Испытание бетона – важный и обязательный этап, необходимый для проверки качества используемого материала при реализации ремонтно-строительных работ. С целью подтверждения материала заявленным характеристикам и показателям, нормам СНиП и ГОСТ, его проверяют на прочность, сопротивление на изгиб/растяжение. Также дополнительно могут проверяться удобоукладываемость, плотность, морозостойкость, водонепроницаемость и т.д.
Основные контролируемые и нормируемые показатели качества бетона:
- Прочность на сжатие – определяется в классах, обозначается буквой В
- Прочность на осевое растяжение – также определяется классами, индекс Bt
- Морозостойкость – исчисляется марками, обозначается F
- Водонепроницаемость – также марка, буква W
- Средняя плотность – указывают в марках, индекс D
Испытания бетона могут проводиться с использованием различных методов – исследуются только что залитые или вырубленные из монолита образцы, разрушающие и неразрушающие способы и т.д. Оптимальный вариант испытаний определяют специалисты или сам мастер, с учетом имеющегося в его распоряжении арсенала знаний, навыков, инструментов.
Благодаря своевременно и правильно выполненным мероприятиям по проверке и подтверждению качества бетона удается гарантировать надежность и прочность конструкций, зданий, соответствие выполненных работ всем нормативам и показателям.
От чего зависит и на что влияет прочность бетона
Показатель прочности бетона – самая важная характеристика материала, которая учитывается как в процессе проектирования и выполнения расчетов, так и при выполнении работ. Прочность бетона задает марка, обозначается классом В (измерение в МПа) или М (кг/см2), отображает максимальное давление сжатия, которое материал может спокойно выдержать без деформации.
Когда проводится испытание бетона на прочность, лаборатория или строительная организация (возможно, сам мастер) руководствуются требованиями основных нормативных документов – это ГОСТы 10180-2012, 22690-88, 18105-2010, 28570.
Способность бетона эффективно сопротивляться внешнему воздействию благодаря внутреннему напряжению напрямую зависит от марки цемента и компонентов, входящих в состав раствора. При проверке бетона на соответствие указанной марке, на исследуемом образце не должно быть деформаций, разрушений, расслоений, трещин, сколов и т.д.
Лабораторные испытания бетона на прочность должны проводиться обязательно, особенно в случае заливки важных конструкций, несущих элементов и т.д. Ведь даже минимальное несоответствие (которое часто становится результатом экономии на цементе, других компонентах) может стать причиной быстрого разрушения здания, элемента конструкции.
Прочность состава зависит от: марки цемента, соотношения наполнителей и цемента, фракции наполнителей, качества всех компонентов, чистоты воды, введенных в состав пластификаторов и присадок. Если планируется заливать конструкции, подвергаемые серьезным нагрузкам, бетон дополнительно упрочняют армированием стальными прутьями или сетками, проволокой.
Большое влияние на прочность бетона, испытание которого проводится, оказывают внешние условия, в которых выполняется заливка и сохнет бетон. Также существенно повышается прочность при использовании вибрации, которая удаляет пузырьки воздуха из монолита, делает его более плотным.
Если бетон заливается при минусовых температурах, то компоненты и сам материал либо прогревают, либо смешивают со специальными противоморозными добавками. Могут устанавливаться электроды в заливку, применяться укрытие основания теплоизоляционными материалами, опилками и т.д. Чтобы поверхность монолита не покрывалась трещинами, нужно ее после заливки увлажнять, препятствуя слишком быстрому испарению влаги.
Несмотря на то, что прочность бетона зависит от массы факторов, правильно и своевременно проведенные испытания раствора помогут исключить вероятность приготовления некачественной смеси и избежать вероятности разрушения всей конструкции.
При условии соответствия бетона указанным показателям прочности влияние других факторов на качество раствора можно уменьшить или нивелировать.
Классификация методов испытаний
Испытания бетона проводятся с использованием различных методов, выбор которых зависит от имеющихся мощностей, условий эксплуатации, давности заливки монолита, возможности коррекции состава смеси, исходных данных и требуемых результатов.
Основные методы испытания бетона на прочность:- Испытание образцов бетона, которые отливаются в условиях лаборатории – из смеси создают цилиндры и кубики, конусы, потом проверяют с использованием пресса.
- Проверка образцов, которые были вырублены/выпилены из уже готового монолита – обычно бурят алмазными коронками, керны отправляют в лабораторию, там определяют прочность с использованием пресса.
