Застывание бетона в зависимости от температуры: Как происходит схватывание и отвердевание бетона

Автор

Содержание

График набора прочности бетона в зависимости от температуры

Сегодня бетон является самым популярным материалом для строительства. Широкое распространение этому материалу принесла высокая прочность. Чтобы получить максимальный показатель, необходимо учитывать ряд факторов, среди которых мы выделим температуру. Мы подробно разберем процесс формирования бетона и узнаем, сколько нужно времени для полного застывания в тех или иных условиях. Освоить материал помогут вспомогательные таблицы и графики.

Основными факторами, которые влияют на процесс набора прочности, являются:

  • температура окружающей среды;
  • время застывания;
  • влажность воздуха;
  • марка.

Также стоит учитывать соотношение цемента и воды в смеси, пропорции ингредиентов, способ перемешивания, скорость укладки и регулярность увлажнения. Максимально качественный результат можно получить только при использовании спецтехники. Ручное замешивание не сможет довести смесь до идеальной однородной массы. Это важно для возведения промышленных объектов, но для частного одноэтажного дома способ замеса особой роли не сыграет.

Стадии набора прочности и влияние температуры

Вы наверняка знаете, что для достижения марочного значения бетона требуется 28 дней. Это общая цифра, которая на деле может отклоняться в большую или меньшую сторону. Чтобы возвести надежную постройку, нужно понимать сам процесс набора прочности, он состоит из двух стадий:

  • На первой стадии смесь схватывается – все компоненты бетона соединяются между собой.
  • На второй материал набирает прочность и твердеет.

Первая стадия

Схватывание обычно завершается в течение первых 24 часов с момента заливки. Температура окружающей среды напрямую влияет на скорость завершения первой стадии. Если на улице 20°C и выше, то весь процесс может занять 5 часов.

Начинается схватывание через 2-3 часа после замешивания раствора, а завершается через 3 часа. Если речь идет о работе осенью/зимой, то схватывание может длиться больше суток. В холодную пору строительство не прекращается, к примеру, при температуре в 0°C процесс начинается через 7-10 часов после замешивания смеси, после заливки схватывание может длиться до 24 часов.

Важно! Стоит понимать, что на протяжении первой стадии раствор бетона остается подвижным. В это время строитель может повлиять на форму изготавливаемой конструкции. Чтобы уменьшить вязкость раствора используется механизм тиксотропии. За счет этой особенности в бетономешалке смесь долго находится на первой стадии.

Вторая стадия

Когда первая стадия завершена, материал начинает твердеть. Необходимую прочность бетон набирает уже через четыре недели, но окончательный набор прочности завершится только через несколько лет. Марку бетона специалисты смогут определить через 28 дней. Набор прочности бетона в зависимости от влажности и температуры проходит с разной скоростью. В первые 5-6 дней после заливки процесс протекает наиболее интенсивно. После первых трех суток материал получит 30% прочности от марочного значения, которое мы узнаем только через 4 недели.

Через две недели после заливки бетон наберет до 70% прочности, а через 90-100 дней прочность превысит марочный показатель на 20%. Прекратится процесс через несколько лет, но прочность изменится незначительно. При проверке бетона, залитого 3 года назад, можно узнать, что его прочность вдвое превысила марочный показатель.

На таблице ниже показано, как длительность набора прочности зависит от температуры:

Температура

Чем теплее на улице, тем быстрее увеличивается показатель прочности материала. Эта схема работает и наоборот. Процесс полностью остановится при отрицательных температурах.

Происходит это из-за того, что вода, обеспечивающая гидратацию цемента, замерзает. Процесс продолжится после повышения температуры воздуха. В России есть много мест, где температура редко превышает 5°C.

Время набора прочности заготавливаемого бетона можно уменьшить при помощи добавления специальных модификаторов. Касается это и температуры, при которой процесс останавливается. Сегодня в холодных регионах используются добавки, которые позволяют смеси набирать прочность при минусовых температурах. Стоит упомянуть и про быстроотвердевающие модификаторы, за счет которых марочная прочность набирается уже через две недели.

Повышение температуры существенно ускоряет созревания материала. К примеру, при 40°C марочное значение марки можно получить уже через 5-7 дней. Профессионалы рекомендуют выполнять строительные работы именно в теплое время года, так как сроки строительства существенно сокращаются.

Зимой, помимо добавок, вам понадобится подогрев материала. Самостоятельно обеспечить нужную температуру для опалубки и самой смеси крайне сложно. Сделать это можно только при помощи дополнительного оборудования и теплоизолирующих материалов. При перегреве раствор и вовсе испортится, порог приходится на 90°C.

График набор прочности

Изучите график набора прочности бетонной смеси, чтобы понять, как процесс твердения зависит от температурных показателей. На графике набора показателя прочности бетона показан процесс твердения бетона M400, кривые для других марок будут меняться. Изучив процесс, вы поймете, сколько нужно суток для достижения разных уровней прочности. Первая линия соответствует 5°C, последняя – 50°C, то есть каждая кривая относится к определенному температурному уровню:

График набор прочности по суткам

Специалисты при помощи этого графика могут определить, когда нужно проводить распалубку монолитного фундамента. По правилам, опалубку можно демонтировать после преодоления 50% прочности от марочного значения бетона. Обратите внимание, что при температуре 10°C или ниже значение марки будет достигнуто только через 4-5 недель.

Чтобы ускорить процесс, следует обеспечить подогрев смеси.

Заключение

Как показывает практика, существует множество причин изменения прочностных показателей бетона. Важно учитывать пропорции, качество компонентов, особенности местности и, конечно же, температуру.

Время застывания бетона в зависимости от температуры | Материалы

» Материалы


Как температура окружающей среды влияет на время затвердевания бетона?

Никита, Москва задаёт вопрос:

Здравствуйте, планирую заливать фундамент осенью. Подскажите, пожалуйста, насколько время затвердевания бетона и набор им прочности зависит от температуры окружающей среды? Минус будет вряд ли, но все же беспокоюсь. Заранее спасибо.

Эксперт отвечает:

Временем затвердевания бетона называется важный процесс между непосредственной укладкой смеси и распалубкой. В этот период состав набирает прочность, от которой напрямую зависит безопасность всего строения, поэтому процесс требует пристального внимания со стороны строителей. На этом этапе важно обеспечить смеси оптимальные условия. Достигнуть марочной прочности бетонного камня позволяет:

  • четко налаженный режим гидратации
  • благоприятная температурная среда.

Чем холоднее погода, тем большее время занимает схватывание и нарастание прочности. Так, при средней температуре воздуха +5°C требуется в 2 раза больше времени для набора прочности, чем при +20°C. Для марок М200 #8211 М300, созданных на основе портландцемента М-400, М-500, условно безопасным сроком для начала работ на фундаменте является набор бетоном около 50% прочности на сжатие от ориентира в 28 суток. В зависимости от температуры окружающей среды прочность равняется:

  1. 55% после 2 суток со средней температурой +30°C.
  2. 50% после 3 дней с +20°C.
  3. 50% после 5 дней с +10°C.
  4. 48% после 7 дней с +5°C.
  5. 50% после 14 дней с 0°C.

Достаточную стойкость к замерзанию в соответствии с директивой RILEM бетон марки М400 демонстрирует после:

  • 5 суток при среднесуточной +5°C
  • 3,5 суток при среднесуточной +12°C
  • 2 суток при среднесуточной +20°C.

При этом не рекомендуется проводить бетонные работы, если ожидаемая среднесуточная температура в течение 28 дней от момента заливки фундамента ожидается ниже 5°C. Погодные катаклизмы, если они все же случились, можно частично нейтрализовать следующим образом:

  1. При температуре выше +25°C или сильном ветре накрыть бетон пленкой или другим влагосохраняющим материалом, периодически увлажнять опалубку и поверхность.
  2. При -3 #8211 +5°C накрыть пленкой, использовать теплоизоляцию.
  3. При t ниже -3°C накрыть пленкой, уложить теплоизоляцию, устроить парник.

Таким образом, желательно, чтобы заливка фундамента проходила при среднесуточной месячной температуре +5 #8211 +20°C и надлежащих гидрационных мероприятиях.

Время застывания бетона

Химический процесс, происходящий в ходе набора прочности бетона, время которого может варьироваться от 1 до 28 суток в зависимости от марки применяемого цемента.

Химический процесс, происходящий в ходе набора прочности бетона, время которого может варьироваться от 1 до 28 суток в зависимости от марки применяемого цемента, представляет собой преобразование минералов цемента в новые составляющие #150 гидросиликаты калия. Протекание данного процесса невозможно без воды, именно поэтому для набора максимальной прочности необходимо периодическое смачивание бетона.

