они работают по принципу импульсной магнитной индукции. Помимо измерения толщины защитного слоя, измеритель способен поиск арматуры в бетоне и определять наличие арматуры на определенном участке, фиксировать сечение, диаметр и другие параметры арматурных включений.

Оборудование для измерения толщины защитного слоя и оценки расположения арматуры

Неразрушающий контроль влажности

Влажность бетона оценивают по ГОСТ 12730.0-78: Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости. Некоторое количество влаги (в ячеистом бетоне до 30–35%) остаётся в стройматериалах в ходе производственного процесса (технологическая влага). В нормальных условиях содержание влаги в бетонных конструкциях в течение первого отопительного периода сокращается до 4-6% по весу.

Для получения полной картины целесообразно использовать несколько различных по физическому принципу методов оценки. Для измерения влажности бетона применяют влагомеры или измерители влажности. Принцип действия влагомера основан на зависимости диэлектрической проницаемости материала и содержания в нем влаги. Следует учитывать, что содержание влаги в бетоне отличается от ее содержания на поверхности. Методы измерения на поверхности дают результат для глубины до 20 мм и не всегда отражают реальное положение вещей.

Оборудование для измерения влажности и проницаемости бетона

Адгезия защитных и облицовочных покрытий

Адгезия измеряется при помощи прямых (с нарушением адгезионного контакта), неразрушающих (с измерением ультразвуковых или электоромагнитных волн) и косвенных (характеризующих адгезию лишь в сопоставимых условиях) методов. Наиболее распространен метод оценки с помощью адгезиметра. Методика оценки установлена ГОСТ 28574-2014: Защита от коррозии в строительстве. Конструкции бетонные и железобетонные. Методы испытаний адгезии защитных покрытий.

Оценка бетона с помощью адгезиметра проводится при диагностике повреждений покрытия, контроле качества антикоррозийных работ, а также при проверке качества строительных материалов. Интенсивность адгезии определяется давлением отрыва, которое следует приложить к покрытию (штукатурке, краске, герметику и т.д.), чтобы отделить его от бетонной основы.

Оборудование для измерения адгезии

Морозостойкость

В большинстве нормативных документов устойчивость покрытий и изделий из застывшей смеси определяется количеством переходов через нулевую отметку, после которого начинается падение эксплуатационных характеристик. Морозостойкость бетона – способность выдерживать температурные перепады, а также количество циклов заморозки и оттаивания бетонной смеси. В ГОСТ 10060-2012 выделяют 11 марок бетона с различной морозостойкостью, которая имеет градацию на циклы от F50 до F1000.

Группы бетонов по морозостойкости

Группа морозостойкости Обозначение Примечание
Низкая менее F50 Не находит широкого использования
Умеренная F50 – F150 Морозостойкость и водонепроницаемость бетона этой группы имеет оптимальные показатели. Такие смеси встречаются наиболее часто.
Повышенная F150 – F300 Морозостойкость бетонной смеси в этом диапазоне дает возможность эксплуатировать здания в достаточно суровых условиях.
Высокая F300 – F500 Такие растворы требуются в особых случаях, например, при эксплуатации с переменным уровнем влаги.
Особо высокая более F500 Бетон морозостойкий получается впрыскиванием особых добавок. Применяется при сооружении конструкций на века.

Дополнительная информация

Морозостойкость бетона оценивают ультразвуковыми методами по ГОСТ 26134-2016. Ультразвуковая диагностика отличается невысокой стоимостью, даёт возможность проводить обследования неограниченное число раз. При этом предъявляются высокие требования к качеству бетонной поверхности и квалификации сотрудника.

Подробную консультацию по контролю бетонных сооружений вы можете получить у наших специалистов по телефонам +7 (495) 972-88-55, +7 (495) 660-49-68.