- Неразрушающие методы – с применением приборов/инструментов, которые позволяют изучить свойства монолита без необходимости помещения их в определенные устройства и условия. Используются ультразвук, ударно-импульсный метод и т.д.
Несмотря на появление множества современных приборов и разнообразных методов, по-прежнему самым эффективным и популярным считается испытание образцов бетона под прессом (на сжатие).
Другие виды исследований бетона:- Осадка конуса – позволяет изучить консистенцию и однородность замешанного раствора. Металлический конус заполняют смесью, снимают форму и изучают показатели, изменения структуры материала.
- Проверка на уплотнение – для определения коэффициента уплотнения партии раствора. Используется специальный аппарат с 2 мерными емкостями с воронками. В первую заливают бетон, потом через клапан пускают во вторую, откуда смесь уходит в специальный цилиндр.
- Проверка на изменение формы/пластичность – смесь заливают в конус, его кладут на опорный стол, потом форму убирают и стол опускают, изучают характеристики растекшегося бетона.
- Испытание на предмет наличия воздушных пустот – используют 2 метода: измерение веса до и после встряхивания/перемешивания бетона в специальном устройстве, испытание давлением.
- Цвет – бетон высокого качества должен быть зеленовато-серого оттенка и чем зеленее, тем лучше (желтый оттенок – признак плохого качества).
- Появление цементного молочка на поверхности залитого бетона – чем гуще, тем лучше.
- Непокрытые смесью фракции наполнителя – их не должно быть.
- От затвердевшего монолита молоток при ударе должен отскакивать со звоном, оставляя небольшую вмятину.
Этапы проведения испытаний
Существует две основных группы методов исследований бетона, которые сегодня используются повсеместно для определения качества материала и соответствия его указанным характеристикам.
Разрушающие методы
Испытания проводятся с применением пресса и исследованием кубиков, цилиндров из бетона, полученных в условиях лаборатории либо выпиленных из уже готового монолита (что может сказаться на прочности всей конструкции). На куски бетона оказывают возрастающее давление, пока не удастся зафиксировать разрушение контрольного образца.
Использование такого воздействия на бетон является наиболее точным методом исследования его на прочность и считается обязательным при создании ответственных сооружений.
Неразрушающие методы
В данном случае речь идет об исследовании, которое не предполагает какого-либо разрушающего воздействия на образец или повреждения всей конструкции. Прибор взаимодействует с поверхностью монолита механическим способом посредством: отрыва, отрыва со скалыванием, а также скалывания ребра.
Если используется испытание посредством отрыва, на монолит эпоксидным клеем крепят стальной диск, потом отрывают его специальным устройством с фрагментом конструкции. Полученный показатель усилия по формуле переводят в нужную величину.
Когда проводится отрыв со скалыванием, прибор крепят в полость бетона. Лепестковые анкеры вкладывают в пробуренные шпуры, потом достают часть материала и фиксируют разрушающее усилие. Чтобы определить марочные характеристики, используют переводные коэффициенты.
Скалывание ребра используется там, где есть внешние углы (перекрытия, колонны, балки). Прибор (обычно ГПНС-4) крепят к любому выступающему сегменту анкером с дюбелем, нагружают плавно. В момент разрушения происходит фиксация глубины скола и усилия, прочность потом определяют по формуле, которая обязательно учитывает фракцию наполнителя.
Неразрушающие косвенные методы:- Исследование ультразвуком – скорость распространения продольных волн в монолите и эталонном образце сравниваются: УГВ-1 устанавливают на идеально ровную поверхность и прозванивают участки по плану, потом данные обрабатывают по имеющимся таблицам, электронным базам. Погрешность обычно составляет 5%.
- Ударный импульс – применяется энергия удара бойка из металла сферической формы о монолит. Магнитострикционное или пьезоэлектрическое устройство преобразует удар в электрический импульс, время и амплитуда которых связаны с прочностью бетона.
- Метод обратного отскока – используется склерометр, который фиксирует величину обратного отскока бойка, устанавливая твердость конструкции.
- Пластическая деформация – измеряется след на бетоне после удара металлическим шариком, сравнение с эталонным образцом.
Порядок проведения проверки на удобоукладываемость
Чтобы изучить данное свойство бетона, в условиях лаборатории применяют специальный прибор – вискозиметр. Он дает возможность измерить в секундах время, которое нужно для укладки смеси. Укладку начинают и одновременно запускают вискозиметр, потом фиксируют получившиеся показатели. Чем меньше времени нужно для выполнения работ, тем лучше материал.