Время твердения бетона, при котором он набирает проектную прочность, зависит от многих факторов, а именно от температуры, влажности, толщины бетонного слоя и прочего. Процесс застывания бетона, во время которого происходит формирование цементного камня, состоит из двух основных стадий:

1. Стадия схватывания бетона. Продолжительность времени схватывания бетона не велика и составляет примерно сутки после заливки и в большой мере зависит от температуры окружающего воздуха. При расчётной температуре +20 С0 начало схватывания происходит через 2 часа после затворения цементной смеси водой, а окончание схватывания происходит через 3 часа. При использовании специальных добавок время схватывания бетона можно сократить до 15-20 минут, что часто используется при производстве железобетонных конструкций. Приведём примеры времени схватывания для некоторых марок бетона:

  • Время схватывания бетона М200
2-2,5 часа
  • Время схватывания бетона М300 1,5-2 часа
  • Время схватывания бетона М400

    1-2 часа

  • 2. Стадия твердения. Или, так называемая, стадия гидратации происходит во время засыхания бетона, то есть испарения воды их слоя бетона. При слишком быстром испарении воды в набирающем прочность бетоне, процесс гидратации прекращается, что существенно влияет на качество и другие характеристики бетона. В идеале, промежуток времени затвердевания бетона с достаточным количеством воды, должен продолжаться в течение 1,5-2 недель. Приведём примеры времени полного засыхания бетона разных марок:

    • Время застывания бетона М200 #150 14-28 суток
    • Время застывания бетона М400 #150 7-14 суток

    Стоит отметить, что время застывания бетона в опалубке должно составлять около 7 суток, прежде чем опалубку можно будет снять без нарушения целостности бетонной конструкции, однако этот показатель может варьироваться в зависимости от применяемой марки бетона и цемента для его производства.

    Таблица времени твердения бетона с указанием температуры бетона:

    Сколько времени должен застывать бетон?

    Марочный бетон, как правило, набирает свою марочную, прочность за 28 дней, что означает его готовность принимать полную расчетную нагрузку.

    Несмотря на то, что бетонная смесь схватывается через 1-3 суток в зависимости от толщины слоя, условий укладки и т. д. ее использование, как основание для проведения дальнейших работ на объекте, возможно через одну, две недели,при наборе бетонной смеси около 60 — 70% прочности, что позволяет производить частичную нагрузку этого основания и вести предварительные работы на объекте.

    Основные условия для равномерного набора прочности бетонной смеси за расчетный период, это довольно постоянная температура, 15-20 градусов Цельсия и влажность уложенной смеси. Для этого, по возможности, не допускают пересыхания поверхности залитого основания и постоянно смачивая поверхность водой и укрытие бетонного основания от прямых солнечных лучей. Чем выше температура воздуха, тем чаще нужно смачивать залитый бетон.

    При изменении этих условий набор прочности по срокам, и качество бетонного основания могут варьировать в ту или другую сторону. Самое главное не спешить и тщательно выполнять технологию бетонирования строительных объектов. Удачи.

    модератор выбрал этот ответ лучшим

    Источники: http://moifundament.ru/questions/vremya-zatverdevaniya-betona-351832.html, http://stroytovaroteka.radidomapro.ru/publi/vremia-zastyvaniia-betona-1060-6957.php, http://www.remotvet.ru/questions/5319-skolko-vremeni-dolzhen-zastyvat-beton.html


    Комментариев пока нет!

    Время застывания бетона: что влияет, как ускорить

    Специалистам строительной сферы известно, что время застывания бетона зависит от многих факторов. Поэтому прежде чем начать планировать строительный процесс, необходимо ознакомиться, в каких условиях бетонный раствор застывает быстро, а при каких засыхание замедляется. Важно помнить, что застывающий бетон очень капризный. Критически низкие или высокие температуры негативно сказываются на физико-технических функциях готовой поверхности.

    Главные этапы застывания

    Схватывание

    Время схватывания бетона сравнительно непродолжительное, если во время работы с материалом соблюдались все правила и пропорции.

    К примеру, обустраивая фундамент, после заливки достаточно подождать 24 часов, на протяжении которых материал полностью затвердеет. Если затворение цементобетонной массы водой происходит при температуре +20 °C, бетонная поверхность начнет схватываться уже через 1—1,5 часа. Полное засыхание происходит через 2,5—3 ч. Срок твердения бетона удастся существенно сократить, если к смеси добавить специальные пластификаторы, обеспечивающие быстрое схватывание.

    Ниже представленная таблица показывает ориентировочный период застывания марок бетона, часто используемых в строительстве:

    Марка, МПродолжительность схватывания, часов
    2002—2,5
    3001,5—2
    4001—2

    Отвердение

    Процесс застывания бетона длительный и занимает, в целом, около двух недель до полного отвердения.

    Важно помнить, что время высыхания бетона в первую очередь зависит от класса портландцемента. Кроме этого, нужно учесть, что слишком активное влаговыделение оказывает негативное влияние на качество, надежность и прочность готового изделия. Для полного отвердения фундамента потребуется подождать 1,5—2 недели, при этом опалубку не рекомендуется снимать раньше, чем через 7—12 дней, в противном случае устройство может разрушиться либо деформироваться. Разобраться, на протяжении какого периода и при каких температурах бетонная поверхность окончательно схватится, поможет график твердения бетона. Основываясь на представленные данные, получится ориентировочно определить, когда проводить демонтаж опалубки и продолжать возведение сооружения.

    Что влияет на время застывания?

    Компоненты

    Процесс твердения бетона в первую очередь зависит от того, что за компоненты и в каких пропорциях входят в состав. Если в смесь добавлены материалы, увеличивающие пористость, обезвоживание раствора происходит медленнее. Когда же в растворе преобладают гравий, песок, жидкость испаряется быстрее. Важно помнить, что быстрое влаговыделение существенно снижает коэффициент прочности бетона. Эффективно справляться с этой проблемой помогу специальные добавки — замедлители схватывания.

    Время года

    На сроки готовности бетонной конструкции влияют различные экзогенные факторы. В зависимости от температуры и влажности окружающей среды, застывание и полное отвердение может длиться от нескольких часов, до нескольких дней. Летом сушка проходит довольно быстро, однако в таких условиях конструкция может получиться непрочной, хрупкой. В холодную пору важно обеспечить изоляцию цементобетонной конструкции от влаги и низких температур. В условиях пониженных температур входящая в состав раствора жидкость испаряется 1—1,5 месяца.

    Трамбовка

    Важной процедурой, которая повышает прочность материала, является уплотнение смеси методом трамбовки.

    То, насколько плотно уложена бетонная смесь, тоже зависит скорость ее застывания. Чем плотнее утрамбован раствор, тем влага медленнее покидает его. Благодаря такому эффекту показатель гидратации бетонной массы повышается. Трамбовка осуществляется методом виброобработки. В домашнем строительстве применяют штыкование.

    После трамбования стяжка практически не поддается сверлению или резке. Если понадобится сделать отверстие, придется воспользоваться алмазным буром.

    Как ускорить затвердение и возможно ли это?

    Иногда в процессе строительства необходимо ускорить схватывание бетона. Распространенным способом заводского ускорения считается автоклавная обработка и запарка, во время которой на смесь оказывается воздействие высокими температурами во влажной среде. На месте уменьшить сроки застывания помогут специальные добавки-модификаторы. Чаще всего используют соли азотной кислоты, сульфат натрия, хлорид кальция. Ускорить затвердение под силу обыкновенным портландцементам, но при условии, что к ним будет добавлен вибродомол в мокром или сухом виде.

    Время схватывания бетона | этапы застывания и оптимальная температура

    Июль 8, 2017

    Процесс затвердевания бетона может длиться от одного дня до месяца, в зависимости от многих факторов, включая марку цемента и погодные условия. В этот момент происходит химическая реакция, в ходе которой минералы преобразуются в гидросиликаты калия. Схватывание бетона невозможно без использования воды, поэтому его следует периодически смачивать для повышения прочностных характеристик.

    Субстанция из песка, цемента, воды и крупного заполнителя (щебня/гравия) проектную прочность набирает в течение определенного времени. Продолжительность схватывания зависит от бетонного слоя, влажности, температуры и т.п. Кстати, у нас на сайте есть небольшая полезная статья которая поможет узнать, как замешивать бетон.