Оборудование для неразрушающего контроля бетона можно купить с доставкой до двери либо до терминалов транспортной компании в городах: Москва, Санкт-Петербург, Екатеринбург, Саратов. Амурск, Ангарск, Архангельск, Астрахань, Барнаул, Белгород, Бийск, Брянск, Воронеж, Великий Новгород, Владивосток, Владикавказ, Владимир, Волгоград, Волгодонск, Вологда, Иваново, Ижевск, Йошкар-Ола, Казань, Калининград, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курск, Липецк, Магадан, Магнитогорск, Мурманск, Муром, Набережные Челны, Нальчик, Новокузнецк, Нарьян-Мар, Новороссийск, Новосибирск, Нефтекамск, Нефтеюганск, Новочеркасск, Нижнекамск, Норильск, Нижний Новгород, Обнинск, Омск, Орёл, Оренбург, Оха, Пенза, Пермь, Петрозаводск, Петропавловск-Камчатский, Псков, Ржев, Ростов, Рязань, Самара, Саранск, Смоленск, Сочи, Сыктывкар, Таганрог, Тамбов, Тверь, Тобольск, Тольятти, Томск, Тула, Тюмень, Ульяновск, Уфа, Ханты-Мансийск, Чебоксары, Челябинск, Череповец, Элиста, Ярославль и другие города. А так же Республики Казахстан, Белоруссия и другие страны СНГ.

www.ntcexpert.ru

Приборы неразрушающего контроля бетона. Измерители прочности и влажности бетона. Страница 1

В современных методах обеспечения безопасности и качества строительных процессов значительное место занимает неразрушающий контроль. Важной особенностью применения приборов неразрушающего контроля бетона и других строительных материалов является возможность длительных, многолетних наблюдений за состоянием объекта с минимальным воздействием на сам объект.

Применение приборов неразрушающего контроля

Оборудование неразрушающего контроля используют для:

  • своевременного обнаружения отклонений свойств строительных материалов от заданных значений;
  • выявления неявных и внутренних дефектов строительных конструкций;
  • обследования технического состояния построенных зданий и сооружений;

Методы неразрушающего контроля

Основные методы неразрушающего контроля:

  • ультразвуковые и акустические методы;
  • измерение прочности методом ударного импульса и отрыва со скалыванием;
  • тепловой контроль;
  • электромагнитные методы;
  • виброизмерения;
  • вихретоковые методы и т.д.

Неразрушающий контроль бетона в строительстве и его специфика

В тех или иных ситуациях наиболее уместными будут различные методы неразрушающего контроля бетона, поскольку каждый из них имеет собственную специфику. Так, акустические методы незаменимы при определении пустот, трещин и других дефектов целостности изделия, а магнитные и вихретоковые – лучше всего подходят для работы с элементами стальных конструкций. Тепловой контроль оценивает наличие дефектов структуры при помощи определения температурного поля объекта.

В современном строительстве наиболее востребованы приборы неразрушающего контроля бетона, которые позволяют оперативно, на месте нахождения объекта определить состояние бетона, его прочность, выявить наличие трещин и пустот.

Благодаря простоте замеров метод ударного импульса является одним из самых распространенных для контроля прочности бетона, он применяется для определения класса бетона и измерения прочности его поверхностных слоёв. Неразрушающий ультразвуковой контроль бетона позволяет определить качество и прочность бетонных и кирпичных конструкций, установить наличие трещин и их глубину. Компания «Интерприбор» предлагает Вашему вниманию большой ассортимент приборов неразрушающего контроля бетона и других строительные материалов. Ультразвуковой или любой другой измеритель прочности бетона Вы можете купить, связавшись с нашими менеджерами или оформив заказ с помощью корзины на сайте.

Преимущества приборов неразрушающего контроля компании «Интерприбор»

Приборы неразрушающего контроля бетона от компании «Интерприбор» имеют следующие преимущества:

  • высокая функциональность;
  • портативность;
  • широкий диапазон измерений;
  • современное программное обеспечение.

Оборудование неразрушающего контроля бетона и других строительных материалов может быть дополнительно укомплектовано датчиками, кабелями, кофрами и т.д. (допкомплектации представлены в описании конкретного прибора) в соответствии с потребностями заказчика.

Некоторое из представленного оборудования неразрушающего контроля может быть доработано под индивидуальные требования заказчика.

www.interpribor.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о