Порядок проведения испытаний на растяжение
Сначала готовят бетонный конус, его помещают горизонтально в специальный прибор, на средину образца оказывается разрушающая нагрузка по нарастающей. Шаг оказываемого воздействия составляет 0.5 МПа/с. Результат фиксируют после того, как структура бетона разрушилась в центре образца.
Порядок проведения испытаний на сжатие
Благодаря данному методу удается определять марку бетона. Сначала из материала отливают кубики (либо вырезают их из уже залитой смеси) размером 100-300 миллиметров по грани.
Также могут использоваться в испытаниях призмы и цилиндры. В лаборатории образцы отливаются на вибростоле, все испытания осуществляют на 3, 7, 28 (основная проверка) сутки после заливки.
Образец помещается под пресс, давящий на кубик с мощностью 140 кгс/м2 с шагом, равным 3.5 кгс/м2. Вектор силы должен быть строго перпендикулярным основанию бетона. По полученным данным определяют способность сопротивления бетона сжатию, марка записывается в протокол испытаний.
Марки прочности бетона и сфера их применения
Бетону присваивают марку по ГОСТу, которая обозначается буквой М и цифрой в соответствии со способностью сопротивления материала на сжатие. И чем больше значение, тем прочнее считается изделие. Как правило, марка прочности зависит от марки и объема цемента в растворе, качества и соотношения компонентов. Бетон бывает марок М100-М500. Есть марки и меньше, и выше, но они редко используются в строительстве.
Класс бетона определяет его способность работать в агрессивных средах. Бетоны марок М100-М250 относятся к ячеистым, легким. Обычно используются для заливки ненагруженных конструкций, в обустройстве фундаментов малых зданий, бордюров, пешеходных дорожек.
Бетоны марок М300-М350 применяются для обустройства фундаментов многоэтажных строений, для отливки плит перекрытия, монолитных стен. Наиболее прочные бетоны марок М400-М500 актуальны для производства железобетонных конструкций, которые эксплуатируются в сложных условиях, с повышенными нагрузками.
Испытание бетона – важный и обязательный этап контроля и оценки прочности материала, который лучше всего проводить до начала реализации работ, чтобы не разрушать конструкцию и иметь возможность откорректировать состав, предпринять меры для изменения свойств материала.
Заказывая материал в Москве или регионах, необходимо обязательно требовать сертификаты соответствия с результатами лабораторных проверок.
Структура тяжелого бетона испытуемого образца
Расчетное сопротивление бетона сжатию – одна из ключевых характеристик, которые необходимо учитывать при проектировании какой-либо конструкции из данного материала, и в начале любого строительства. При этом, нужно обращать на нее внимание не только профессионалам, но и обычным мастерам-подсобникам, решившимся на возведение дома своими руками.
Содержание статьи
Определения
Прочность – основное качество, которое точно описывает его несущую способность. Определяется она пределом на сжатие – это наивысший предел нагрузки, при котором наступают разрушения образца. И это основной показатель, который и учитывают при его использовании.
Расчетное сопротивление – это показатель стойкости материала нагружающим воздействиям. Используется он при проектировочных расчетах, и неотъемлемо связан с нормативными показателями сопротивления сжатию.
До 2000−х годов ориентировались только на марки материала, которые и принимали как расчетный показатель, но по новым техническим документам, каждой марке присвоен новый критерий соответствия образца сжимающим нагрузкам.
Он выявлен в лабораторных условиях, узаконен специалистами и отражен в СП 52−101−2003. Согласно этому техническому документу, нормативное сопротивление материала осевому сжатию – это и есть класс на сжатие, заданный с 95%-ой обеспеченностью. Условие означает, что оно выполняется в 95% тестируемых случаев, и только в 5% может отклоняться от установленных показателей.
Но даже такой процент доказывает, что пользоваться при проектировании средними расчетными показателями неоправданно рискованно. А при выборе наименьшего значения, увеличится сечение конструкции или изделия, что в свою очередь отразится на перерасходе денежных и энергоресурсов.
Согласно СП 52−101−2003, нормативные значения сопротивления представлены на фото ниже.
Нормативные и расчетные значения сопротивления
Есть еще такое определение, как предел прочности на растяжение. По своей природе, данный материал в разы хуже выдерживает растягивающие нагрузки. Поэтому его и армируют в ЖБИ, стяжках пола большой толщины, фундаментах и прочее.