    Стадии и время схватывания бетона

    Застывание субстанции происходит в 2 этапа, которые мы рассмотрим по порядку.

    Этап схватывания бетона. Длительность этого процесса относительно недолгая: уже спустя сутки можно наблюдать его окончание. Если температура окружающей среды 20 градусов Цельсия, то начало схватывания происходит за 2 часа. Еще спустя 3 – стадия полностью подходит к своему завершению. Если применять специальные наполнители, то данное время можно сократить на 20 минут. Экономия времени зачастую востребована при изготовлении ж/б конструкций. Ниже приведена скорость схватывания бетона в зависимости от марки цемента:

    • М200 – около 2,5 часов;
    • М300 – примерно 2 часа;
    • М400 – около 1 часа.

    Этап гидратации (затвердевания). Данная стадия наблюдается в момент засыхания бетона (вода испаряется из верхнего слоя). Если процесс протекает слишком быстро, то это сказывается на прочностных характеристиках в сторону их уменьшения. Идеальное время затвердевания составляет 1.5 – 2 недели. Ниже будет приведена скорость гидратации, в зависимости от марки цемента: М200 – 14-28 суток; М400 – 7-14 суток.

    А тогда сколько времени необходимо для застывания бетона М300? – спросите вы. Данный процесс продлится 10-20 дней. Отметим, что в опалубке бетон застывает спустя неделю, и только тогда её возможно снять. Но нужно помнить, что время может быть разным, если учитывать марку бетона и цемента. Ниже мы приводим специальную таблицу, демонстрирующую срок затвердевания субстанции. Эта информация понадобится вам, если вы решите сделать крыльцо из бетона своими руками или залить пол бетоном в гараже.

    Время схватывания бетона при температуре ниже нуля

    Время застывания бетона в зависимости от температуры происходит по-разному. В период холодов подобные работы проводятся с учетом возможной тепло- и гидроизоляции. В таких условиях процесс застывания цементной субстанции заметно замедляется, как, впрочем, и самой прочности. Поэтому в строгом порядке нужно выдерживать необходимое время для набора проектной твердости. Для примера: при температуре -5 градусов Цельсия время затвердевания бетона увеличивается в 5 раз, по сравнению с +20.

    Время схватывания бетона при высоких температурах?

    Время застывания бетона при повышенных температурах (20-30 градусов выше нуля) значительно уменьшается. Поэтому необходимо контролировать данный процесс. Если ничего не предпринимать, то быстрое испарение жидкости приведет к остановке гидратации и потере прочности бетона. При температуре окружающей среды +30 градусов Цельсия схватывание происходит примерно спустя 1 час.

    В таких условиях используется полиэтиленовая пленка, которой накрывают свежий бетон. Это предотвращает ускоренное испарение влаги и способствует равномерному застыванию цементной субстанции. Совет: замедлители позволяют повысить прочность бетона. Опытные строители знают, что самая благоприятная температура для застывания бетона – 5 градусов выше нуля.

    Категория: Строительство

    Бетон при минусовой температуре следует заливать осторожно

    21.01.2015


    Нужен бетон?
    Мы доставим его Вам!
    Звоните!
    +7 (961) 018-50-00
    +7 (903) 630-01-02
    +7 (4822) 57-77-48

    Заливая бетон при минусовой температуре, можно столкнуться с большими сложностями, если не следовать определенным правилам и пренебречь технологией. Основная неприятность – замерзание воды, что приводит к разрыву связей на молекулярном уровне.

    Очень часто из бетона выполняют фундамент при строительстве индивидуальных домов. И если это будет происходить при минусовой температуре, то необходимо провести сначала подготовительную работу, куда входит монтаж опалубки и подведение электрического питания. Помимо этого особое внимание следует уделить и приготовлению бетонной смеси – на выходе из бетоносмесителя бетон должен быть строго определенной температуры. Если доставка бетона на объект осуществляется специализированным транспортом, то в процессе перевозки при минусовой температуре бетон может застыть. Именно поэтому во время приготовления смеси нужно обязательно следить за тем, чтобы температура ее была высокой, а после доставки на объект ее нужно также проконтролировать.

    Приготовление бетонной смеси

    Если предполагается приготовление бетона марки 400, то во время замешивания температура воды должна быть в пределах 60 градусов – после выхода из бетоносмесителя она будет 30-35 градусов. Если предполагается заливка при минусовой температуре, то можно использовать противоморозные компоненты, тогда свойства бетона будут определяться лабораторией, учитывая время схватывания. Тщательный отбор противоморозных добавок объясняется тем, что их применение осуществляется совместно с пластификаторами – это повышает характеристики смеси даже при сильных морозах. Лучше всего если при минусовой температуре производство бетона будет осуществляться в закрытом отапливаемом помещении.

    После подготовки опалубки к ней проводят электрический ток – при минусовой температуре с его помощью можно осуществлять подогрев бетона. Перед заливкой бетона опалубку рекомендуется хорошо прогреть. Саму смесь следует заливать непрерывно – следующий слой должен накрывать предыдущий еще до того, как тот успел схватиться. Укладывая бетон при минусовой температуре, особенно тщательно надо уплотнять его в углах и на участках рабочих швов. После заливки поверхность можно накрыть пленкой, соломенными матами, рубероидом, щитами или иным материалом. Результат окончательного уплотнения смеси можно определить визуально – бетон прекращает оседать, сверху появляется «молочко», выделение воздушных пузырьков прекращается.

    После доставки товарного бетона на участок при минусовой температуре он может остыть, поэтому перед укладкой его рекомендуется подогреть. Способов существует много, но самым действенным считается нагрев посредством электрического тока – в опалубку или строительную конструкцию монтируют электропровода, после чего заливают бетон. Иногда провода можно укладывать с внешней стороны опалубки или использовать «плавающие» электроды. Чтобы избежать «пересушивания» бетона, нужно следить, чтобы при подогреве температура была не выше 35 градусов.

    Если открытая поверхность начинает подсыхать, можно ее немного увлажнить водой, предварительно отключив подачу напряжения. Продолжительность нагрева в основном зависит от температуры окружающего воздуха и самой смеси. После достижения 35 градусов напряжение можно отключить и накрыть залитый участок каким-либо теплоизолирующим материалом.

    Если, заливая бетон при минусовой температуре, четко следовать всем инструкциям и правилам, то уже по истечении семи суток он должен будет набрать расчетную прочность.

    Смотрите также:

    Все статьи

    все новости

    Процесс затвердевания бетона — Всё о бетоне

    При строительстве любых объектов важнейшее значение имеет качественное основание, на котором и стоит здание или дом. Часто для заливки фундамента или плиты применяют бетонные смеси. Чтобы постройки в будущем выдержали любые нагрузки на основание, нужно использовать для него смеси отличного качества. Само залитое основание должно быть готовым для возведения над ним стен и последующих перекрытий, то есть требуется выждать определенный срок, для того чтобы завершилось твердение бетона. Как происходит этот процесс, сколько времени на него требуется и можно ли ускорить твердение?

    Смеси применяются для заливки оснований конструкций и плит перекрытия.

    Процесс застывания

    После того как цемент и воду перемешали для получения раствора, между ними начинается сложное взаимодействие, в результате которого образуется совершенно новое соединение со свойственными ему характеристиками. Вода постепенно проникает в цементные зерна, минералы которых вступают с ней в химическую реакцию. Во время протекания этой реакции минералы превращаются в гидросиликаты калия. Этот процесс и называется затвердеванием бетона.

    Степень затвердевания бетона можно проверить с помощью специализированных средств диагностики.

    Затвердевание не завершается за один день. Для того чтобы бетон обрел необходимую ему прочность и перестал быть пластичным, требуется определенный срок. Его и называют временем твердения. Застывание может длиться годами, что может значительно растянуть процесс возведения сооружений на очень долгое время. Строители не могут ждать так много, и они рассчитали контрольный срок схватывания, по истечении которого основание может выдержать расчетную нагрузку.

    Контрольный срок схватывания

    Чтобы бетон достиг своей марочной крепости на сжатие, нужны благоприятные условия. К ним относят температуру окружающей среды и влажность воздуха.

    При высокой температуре и влажности воздуха твердение идет быстрее, а при низких оно замедляется. Воздействие нулевых и отрицательных температур воздуха может остановить процесс схватывания. Оптимальная температура для застывания составляет 20-30 градусов выше ноля, влажность воздуха не должна быть ниже 90%. В лабораторных условиях было установлено, что наиболее активно при описанных условиях твердение происходит в первую неделю после его заливки. За этот срок бетон может набрать до 70% своей крепости. 100- процентной марочной крепости достигает через 28 дней после заливки.