При расчетах используют в приоритете показатель при сжатии. В принципе, любое изделие или конструкция, испытывают большие нагрузки именно от сжимающих статических или динамических воздействий. Но сопротивление к изгибающим воздействиям учитывают при проектировании. В таких случаях, просто пользуются таблицей соответствия классов.
Таблица 6.7 из СП 63.13330.2012″СНиП 52-01-2003, в которой указаны марки сопротивление к сжатию, растяжению.
Вид | Нормативные сопротивления МПа, и расчетные сопротивления для предельных состояний второй группы и МПа, при классе материалапо прочности на сжатие | ||||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое растяжение | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | 32 | 36 | 39,5 | 43 | 50 | 57 | 64 | 71 |
Легкий | — | — | 1,9 | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | — | — | — | — | — | — | — | — | |
Ячеистый | 1,4 | 1,9 | 2,4 | 3,3 | 4,6 | 6,9 | 9,0 | 10,5 | 11,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | 2,25 | 2,45 | 2,60 | 2,75 | 3,00 | 3,30 | 3,60 | 3,80 |
Легкий | — | — | 0,29 | 0,39 | 0,55 | 0,70 | 0,85 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | — | — | — | — | — | — | — | — | ||
Ячеистый | 0,22 | 0,26 | 0,31 | 0,41 | 0,55 | 0,63 | 0,89 | 1,00 | 1,05 | — | — | — | — | — | — | — | — | — | — | — | — |
От прочности в срезе при скалывании, зависит устойчивость к сжатию от корреляционных показателей.
Примечание. Сопротивление сжатию В25 наиболее часто встречающийся показатель при проектировании материала.
Осевое сжатие. Расчеты и значения
При расчетах нужно учитывать, что класс (В) напрямую зависит от его средней прочности R, МПа. Соответственно, используется следующая формула:
В= R (1−tV), где, t – класс обеспеченности, заложенный при проектировании, в основном берут значение 0,95, соответственно t=1,64; V – коэффициент вариации прочности. 1 – постоянная.
Если в расчетах использовался нормативный коэффициент V = 13,5% (0,135), то средняя прочность равна R = В/0,778.
Другое дело, когда рассчитываются всевозможные железобетонные конструкции. Особо тщательно просчитывается граничная высота оговариваемой зоны. Она выражает такую высоту, при которой перед разрушением напряжения в сжатом материале и растянутой арматуре, достигают своих максимальных значений одновременно. Только при таком условии можно считать сечение нормально армированным.
Согласно СНиП 2.03.01 – 84, высота зоны формула:
Формула высоты сжатой зоны
При этом относительная высота этой зоны (таблица), используется для определенного изделия своя. Их можно найти в нормативных документах, и применять данные при расчетах. В принципе, представленная информация вкратце разъяснила, что представляет собой зона сжатия и сопротивление осевому сжатию.
Методы определения прочности по контрольным образцам бетона
Разобравшись с тем, что такое сопротивление материала на сжатие, рассмотрим основные методы определения данного показателя.
Испытание бетона разрушающим способом
Проверка на сжатие проводится, как правило, в аккредитованных строительных лабораториях на поверенном оборудовании. Главное, что для него понадобится − пресс.
Также будут необходимы точные лабораторные весы, штангенциркуль и испытуемые образцы. Последние готовятся заранее из нужной партии. Форма стандартная – куб со сторонами 10 см. Согласно техническим документам, используют от 3 до 5 штук образцов для одной партии.
Совет. Изначально их нужно подготовить, отчищая от загрязнения и взвешивают для определения соответствия плотности, веса и проектной марки материала. Если эти значения в норме, то на 95% можете быть уверены в должном уровне устойчивости.
Абсолютно ровными гранями образец устанавливается на пресс, включается и начинается проверка. Максимальная нагрузка, при которой началось разрушение образца – это и есть предельное сжатие.
Среднее значение устанавливается по результатам контроля всех отобранных образцов. По конечной цифре определяется, соответствует или нет фактическая прочность нормативным и проектным значениям. После чего она заносится в журнал.
Галерея: процесс испытания разрушающим методом с помощью пресса.
Более подробная инструкция по тестированию бетонных образцов, представлена в видео в этой статье.
Контроль неразрушающими методами
Предыдущий метод обязателен на любом строительном производстве и на любом этапе строительства.
Он считается наиболее достоверным:
- На результаты протоколов, лабораторных разрушающих исследовании, опираются конструкторы и архитекторы при возведении зданий и изготовлении железобетонных изделий.
- Когда же нет возможности определить прочность образцов разрушающим методом, или же требуется через определенное время повторный анализ характеристик, используют специальные устройства.
- Они необходимы для того, чтобы протестировать материал на сжатие непосредственно на месте. Одним легким нажатием они определяют числовое значение и при желании другие необходимые характеристики, касающиеся однородности и уплотнения тела материала.
- Существует масса подобного оборудования, но наиболее распространённый в строительных кругах – прибор ИПС − МГ различной модификации. Он прост в использовании, точен и цена на него вполне доступна.
Фото автоматизированного аппарата.
Преимущественно его используют на строительной площадке. Этот электронный измеритель позволяет в короткие сроки определить показатели плотности, прочности и упруго−пластические свойства методом ударного импульса. Этот способ хоть и не является приоритетным, но все же, предусмотрен ГОСТ 22690.
Совет. Обязательно перед «простреливанием» бетона необходимо выбрать или подготовить поверхность. Она должна быть ровной без шероховатостей, вмятин, пустот, трещин и прочих дефектов площадью не меньше 100 см2. При необходимости нужно зашкурить поверхность.
Количество участков должно приниматься по программе испытаний, но их должно быть не менее трех. Обычно для объемной железобетонной конструкции берут среднее значение 15 проб.
Это количество зависит от площади, так как точки контроля должны находиться на расстоянии друг от друга 15 мм и от края не менее 50 мм. Идеальные места – между гранулами щебня и крупными раковинами в бетонном теле.
Чтобы провести тестирование конструкции, необходимо:
- включить прибор, при этом он сразу будет в режиме испытания;
- ввести данные об испытываемом материале;
- взвести рычаг на «пистолете»;
- плотно прижать перпендикулярно к тестируемой поверхности и отпустить рычаг;
- на табло появится результат, он запоминается с последующими испытаниями;
- после 15 проб выводится автоматически среднее значение, если количество «прострелов» меньше, то можно заранее просмотреть средний результат.
Чем хорош такой прибор – все данные на нем могут сохраняться на компьютере и архивироваться. В любой момент можно просмотреть предыдущие испытания на компьютере и составить протокол.
Другие характеристики бетона
Прочность на сжатие – это не самостоятельная характеристика. Она, как и прочие, зависима от многих обстоятельств и других свойств материала.
От чего зависит прочностной показатель бетона
Основные факторы:
- качество компонентов, а именно, активность и прочность цемента, чистота и правильность выбора модуля крупности заполнителя, химический состав воды, верность подбора пластифицирующих добавок;
Компоненты тяжелого бетона
- оптимальный подбор состава, отвечающий главному девизу технологов ЖБИ: «максимальное качество при минимальной себестоимости»;
- теловлажностный режим обработки изделий;
- верность проведения испытаний образцов в лаборатории;
- правильный алгоритм снятия с напряжения ЖБИ;
- последующая выдержка изделий при определенных условиях.
Трещины – признак низкокачественного бетона
Если при измерении прочности, марка на сжатие по факту оказалась намного ниже нормативной, обязательно пересмотрите качество изделия по вышеперечисленным пунктам, чтобы выявить причину брака.
Какие показатели нужно предусмотреть вместе с расчетной прочностью бетона
Прочность – основной, но далеко не единственный показатель качества материала, на который нужно опираться при его проектировании.
Также необходимо учитывать следующие значения:
- Морозостойкость и водопроницаемость – от них напрямую зависит насколько долговечным будет бетонное изделие или конструкция. Чем выше марка по морозостойкости и водопроницаемости, тем лучше. Узнать ее соответствие определенным маркам по прочности, можно из технических документов, или из таблицы ниже.
Таблица соответствий марок, классов по прочности, маркам морозоустойчивости и водонепроницаемости бетона
- Теплопроводность и воздухопроницаемость напрямую влияют на то, насколько теплым и комфортным будет будущее строение. Поэтому их тоже нужно учитывать. Причём, чем больше значение, тем холоднее материал.
Теплопроводность и паропроницаемость разных марок бетона
- Удельное электрическое сопротивление необходимо при дополнительном прогреве бетонной смеси. Чем выше будет показатель, тем лучше будет прогреваться смесь.
В статье мы рассмотрели такую характеристику, как расчетное сопротивление материала сжатию, и сопутствующие свойства, на нее влияющие. Это ключевая характеристика, на которую нужно опираться в строительных расчетах. Воспользоваться ей помогут технические документы, в которых прописаны все формулы и значения необходимых данных.