    График затвердевания в зависимости от температуры.

    В реальных условиях температура воздуха не может быть постоянной: днем она выше, а ночью снижается, влажность тоже меняется в разное время суток. Поэтому специалисты рекомендуют подождать с возведением постройки на основание еще несколько дней. Таким образом, можно продолжать строительные работы не ранее чем через месяц после заливки.

    Хотя оптимальным для строительных работ считается срок 28 дней, в некоторых случаях его нужно увеличить. Речь идет о сооружениях, которые в процессе эксплуатации будут постоянно соприкасаться с влагой. Это пирсы, плотины, дамбы. Застывание таких конструкций с их упрочнением составляет 3 месяца. Как уже было сказано выше, твердение продолжается и спустя 28 дней, и спустя полгода. Однако этот процесс идет намного медленнее начальных стадий схватывания и гарантирует надежность конструкций, которые со временем становятся еще тверже и прочнее.

    Сохранение прочности смеси

    Чтобы бетон был прочнее, он должен равномерно сохнуть по всему своему объему, поэтому конструкции необходимо постоянно смачивать по всей поверхности.

    Чтобы химическая реакция внутри раствора имела возможность протекать, необходима жидкость, ведь благодаря воде происходит схватывание. Но поскольку твердение как процесс длится не один день, вода просто может улетучиться. Чтобы этого не произошло, требуется поверхность конструкции обязательно полить водой, а затем укрыть пленкой или рубероидом. Бетон нужно увлажнять постоянно, особенно в жаркую и сухую пору года. Если погода ветреная, углы и поверхность открытого основания высохнут быстрее, чем остальные части внутри. А ведь чтобы бетон был прочнее, он должен равномерно сохнуть по всему своему объему.

    Следует помнить о том, что бетон в процессе затвердевания меняет свой объем и дает усадку. Усадка быстрее происходит в поверхностных слоях основания. Если не обеспечить его достаточным количеством воды, то на поверхности будут образовываться усадочные трещины, появление которых снизит прочность и долговечность конструкции.

    В промышленном строительстве бетонную конструкцию во время ее созревания постоянно подогревают. Частникам же рекомендуется не заливать бетон в холода.

    В холодное время года нежелательно заливать бетонное основание собственного дома или каких-либо построек на приусадебном участке. Это связано с тем, что вода, которая содержится в растворе, может просто-напросто замерзнуть. Замерзая, она увеличится в объеме и начнет изнутри уничтожать бетон, а его твердение прекратится. Если температура воздуха ниже 10 градусов, то процесс отвердевания будет протекать очень медленно. В промышленном строительстве бетонную конструкцию во время ее созревания постоянно подогревают, поэтому можно выполнять работы по заливке оснований в любое время года. А вот частникам рекомендуется строить фундамент только летом при температуре воздуха плюс 20 градусов и выше.

    Ускорение процесса

    28 дней – это контрольное время застывания бетона. Но в некоторых случаях нужно, чтобы процесс бетонного схватывания протекал быстрее. Это касается работ, проводимых в зимнее время, или необходимой распалубки объектов в ранние сроки. Для таких случаев можно ускорить процесс застывания в десятки раз. Поскольку бетон созревает быстрее при высокой температуре и влажности, наиболее распространенным методом заводского ускорения является автоклавная обработка или запарка бетонной плиты.

    В автоклаве плита пропаривается под большим давлением. В результате этого всего за 15 часов бетон достигает прочности годичного созревания.

    Ее помещают в автоклав-«парилку», где во влажной среде плита пропаривается под большим давлением. В результате такого пропаривания за 15 часов бетон достигает прочности своего аналога годичного созревания в естественных условиях. И хотя после автоклавной термообработки заводская плита уже не будет набирать прочность, по качеству она ни в чем не уступит бетону, который затвердел естественно.

    Для ускорения схватывания применяют специальные вещества, которые добавляют в смеси. Необходимый состав и количество добавок устанавливают экспериментальным путем в строительных лабораториях. Ускорители в процентном соотношении к общей массе цемента не должны превышать установленные лабораториями цифры. Так, разрешается добавлять не больше 4% солей азотной кислоты, 2% сульфата натрия и 3% хлорида кальция.

    Сульфат натрия можно использовать даже в железобетонных конструкциях, которые предназначены для функционирования в зонах воздействия блуждающего тока. Остальные ускорители крайне нежелательно добавлять в глиноземный цемент или в раствор конструкций, армированных предварительно упроченной при высокой температуре сталью. Если ускорители использовать наряду с автоклавной обработкой, это еще больше сократит время, затрачиваемое на твердение бетона. Ускорить процесс затвердевания могут обыкновенные портландцементы, если к ним добавить мокрый или сухой вибродомол (цемент тонкого помола). В настоящее время выпускают и специальные быстротвердеющие бетонные смеси.

    На рынке строительных материалов представлено много разных добавок для растворов бетонных. Одни из них способны лишь ускорять затвердевание, другие обладают целым комплексом функций и являются не только ускорителями, но и пластификаторами, включают в себя противоморозные компоненты. Цены на добавки зависят от сложности получения входящих в их состав компонентов и от их количества. На стоимость влияет место изготовления ускорителей. Цены российских добавок ниже импортных аналогов. Более дешевыми будут хлористый кальций гранулированный и пластификатор-ускоритель Форт «УП-2», дороже обойдется покупка сухого нитрата кальция и кратасола-УТ.

    Твердение бетона в естественных условиях

    Бетон используется практически при любом строительстве, поскольку является универсальным материалом. Дополнительным преимуществом перед другими вариантами является разумная стоимость, что весьма выгодно. Существует несколько способов использования бетона при осуществлении строительных работ. Наиболее простым вариантом является выполнение кладки из готовых блоков и плит. Подобный способ имеет свои сильные стороны, а также недостатки. Он может использоваться далеко не во всех случаях, что подразумевает необходимость укладки состава в специальные формы — опалубки. Их подготовка происходит заранее и требует соблюдения нескольких важных правил. После того, как состав был уложен в опалубку, начинается процесс его твердения, которое наиболее часто проводится в естественных условиях. Следует рассмотреть данный процесс детальнее, чтобы иметь о нём необходимое представление. В ходе естественного твердения бетона, прежде всего, происходит его схватывание. Этот процесс начинается после нескольких часов с момента укладки и подразумевает образование первичных связей. Начинается химическая реакция между водой и цементом в составе бетона, которая приводит к его постепенному затвердеванию. Конечной целью является сцепление всех элементов между собой застывшим вяжущим веществом. В зависимости от температуры, схватывание продолжается от нескольких часов до суток. В ходе его осуществления, не рекомендуется оказывать любые типы нагрузок, поскольку это негативно скажется на качестве конструкции.

    По мере того, как происходит естественное твердение бетона, его прочностные характеристики увеличиваются. Они измеряются в давлении, которое необходимо оказать на единицу площади, чтобы вызвать необратимое разрушение. Процесс набора прочности происходит не в равномерном режиме, а с замедлением. Так, уже через несколько дней состав имеет 30 процентов от необходимого значения. К концу первой недели прочность составляет 70% от требуемого уровня. Стандартным временем, за которое происходит естественное твердение бетона до необходимого показателя, является календарный месяц. Только после этого срока можно осуществлять нагрузку на конструкцию без опасности её разрушения. Стоит отдельно отметить тот факт, что твердение может быть ускорено различными методами. Твердение бетона в естественных условиях является наиболее популярным вариантом осуществления подобных мероприятий, используемым в наши дни. Это позволяет добиться некоторых преимуществ и, прежде всего, следует отметить простоту осуществления подобных мероприятий. Нет необходимости использования специального оборудования или решения других аналогичных проблем. Твердение бетона в естественных условиях происходит без необходимости участия человека, за исключением тех случаев, когда условия окружающей среды считаются неоптимальными и необходимо обеспечить их соответствие норме. Это обеспечивает экономию денежных средств, а также некоторые другие плюсы.