Определение прочности бетона — Мегаобучалка
Определение прочности бетона состоит в измерении минимальных усилий, разрушающих специально изготовленные контрольные образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки и последующем вычислении напряжений при этих усилиях в предположении упругой работы материала.
Форма и номинальные размеры образцов в зависимости от метода определения прочности бетона должны соответствовать указанным в табл. 32.
Таблица 32. Форма и размеры образцов для испытания на сжатие
Метод | Форма образца | Размеры образца, мм |
Определение прочности на сжатие и на растяжение при раскалывании | Куб | Длина ребра: 100; 150; 200; 300 |
Цилиндр | Диаметр d: 100; 150; 200; 300 | |
Высота h, равная 2d |
Перед использованием форм их внутренние поверхности должны быть покрыты тонким слоем смазки, не оставляющей пятен на поверхности образцов и не влияющей на свойства поверхностного слоя бетона.
Укладку и уплотнение бетонной смеси следует производить не позднее, чем через 20 мин после отбора пробы.
Все образцы следует изготавливать из одной пробы бетонной смеси и уплотнять их в одинаковых условиях.
После окончания укладки и уплотнения бетонной смеси в форме верхнюю поверхность образца заглаживают мастерком или пластиной. Образцы после изготовления до распалубливания хранят в формах, покрытых влажной тканью или другим материалом, исключающим возможность испарения из них влаги, в помещении с температурой воздуха (20±5)°С.
При определении прочности бетона на сжатие образцы распалубливают не ранее чем через 24 ч для бетонов класса В7,5 (М100) и выше, и не ранее чем через 48 ч — для бетонов класса В5 (М75) и ниже, а также для бетонов с добавками, замедляющими их твердение в раннем возрасте.
После распалубливания образцы должны быть помещены в камеру, обеспечивающую у поверхности образцов нормальные условия, т. е. температуру (20±3)°С и относительную влажность воздуха (95±5)%. Допускается хранение образцов под слоем влажных песка, опилок или других систематически увлажняемых гигроскопичных материалов.
Перед испытанием образцы подвергают визуальному осмотру, устанавливая наличие дефектов в виде околов ребер, раковин и инородных включений. Образцы, имеющие трещины, околы ребер глубиной более 10 мм, раковины диаметром более 10 мм и глубиной более 5 мм (кроме бетона крупнопористой структуры), а также следы расслоения и недоуплотнения бетонной смеси, испытанию не подлежат. Наплывы бетона на ребрах опорных граней образцов должны быть удалены напильником или абразивным камнем. Результаты осмотра записывают в ведомость испытаний. В случае необходимости фиксируют схему расположения дефектов.
На образцах выбирают и отмечают грани, к которым должны быть приложены усилия в процессе нагружения.
Визуальный осмотр образцов
Определение отклонений от плоскостности и перпендикулярности рабочих граней образцов
Отклонения опорных граней образцов от плоскости, принимаемой за прилегающую, измеряют прибором с погрешностью не более 0,01 мм на 100 мм длины, который при любом исполнении должен иметь три фиксированные опоры по углам и не менее двух индикаторов часового типа по ГОСТ 577 или других измерителей перемещений той же точности — один по четвертому углу и один в середине (рис.21).
Рис.21. Схема прибора для измерения отклонений от плоскостности
1 — корпус (рамка) ; 3 — индикатор; | — опора; — база прибора |
Перед измерением образца прибор устанавливают на поверочную плиту в трех точках и приводят показания стрелок всех индикаторов в нулевое положение.
Прибор приставляют к измеряемой грани образца и фиксируют, опирая в трех точках. Вслед за тем снимают отсчеты по двум индикаторам.
Отклонение граней от перпендикулярности определяют с помощью уголка. Отклонение от перпендикулярности граней образца соответствует норме, если не превышает 1 мм независимо от размеров образца.
Отклонения от перпендикулярности определяют по опорным граням относительно смежных граней.
Перед установкой образца на пресс или испытательную машину удаляют частицы бетона, оставшиеся от предыдущего испытания на опорных плитах пресса. Образцы-кубы устанавливают одной из выбранных граней на нижнюю опорную плиту пресса (или испытательной машины) центрально относительно его продольной оси, используя риски, нанесенные на плиту пресса, дополнительные стальные плиты или специальное центрирующее устройство.
Нагружение образцов производят непрерывно со скоростью, обеспечивающей повышение расчетного напряжения в образце до его полного разрушения в пределах (0,6±0,4) МПа/с. При этом время нагружения одного образца должно быть не менее 30 с.