    Твердение бетона в естественных условиях имеет заданный интервал времени. Он составляет 28 суток, что является весьма продолжительным периодом. Столь длительное время подразумевает, что в процессе работ можно столкнуться с многочисленными проблемами. Если выполняется заливка фундамента или любой другой конструкции, то возникают проблемы. Необходимо прекратить работы на весь срок преобразования состава в монолитную массу. Это вызывает некоторые денежные затраты, что не является положительным фактором. Естественное твердение бетона считается наименее энергоёмком, что позволяет говорить о его у удобстве в ряде случаев. Процесс может быть замедлен при воздействии на него внешних факторов. Например, немалую роль играет температура окружающего воздуха и грунта. Когда данный показатель снижается, то химические реакции начинают протекать гораздо медленнее. При отрицательной температуре происходит практически полная остановка естественного твердения бетона. Процесс больше не может продолжаться и молекулярные связи прекращаются, что является серьёзной проблемой. Следует сказать, что это начинается с тех мест, где присутствует наибольшая площадь контакта с охлаждённой средой. Естественное твердение бетона замедляется, прежде всего, в углах опалубки и ребрах блоков.

    Следует сказать о большой важности режима, который будет присутствовать в процессе набора прочности. При этом, следует принимать во внимание не только показатели температуры, но и влажности. Отсутствие учёта данного фактора повлечёт за собой некоторые проблемы, связанные с уменьшением эксплуатационных параметров. Необходимо отметить, что незначительные отклонения в малоэтажном строительстве имеют место быть, поскольку присутствует существенный запас прочности. Если естественное твердение бетона происходит на глинозёмном типе цемента, то присутствует выделение тепла в процессе осуществления химических реакций. Этот фактор не оказывает положительного воздействия и приводит к существенным проблемам, в числе которых присутствует снижение прочностной характеристики. Таким образом, если используется применение состава данного типа следует задуматься об обеспечении его охлаждения.

    Вне зависимости от используемого способа, позволяющего набрать требуемую прочность, в любом случае понадобится осуществлять дополнительные мероприятия. Например, сюда относится регулярный полив. В большинстве случае, укладка производится летом и вода испаряется через поверхность. В зависимости от температуры и интенсивности солнечного излечения, полив проводится от одного до шести и более раз в сутки. Как правило, необходимо выполнять такие процедуры от трёх дней до одной недели. Тогда естественное твердение бетона обеспечит максимальное качество результата.

    Методология расширенного тестирования и проектирования

    Растрескивание в раннем возрасте (EAC) — хорошо известная проблемная область, когда дело касается бетонных конструкций. Движущими силами EAC являются тепловое расширение и аутогенная деформация, но EAC также сильно зависит от материала и геометрических свойств, таких как выделение тепла при гидратации, предел прочности, модуль упругости, ползучесть, размеры поперечного сечения и степень ограничения. Текущий документ содержит описание методологии проектирования EAC, которая в настоящее время внедряется в Норвегии.В основе методологии лежит определение и описание свойств материала конкретного бетона посредством лабораторных испытаний и последующей подгонки модели. Полученные параметры материала затем оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного на машине для испытания температуры и напряжения, с (2) развитием напряжения, рассчитанным с использованием полученных свойств материала и различных подходов к мультифизическому расчету EAC. Особое внимание уделяется влиянию реалистичных температурных режимов отверждения на различные свойства материала и, следовательно, на EAC.

    1. Введение

    Растрескивание в раннем возрасте (EAC) может оказаться проблемой, когда дело касается бетонных конструкций. Когда дело доходит до EAC, наибольшее беспокойство вызывает «сквозное растрескивание», которое может пройти через всю толщину бетонного элемента и в дальнейшем привести к функциональным, долговечным и эстетическим проблемам. EAC вызывается ограниченными изменениями объема, происходящими в фазе упрочнения, где движущими силами являются тепловое расширение (TD) и аутогенная деформация (AD). EAC также сильно зависит от материала и геометрических свойств, таких как выделение тепла при гидратации, коэффициент теплового расширения (CTE), предел прочности при растяжении, модуль упругости, ползучесть, размеры поперечного сечения и степень ограничения.Оценка трещин в раннем возрасте представляет собой сочетание структурного анализа и материаловедения; изменения объема бетона и связанный с ними риск растрескивания можно предсказать, используя методы расчета для оценки структурного поведения бетона в раннем возрасте, когда вышеописанный материал и геометрические свойства являются важными входными параметрами. На основе таких расчетов EAC и в сочетании с хорошим знанием свойств материалов соответствующих бетонов, можно принять правильный выбор типа бетона, минеральных добавок и методов выполнения на месте, чтобы свести к минимуму или даже избежать растрескивания.

    В литературе можно найти различные подходы к расчету EAC. Примерами руководящих принципов и действующих нормативов, касающихся растрескивания и проектирования в предельном состоянии эксплуатационной пригодности (SLS) в отношении изменений объема в раннем возрасте, являются Еврокод 2, CIRIA C766, Модельный код 2010, CEOS.fr, NS3473, Руководство JCI и Руководство BAW [1 –7]. В то время как некоторые подходы к проектированию EAC представляют собой всего лишь оценку того, будет ли бетон трескаться или нет, другие подходы также предоставляют методы расчета, которые прогнозируют размер последующей ширины возникающей трещины.Общим для всех методов расчета EAC является то, что точность результата очень зависит от качества и правильности параметров материала, используемых в качестве входных. Поэтому точная характеристика развития соответствующих свойств материала имеет большое значение, когда речь идет о конструкции EAC.

    Свойства материала бетона можно определить с помощью лабораторных экспериментов или, чаще, с помощью моделей, приведенных в руководствах и правилах. Последнее автоматически вызовет некоторую степень неопределенности в результатах расчета EAC, поскольку некоторые из требуемых входных параметров материала являются сложными и зависят от конструкции смеси, соотношения в / ц, времени, степени гидратации, температуры отверждения и т. Д.Например, недостатком большинства карт свойств конкретных материалов является то, что они основаны на изотермических условиях 20 ° C и не учитывают реалистичный температурный режим отверждения [8]. Это противоречит тому факту, что в нескольких исследованиях утверждается, что реалистичный режим отверждения может влиять на свойства материала, такие как AD, CTE, прочность на растяжение, модуль упругости и прочность на сжатие бетона, что не может быть объяснено принципом зрелости [9– 16].

    Хотя это не очень распространено, развитие стресса в раннем возрасте можно измерить с помощью специально разработанного экспериментального оборудования. В 1969 году в Мюнхене, Германия, была разработана Cracking Frame [17]. Cracking Frame измеряет реакцию бетона на напряжение в раннем возрасте на изменение температуры в бетонном образце с высокой, но неизвестной степенью сдерживания. В 1984 году Springenschmid et al. разработала усовершенствованную машину для испытания температуры и напряжения (TSTM), которая контролировала температуру и деформацию, обеспечивая 100% -ное ограничение. Сегодня во всем мире можно найти несколько различных вариантов TSTM и других подобных устройств, измеряющих развитие напряжений в твердеющем бетоне [12, 18–25].TSTM в NTNU был построен в 1995 году, а в 2012 году он был реконструирован с использованием новой измерительной установки и нового программного обеспечения, которое, среди прочего, предоставило уникальную возможность определять и моделировать заранее заданную степень ограничения во время тестирования [15, 26] . TSTM в NTNU контролируется температурой и сконструирован для измерения генерации одномерного напряжения в герметизированном бетонном образце во время фазы твердения при выбранной степени ограничения. Применяя репрезентативную степень удержания и температурную историю, TSTM может напрямую моделировать развитие напряжения во времени для данного участка бетонной конструкции.Таким образом, в сочетании с мультифизическим анализом EAC и «обратными расчетами» TSTM предоставляет уникальную возможность преодолеть разрыв между лабораторными экспериментами и реальным поведением на строительной площадке.

    Исследования в области EAC значительно расширились на международном уровне с начала 90-х годов с конференции RILEM в Мюнхене в качестве отправной точки [27]. В результате было проведено несколько крупных конференций, посвященных непосредственно этой теме, или специальных сессий на более крупных собраниях [28–34]. Кроме того, большое количество статей было опубликовано в обычных журналах.После конференции RILEM в Мюнхене в 1994 году конкретная группа в NTNU активно участвовала в области EAC как по материалам, так и по экспериментальным и вычислительным аспектам. Работа велась как в рамках ЕС, так и в рамках национальных проектов с участием промышленных, институциональных и университетских участников. Результатом стали многочисленные публикации, участие в международных конференциях и семинарах, а также несколько докторских диссертаций. диссертации [12, 15, 35–38].

    Несмотря на описанные выше исследования в данной области, специальные расчеты EAC традиционно не включались в структурное проектирование в Норвегии.Вместо этого решающими были требования относительно максимального повышения температуры и температурных градиентов по поперечному сечению бетона [39]. Однако за последнее десятилетие внимание к конструкции EAC усилилось из-за растущей осведомленности в отрасли, а также из-за более часто встречающегося варианта избежания требований к температуре путем выполнения специальных расчетов EAC. В связи с этим в последние годы в рамках исследовательских проектов COIN [40] и DACS [41] были разработаны и разработаны представленные в настоящее время характеристики свойств материалов и подход к проектированию EAC.Методология направлена ​​на то, чтобы быть прагматичной, поскольку она предполагает высокую активность в лаборатории, и основана на тесном сотрудничестве между исследователями и промышленностью Норвегии. Общая цель заключалась в том, чтобы сделать метод точным и современным, но при этом практичным и простым для применения подрядчиками и проектировщиками конструкций. В основе методологии лежит определение и описание свойств материала конкретного бетона посредством обширных лабораторных испытаний и последующей подгонки модели. Полученные параметры материала дополнительно оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного в TSTM, с (2) развитием напряжения, рассчитанного с помощью подходов к мультифизическому расчету EAC с использованием полученных свойств материала.В текущем исследовании особое внимание было уделено влиянию реалистичного температурного режима отверждения на различные свойства материала и, как следствие, на риск EAC.

    Основные цели текущей работы заключаются в разработке и улучшении описанной выше методологии проектирования EAC и соответствующих характеристик конкретных свойств, включая методы лабораторных испытаний. Лабораторная работа включает определение решающих параметров для оценки трещин в раннем возрасте, исследование параметров содержания летучей золы, чтобы показать актуальность метода, а также несколько тестов в TSTM, которые составляют основу работы.Общая цель заключалась в том, чтобы сделать методологию проектирования EAC и полученные данные доступными для норвежской бетонной промышленности. Потребность в надежных и эффективных характеристиках свойств бетона и методологии проектирования EAC также коренится в экологическом аспекте. В ближайшие годы бетон изменится из-за его текущего вклада в выбросы CO 2 и использования природных ресурсов. Промышленность должна быть подготовлена ​​к определению характеристик и проектированию EAC следующего поколения бетонов с низким содержанием CO 2 цемента и переработанного заполнителя [42].

    2. Экспериментальное оборудование

    Экспериментальное оборудование, используемое в данном исследовании, описывается следующим образом.

    Тепловыделение бетона при гидратации измеряли с помощью полуадиабатических калориметрических испытаний. 15-литровые образцы бетона были залиты в фанерные ящики, изолированные со всех сторон 100-миллиметровым пенополистиролом. Во время испытаний ящик хранился на воздухе при 38 ° C, в то время как температура воздуха и бетона измерялась непрерывно в течение 5 дней. Измеренное развитие температуры было преобразовано в изотермическое выделение тепла в зависимости от зрелости.Потери тепла в окружающую среду рассчитывались исходя из предположения, что тепловой поток из коробки пропорционален разнице температур между бетоном и окружающей средой. Этот метод широко используется в Норвегии и описан в NS 3657: 1993 [43].

    Прочность на сжатие исследуемых бетонов определяли на кубах диаметром 100 мм, которые являются стандартным образцом для испытаний прочности на сжатие в Норвегии. Испытания проводились в соответствии с NS-EN 12390-3: 2009.

    Прочность на разрыв и модуль упругости при растяжении были определены с помощью испытаний на одноосную прочность в электромеханической испытательной системе INSTRON 5985 [44], которая в течение нескольких лет была стандартным методом определения прочности на одноосное растяжение в SINTEF / NTNU в Норвегии [45 ].К каждому концу вертикально ориентированного образца размером 100 × 100 × 600 мм прикладывалась растягивающая нагрузка с помощью специально разработанных захватов, предназначенных для обеспечения равномерного распределения напряжений. Развитие растягивающего напряжения измерялось непосредственно от центра оси нагружения с помощью системы тензодатчиков до тех пор, пока в образце не развилось разрушение при растяжении. Во время испытания два датчика смещения, установленные на противоположных сторонах образца, измеряют деформацию в среднем сечении 100 мм. Скорость деформации во время испытаний составляла приблизительно 100 × 10 -6 в минуту.Кривая нагрузка-деформация, полученная во время испытания на разрыв, также использовалась для расчета модуля упругости при растяжении. Модуль упругости при растяжении был определен как отношение напряжение / деформация между 10% и 40% разрушающей нагрузки.

    Развитие напряжений в фазе упрочнения было измерено на машине для испытания температурных напряжений (TSTM) в NTNU. Система TSTM состоит из установки расширения и TSTM, которые подключены к системе контроля температуры (Julabo FP45), которая обеспечивает точный контроль температуры бетона во время испытаний.

    Установка расширения — это «пустышка», следующая за TSTM (рис. 1). Он измеряет свободную деформацию, т.е. TD и AD, горизонтально ориентированного образца бетона размером 100 × 100 × 500 мм. Опалубка станка расширения изготовлена ​​из медных пластин толщиной 5 мм, окруженных медными трубами диаметром 5 мм с циркуляционной водой, подключенной к термостату. Опалубка и медные трубы покрыты изоляцией. Подвижные концевые пластины, изготовленные из полистирола и стали соответственно, размещаются на каждом коротком конце опалубки, что позволяет концевым пластинам и, следовательно, бетонному образцу свободно перемещаться во время эксперимента.Измерительные болты из инварной стали заливают непосредственно в каждый короткий конец бетонного образца. После литья на каждом коротком конце устанавливается индуктивный датчик смещения (LVDT), обеспечивающий свободное соединение между измерительными болтами и LVDT. Изменение длины измерительных болтов, вызванное температурой, рассчитывается и компенсируется в каждом эксперименте. Измерения температуры начинаются сразу после заливки, а измерения изменения длины — примерно через 2 часа, в зависимости от бетона и его характеристик раннего застывания.Во время испытаний образец бетона тщательно герметизируется пластиком и алюминиевой фольгой.


    TSTM измеряет развитие напряжения в фазе упрочнения при заданной степени ограничения, R . TSTM состоит из внешней стальной рамы, которая почти без трения поддерживает две подвижные траверсы и подвижную среднюю часть (рисунки 1 и 2). Вместе две траверсы и средняя часть образуют опалубку, в которую заливается горизонтально ориентированный образец бетона.Опалубка TSTM состоит так же, как и опалубка буровой установки, с медными пластинами диаметром 5 мм, окруженными медными трубками диаметром 5 мм (с циркулирующей водой с регулируемой температурой), покрытыми изоляцией. Крейцкопфы и верхние крышки также контролируются по температуре, что обеспечивает равномерную температурную предысторию всего бетонного образца во время испытаний. Образец бетона TSTM имеет форму «собачьей кости». Центральные 700 мм миделя, измеряемая длина, имеют прямоугольное поперечное сечение с размерами 88 мм (ширина) × 100 мм (высота).За пределами измерительной длины ширина бетонного поперечного сечения линейно увеличивается с обеих сторон, пока не достигнет 100 мм на траверсах. Ширина поперечного сечения продолжает постепенно увеличиваться до 225 мм внутри крейцкопфа, обеспечивая сдерживание бетонного образца. Перед заливкой два измерительных болта устанавливаются в средней части TSTM на расстоянии 700 мм, определяя измерительную длину. Измерительные болты проходят через форму с регулируемой температурой и заделываются в бетон во время заливки.Деформация образца бетона измеряется как изменение длины между двумя измерительными болтами двумя индуктивными датчиками смещения (LVDT), по одному на каждой стороне образца бетона (см. Рисунок 1). Датчик нагрузки установлен на правой траверсе, рис. 2, и измеряет удерживающую силу, передаваемую через поперечное сечение бетона во время испытания. Во время испытаний образец бетона тщательно герметизируется пластиком и алюминиевой фольгой.


    Программное обеспечение подключается к LVDT и датчику веса, а также к высокоточному винту, перемещающему левую траверсу (Рисунок 2).Величина перемещения траверсы, вызванного программным обеспечением, определяется (1) изменением длины бетона, измеренным LVDT, (2) нагрузкой, измеренной датчиком нагрузки, и (3) параметрами, определяемыми пользователем в программном обеспечении. Таким образом, TSTM контролируется как деформацией, так и нагрузкой. Кроме того, новое программное обеспечение позволяет пользователю выбирать желаемую степень ограничения в диапазоне от 0 до 100%, где степень ограничения определяется как отношение между ограниченной и полной деформацией в тестах TSTM, умноженное на 100%.Для испытаний TSTM с реалистичным температурным режимом отверждения R обычно устанавливается на 50%, что соответствует типичным условиям удержания стены на плите [47]. Степень ограничения 50% обеспечивает более длительный период измерения до того, как в образце разовьется разрушение при растяжении, и, таким образом, дает больше данных, чем если бы образец был полностью закреплен.