Максимальное усилие, достигнутое в процессе испытания, принимают за разрушающую нагрузку.
Разрушенный образец необходимо подвергнуть визуальному осмотру и отметить в ведомости испытаний:
§ характер разрушения;
§ наличие крупных (объемом более 1 см3) раковин и каверн внутри образца;
§ наличие зерен заполнителя размером более 1,5D, комков глины, следов расслоения.
Результаты испытаний образцов, имеющих перечисленные дефекты структуры и характер разрушения, учитывать не следует.
Рис.22. Схема характера разрушений образцов при испытаниях на сжатие
1 — нормальное разрушение; 2-5 — дефектные разрушения
Прочность бетона, МПа (кгс/кв.см), следует вычислять с точностью до 0,1 МПа по формуле:
где P — разрушающая нагрузка, кН;
S — площадь рабочего сечения образца, см2;
– коэффициент, учитывающий размеры образца;
kw – коэффициент, учитывающий влажность ячеистого бетона (для тяжелого бетона равен 1)
Прочность бетона (кроме ячеистого) в серии образцов определяют как среднее арифметическое значение в серии:
§ из двух образцов — по двум образцам;
§ из трех образцов — по двум наибольшим по прочности образцам;
§ из четырех образцов — по трем наибольшим по прочности образцам;
§ из шести образцов — по четырем наибольшим по прочности образцам.
При отбраковке дефектных образцов прочность бетона в серии образцов определяют по всем оставшимся образцам, если их не менее двух. Результаты испытания серии из двух образцов при отбраковке одного образца не учитывают. Марку и класс бетона определяют по табл.33.
Таблица 33. Соотношения классов и марок для тяжелого бетона
Класс | Bb, МПа | Марка | Класс | Bb, МПа | Марка |
Bb3,5 | 4,5 | Mb50 | Bb30 | 39,2 | Mb400 |
Bb5 | 6,5 | Mb75 | Bb35 | 45,7 | Mb450 |
Bb7,5 | 9,8 | Mb100 | Bb40 | 52,4 | Mb500 |
Bb10 | Mb150 | Bb45 | 58,9 | Mb600 | |
Bb12,5 | 16,5 | Mb150 | Bb50 | 65,4 | Mb700 |
Bb15 | 19,6 | Mb200 | Bb55 | Mb700 | |
Bb20 | 26,2 | Mb250 | Bb60 | 78,6 | Mb800 |
Bb25 | 32,7 | Mb300 |
Таблица 34. Сводная таблица результатов испытаний
Показатель | Ед. изм. | Обозначение | Значение |
Удобоукладываемость бетонной смеси (подвижность, жесткость) | |||
Средняя плотность бетонной смеси | |||
Пористость бетонной смеси (расчетная) | |||
Отклонение опорных граней образцов от плоскостности Верхняя Нижняя | |||
Отклонение граней образцов от перпендикулярности Первая Вторая Третья Четвертая | |||
Прочность бетона по образцам: 1 | |||
Средняя прочность серии образцов |
Вывод: Марка и класс бетона:
Прочностные свойства бетона — Студопедия
Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.
Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.
На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.
Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.
Кубиковая прочность
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15…20 °С и относительной влажности 90… 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.
За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:
где F – разрушающая нагрузка, Н;
А – средняя рабочая площадь образца, мм2;
α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.
Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.
Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).
Силы трения
Рис. 2. Характер разрушения бетонных кубов; а — при наличии трения по опорным плоскостям; б — при отсутствии трения по опорным плоскостям
Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику — призменную прочность бетона.
Призменная прочность
Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.
В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.
Прочность на осевое растяжение
Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.
Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение
Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.
Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.
σbtu =0,1σbu …0,05 σbu
Ориентировочное значение σbt можно определить по эмпирической формуле Фере:
σbtu=3,22·γ
где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже
Прочность бетона при срезе и скалывании
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.
Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.
Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание — действием поперечных сил.
Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.
В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2σbtu
Прочность бетона при длительном действии нагрузки
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.
При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.
При расчете прочности элементов в расчетное сопротивление бетона сжатиюRbи растяжениюRbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.
Прочность бетона при многократном действии нагрузки
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.
Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.
Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu иσbtu бетона на коэффициент условий работы бетона γb1.
Удаление и снос бетона— Как удалить старый бетон
Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.
Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.
Бетон Информация о сносе
УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ
Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.
Эти условия включают в себя:
- Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
- Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает — иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном — бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
- Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
- Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.