    Система TSTM имеет несколько областей применения. После испытания на ограниченную нагрузку коэффициент теплового расширения (CTE) можно определить, применив серию температурных шагов в ± 3 ° C вокруг начальной температуры 20 ° C к системе TSTM.Кроме того, результаты испытаний на ограниченную нагрузку в TSTM можно использовать для определения возрастающего изменения модуля упругости с течением времени, а также времени начала развития напряжения t 0 [46]. TSTM также может использоваться для других экспериментальных целей, кроме ранее описанных измерений ограниченного напряжения. Испытания на ползучесть и релаксацию, а также определение удерживающих напряжений из-за усадки при высыхании могут быть выполнены в TSTM [38, 46, 48]. Подробное описание системы TSTM и ее возможностей дано в [15].

    Следует отметить, что в данном исследовании образцы бетона были тщательно запечатаны, и поэтому было решено не учитывать усадку при высыхании. Для массивных бетонных конструкций в краткосрочной перспективе усадка при высыхании будет небольшой, и ее, как правило, можно не учитывать.

    3. Программа проектирования и испытаний бетонной смеси

    Настоящее исследование включает четыре бетона: один эталонный бетон без летучей золы (ссылка ANL) и три бетона с различным количеством летучей золы (ANL FA17, ANL FA33 и ANL FA45 ).Состав бетона, а также общее содержание золы-уноса приведены в Таблице 1. Эталонный бетон, ссылка ANL, не содержит золы-уноса и изготовлен из портландцемента CEM I «Norcem Anlegg» [49]. Бетоны из летучей золы, с другой стороны, изготавливаются из портландцемента с зольной пылью CEM II / A-V «Norcem Anlegg FA», где 17% летучей золы перемалывается с клинкером. Все бетоны были изготовлены с соотношением воды и вяжущего 0,4 и объемом цементного теста 292 л / м 3 . Содержание летучей золы было увеличено за счет замены цемента летучей золой 1: 1 по весу, при сохранении постоянного отношения воды к вяжущему и объема цементной пасты.Содержание летучей золы указано в процентах от общего количества цемента + летучей золы. Подробный состав цемента можно найти в [15].


    ANL исх. ANL FA17 ANL FA33 ANL FA45

    Цемент (кг / м 3 ) 372,3 365,3 284,3 229,8
    FA cem (ТВС в составе цемента) (кг / м 3 ) 0.0 60,6 47,2 38,1
    FA добавлен (добавлен дополнительный FA) (кг / м 3 ) 0,0 0,0 71,1 118,5
    Пары кремнезема ( кг / м 3 ) 18,6 18,3 17,6 17,4
    Свободная вода (кг / м 3 ) 163,8 160,7 156,2 153,3
    Песок 0–8 (кг / м 3 ) 1216.3 1216,3 1216,3 1216,3
    Гравий 8–16 (кг / м 3 ) 614,1 614,1 614,1 614,1
    Пластификатор (кг / м 3 ) 2,05 2,01 1,56 1,56

    Предполагаемое содержание воздуха (%) 2,0 2,0 2,0 2,0
    Теоретическая плотность (кг / м3) 3 ) 2400 2390 2370 2360

    Общее содержание ЖК, FA / (cem + FA) 0% 25% 33% 45%
    Содержание микрокремнезема, диоксид кремния / (cem + FA) 5% 5% 5% 5%

    900 02 Описанная в настоящее время методология разработки EAC является результатом тесного сотрудничества между исследователями и промышленностью Норвегии.Следовательно, исследуемый бетон и содержание летучей золы были выбраны на основе общепринятой практики в норвежской бетонной промышленности. Исключение составило 45% летучей золы, которая была включена, чтобы «оспорить» национальные правила. Норвежский стандарт допускает до 35% летучей золы, в то время как NPRA (Норвежская администрация дорог общего пользования) допускает до 40% летучей золы. К смеси был добавлен микрокремнезем, поскольку он является абсолютным требованием для всего бетона, используемого для инфраструктурных объектов в Норвегии [39].

    В таблице 2 представлена ​​экспериментальная программа, выполненная в данном исследовании. Программа включает выделение тепла при гидратации, развитие прочности на сжатие, прочности на прямое одноосное растяжение и модуля упругости при растяжении, а также испытания на свободную деформацию и ограниченное напряжение в TSTM.


    Бетон Испытание Количество образцов Возраст испытания (дни)

    ANL исх. Тепловыделение 1 0–5
    Прочность на прямое растяжение 2 + 2 2, 28
    Прочность на сжатие куба 3 · 8 1, 1.5, 2, 3 , 4, 5, 7, 28, 90
    TSTM (летние условия) 3

    ANL FA17 Тепловыделение 1 0–5
    Прочность на прямое растяжение 2 + 2 2, 28
    Прочность на сжатие в кубе 3 · 8 1, 1.5, 2, 3, 4, 5, 7, 28, 90
    TSTM (лето + зима) 2 + 1

    ANL FA33 Тепловыделение 1 0–5
    Прочность на прямое растяжение 2 + 2 2, 28, 91
    Прочность куба на сжатие 3 · 8 1, 1.5, 2, 3, 4, 5 , 7, 28, 90
    TSTM (лето) 1

    ANL FA45 Тепловыделение 1 0–5
    Прочность на прямое растяжение 2 + 2 3, 28, 91
    Прочность куба на сжатие 3 · 8 1, 1.5, 2, 3, 4, 5, 7, 28, 91
    TSTM (лето + зима) 1 + 1

    Настоящее исследование сосредоточено на растрескивание в раннем возрасте, когда модуль упругости при растяжении является основным свойством материала. Кроме того, сравнимое постепенное увеличение модуля упругости в TSTM в основном основано на приложении растягивающей нагрузки. По этой причине в данной статье описывается только модуль упругости при растяжении. Соответствующие E-модули сжатия для исследованных бетонов сообщаются и сравниваются с представленными в настоящее время E-модулями при растяжении в [15].

    Испытания TSTM проводились в полуадиабатических условиях, то есть каждый бетон подвергался своей собственной полуадиабатической температурной истории, представляющей участок стены толщиной 800 мм, подвергнутый норвежским летним или зимним условиям. ANL FA17 и ANL FA45 также были протестированы с температурными режимами, соответствующими норвежским зимним условиям. Летние условия в Норвегии подразумевают температуру свежего бетона 20 ° C и температуру окружающей среды 20 ° C, в то время как зимние условия в Норвегии представлены температурой свежего бетона 10 ° C и температурой окружающей среды 5 ° C.Историю температуры определяли с помощью программы CrackTeSt COIN, используя полученное тепловыделение гидратации для каждого бетона и геометрию стены в качестве входных данных.

    4. Методология проектирования EAC

    Текущая методология проектирования EAC прагматична, поскольку предполагает высокую активность в лаборатории. Основное внимание было уделено тому, чтобы сделать метод точным и современным, но при этом практичным и простым в применении для подрядчиков и проектировщиков конструкций. В основе методологии лежит определение и описание конкретного бетона посредством лабораторных испытаний и последующей подгонки модели.Полученные параметры материала затем оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного на машине для испытания температуры и напряжения, с (2) развитием напряжения, рассчитанным с помощью различных подходов к расчету EAC с использованием полученных свойств материала. Основные этапы методологии проектирования EAC показаны на рисунке 3 и описаны следующим образом: (a) Свойства материала, такие как тепло, прочность и изменение модуля упругости с течением времени, определяются с помощью специальных лабораторных испытаний исследуемого бетона (b ) Выбранные модели материалов подгоняются к результатам испытаний для обеспечения числовых описаний различных свойств (c) Создана база данных материалов, включающая свойства материалов и соответствующие параметры модели для данного бетона (d) Испытание на ограниченное напряжение выполняется в TSTM. , где образцы подвергаются температурному режиму отверждения, представляющему выбранный участок конструкции стенки толщиной 800 мм. (e) Развитие напряжений TSTM «рассчитывается обратно» с помощью различных подходов к расчету EAC на основе установленной базы данных материалов (f) База данных материалов оценивается и калибруется путем сравнения рассчитанного развития напряжения с развитием напряжения, измеренным в TSTM


    Результатом описанных выше шагов является база данных материалов, которую можно использовать для оценки трещин в раннем возрасте и проектирования конструкций для данного бетона.Испытания в TSTM представляют собой ценную калибровку и проверку установленной базы данных материалов. Кроме того, тесты TSTM включают влияние реалистичного температурного режима отверждения на EAC и соответствующие параметры материала.