При любом из вышеперечисленных условий лучше снять и заменить бетон.
Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.
Существует множество других причин, по которым необходимо удалять бетон в проекте:
- Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
- Удаляется вся конструкция, из которой бетон является частью конструкции.
- Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
- Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.
БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ
Разрывное давление
Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.
Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.
Затем расщепленный бетон легко удаляется вручную или краном.
Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник
.Определеносил — KN, KGF, DAN и разрывная нагрузка
Что означают килоньютон [кН] и деканьютон [даН]?
Ньютон (символ: N) является производной единицей силы Международной системы единиц (СИ). Он назван в честь Исаака Ньютона в знак признания его работ по классической механике, в частности по второму закону движения Ньютона. Он равен величине силы, необходимой для ускорения массы одного килограмма со скоростью один метр в секунду в секунду.
На поверхности Земли масса в 1 кг прилагает силу приблизительно 9,8 Н [вниз] (или 1,0 кгс силы; 1 кгс = 9,80665 Н по определению). Приближение в 1 кг, соответствующее 10 Н, иногда используется, как правило, в повседневной жизни и в технике. Обычно можно увидеть силы, выраженные в килоньютонах или кН, где 1 кН = 1000 Н.
1 килоньютон [кН] = 100 деканьютон [даН] = 1000 ньютон [н]
1 Деканьютон [даН] = 10 ньютонов [N]
1 Килограмм-сила [кгс] = 9.80665 N
Забавное эмпирическое правило, помогающее запомнить Ньютон: на земле ньютон [N] эквивалентен ~ 100 г; по совпадению речь идет о массе яблока. Таким образом, вы можете думать о ньютоне [N] как о том, что его бьют по голове яблоком.
килоньютонов часто используются для определения безопасных значений крепежа, анкеров и многого другого в строительной промышленности. Они также часто используются в технических характеристиках оборудования для парапланеризма, парамоторизма, дельтапланеризма и скалолазания (например,грамм. карабины и мейлоны). Безопасные рабочие нагрузки при измерениях напряжения и сдвига могут быть указаны в кН (килоньютонах).
1 кН равняется 101,97162 килограммам нагрузки, но умножение значения кН на 100 (т. Е. Использование слегка пессимистичного и более легкого для вычисления значения) является хорошим эмпирическим правилом.
Примеры…
- «Прочность: 18 кН» = 1800 даН = около 1800 кг
- «Разрушающее напряжение 1800 даН» = 18 кН = около 1800 кг
- «Разрушающее напряжение 2000 даН» = 20 кН = около 2000 кг
- «Разрушающая нагрузка 2500 кг» = около 25 кН = 2500 даН
- «Разрушающее напряжение> 2500 даН» = 25 кН = около 2500 кг
- «Гарантированная нагрузка 26 кН» = 2600 даН = около 2600 кг
- «Разрушающая нагрузка 32 кН» = 3200 даН = около 3200 кг
- «Прочность на разрыв 40 кН» = 4000 даН = около 4000 кг
Для получения дополнительной информации см. Ньютон (единица) — Википедия, бесплатная энциклопедия
Предел рабочей нагрузки (WLL) и минимальная разрывная нагрузка (MBL)
Предел рабочей нагрузки (WLL), также известный как Безопасная рабочая нагрузка (SWL) или Нормальная рабочая нагрузка (NWL), — это максимальная рабочая нагрузка, разработанная производителем.Это сила, которую часть подъемного оборудования, подъемного устройства или аксессуара может безопасно использовать для подъема, подвешивания или опускания массы, не опасаясь ее поломки.
WLL представляет собой силу, намного меньшую, чем та, которая требуется для отказа или подъема подъемного оборудования, что обычно называется минимальной разрывной нагрузкой (MBL) или минимальной прочностью на разрыв (MBS).
WLL обычно отмечается на оборудовании производителем и рассчитывается путем деления MBL на коэффициент безопасности (SF) i.е. WLL = MBL / SF.
SF часто равен 5 (5: 1, 5 до 1 или 1/5), хотя могут использоваться и другие значения, такие как 4, 6 и 10. Для парапланеризма, дельтапланеризма и парамоторного оборудования обычно используется SF 5, для пример.
Например, майон, имеющий MBL 2250 кг, будет иметь WLL 450 кг, если используется SF 5.
Другими словами, у майлона, у которого есть WLL 450 кг, будет MBL 2250 кг, если используется SF 5.
Для получения дополнительной информации см. Ограничение рабочей нагрузки — Википедия, бесплатная энциклопедия
,