    5. Модели материалов и расчеты напряжений в раннем возрасте

    В данном исследовании применяется принцип зрелости, а прочность на сжатие, предел прочности на разрыв и модуль упругости моделировались уравнением (1), которое является модифицированной версией CEB- Модель FIP MC 1990 [50] (см. [51–53]): где — свойство как функция зрелости, — это свойство в 28 дней, с и n — параметры аппроксимации кривой, а t 0 — время начала развития стресса (срок погашения).

    Следовательно, уравнения, описывающие прочность на сжатие, предел прочности на разрыв и модуль упругости, представлены в уравнениях (2) — (4) соответственно. Параметр s одинаков для всех свойств, в то время как параметр n меняется [51, 52]:

    В описанных выше уравнениях время начала развития напряжения t 0 было найдено из испытания TSTM как время созревания, когда измеренное удерживаемое напряжение достигает 0,1 МПа для испытаний, проводимых при реалистичной (летней) температуре.Остальные параметры модели были найдены путем подгонки описанных выше моделей к соответствующим результатам испытаний с использованием метода наименьших квадратов.

    Развитие одноосного напряжения в TSTM было рассчитано на основе обратных расчетов, т. Е. Смоделировано с помощью трех различных расчетных подходов: TSTM-sim, CrackTeSt COIN и DIANA. TSTM-sim служит специально разработанным методом с низким порогом для обратного расчета развития напряжения, измеренного в TSTM, с целью калибровки и / или проверки используемых параметров материала и моделей.Альтернативные методы расчета CrackTeSt COIN и DIANA были включены для оценки и проверки подхода TSTM-sim. Одновременно TSTM-sim в сочетании с ограниченными стресс-тестами в TSTM представляет собой оценку DIANA и CrackTeSt COIN для практических целей.

    TSTM-sim — это специально разработанная процедура одномерных расчетов, запрограммированная в Excel и Visual Basic. Программа моделирует развитие напряжения в TSTM, используя следующие входные параметры: (1) параметры материала, описывающие данный бетон, (2) температура, измеренная в TSTM, (3) свободная деформация и температура, измеренная на установке параллельного расширения, и ( 4) степень ограничения, применяемая в тесте TSTM.TSTM-sim применяет принцип зрелости и рассчитывает изменение модуля упругости и прочности на разрыв с течением времени. Затем вычисляются динамическая ползучесть и развитие напряжений. Зависящая от времени реакция бетона на напряжение описывается на основе линейной вязкоупругости для стареющих материалов, что означает, что деформации ползучести при постоянном напряжении линейно связаны с уровнем напряжения. Эта линейность была смоделирована функцией податливости в сочетании с законом двойной степени [54]: где t (дни) — возраст бетона, это возраст бетона, при котором было приложено фактическое напряжение, — модуль упругости при, — эквивалентный возраст (зрелость) при и φ 0 , d и p являются параметрами модели ползучести.

    Принцип суперпозиции прикладываемого старения бетона можно интерпретировать как «… деформации, возникающие в любой момент t при увеличении напряжения, приложенного в возрасте < t, не зависят от эффектов любого напряжения, приложенного ранее или позже »[9]. Комбинируя теорию линейной вязкоупругости с принципом суперпозиции, общая деформация для истории переменного напряжения может быть выражена в дискретной форме уравнением (6), которое является основой для обратных расчетов TSTM в TSTM-sim [15] : где общее приращение деформации, генерируемое за интервал времени, определяется фактической степенью сдерживания в TSTM, является функцией податливости, является приращением напряжения, вызванным во времени, и является свободной деформацией, измеренной в установке для растяжения.

    Модель ползучести, используемая в TSTM-sim, не уникальна, и в литературе можно найти несколько альтернативных подходов (например, [55–57]). Используемая в настоящее время модель представляет собой упрощение реальных характеристик материала, и она была выбрана на основе предыдущего опыта в NTNU, где она была признана подходящей и достаточно точной при оценке результатов испытаний на ползучесть и выполнении расчетов EAC.

    Специальная программа 2D CrackTeSt COIN [58] также использовалась для моделирования развития напряжения в TSTM во время тестирования.CrackTeSt COIN рассчитывает температуру, прочность, напряжение и риск растрескивания с течением времени в твердеющих бетонных конструкциях. Расчет напряжения в раннем возрасте в CrackTeSt COIN состоит из анализа теплового потока, за которым следует структурный анализ. Зависящая от времени реакция на напряжение описывается цепной моделью Максвелла, т. Е. Расчеты основаны на кривых релаксации. Поэтому параметры ползучести были преобразованы в данные релаксации программой RELAX [59] до моделирования TSTM в CrackTeSt COIN.В обратных расчетах TSTM развитие температуры бетона моделировалось как изменение внешней температуры во времени. К свободному расширению, измеренному в установке расширения, применялась модель TSTM следующим образом: (1) тепловое расширение, вызванное усиленным развитием температуры, и (2) автогенная деформация, применяемая как усадка бетона.

    DIANA [60], хорошо известная многоцелевая программа 3D FEM, была третьим подходом, используемым для моделирования развития напряжения в TSTM. В DIANA моделирование TSTM было выполнено как анализ ступенчатого течения и напряжения.Это включает в себя анализ переходного теплового потока с последующим структурным анализом. Также для анализа DIANA изменение температуры в смоделированном образце бетона использовалось в качестве истории внешней температуры с течением времени. Измеренное свободное расширение в установке для расширения применялось к модели TSTM как заданное смещение, зависящее от времени; следовательно, тепловое расширение и деформации усадки в модели материала были установлены равными нулю, поскольку они уже были учтены при измерениях установки расширения.В DIANA для описания ползучести / релаксации бетона доступны как закон двойной степени, так и цепи Максвелла. В отличие от ранее описанных расчетов в Excel, коэффициент ползучести в DIANA не зависит от срока погашения. Для расчетов на основе релаксационных и максвелловских цепочек данные параметры ползучести были преобразованы в релаксационные данные с помощью программы RELAX [59].

    Используемые в настоящее время подходы для расчета стресса в раннем возрасте более подробно описаны в [15].

    6. Результаты и обсуждение

    Результаты испытаний и расчетные параметры модели для исследованных бетонов представлены в Таблице 3 и на Рисунке 4. Параметры энергии активации A и B в Таблице 3 были определены на основе испытаний прочности на сжатие на образцы отверждались при температуре ниже 5 ° C, 20 ° C и 35 ° C соответственно. Эти тесты и последующие выводы подробно описаны и представлены в [15].


    A B т 0 с n т n E f c 28 (МПа) f t 28 (МПа) E 28 (ГПа) E TSTM (ГПа) CTE ϕ 0 d

    ANL исх. 31500 300 8,8 0,200 0,484 0,348 80,3 3,9 32,5 32,8 9,0 0,75 0,20 0,21
    ANL FA17 31500 200 9,5 0,275 0,589 0,299 71,2 3,6 30,6 31,5 9,1 0.67 0,32 0,28
    ANL FA33 37000 0 12,0 0,356 0,486 0,252 53,6 3,1 27,8 30,5 9,2 0,49 900 0,22 0,33
    ANL FA45 42000 0 13,0 0,424 0,665 0,189 45,3 3.0 24,9 29,5 9,4 0,30 0,24 0,35

    Результаты полуадиабатических калориметрических испытаний подтвердили хорошо известный факт, что тепловыделение бетона систематически уменьшается. с увеличением количества летучей золы (рис. 4 (а)). Однако следует отметить, что используемый в настоящее время цемент ANL FA имел довольно агрессивное выделение тепла при гидратации по сравнению с ранее использовавшимися партиями цемента ANL FA.Фактически, выделение теплоты гидратации у используемой в настоящее время ANL FA (16,6% летучей золы) было почти таким же высоким, как у ANL ref. (без летучей золы). Это нерегулярное выделение тепла с высоким уровнем гидратации может быть вызвано неблагоприятным сочетанием довольно высокой дисперсности (Blaine: 389 м 2 / кг) и немного более низкого содержания летучей золы (16,6%) по сравнению с предыдущей испытанной партией, которая имела крупность и зольность 370 м 2 / кг и 17,8% соответственно. На выделение теплоты гидратации для данной партии цемента также влияют другие параметры, такие как состав цемента и партия летучей золы.Эти результаты показывают, что выделение тепла в фазе затвердевания может значительно различаться между разными партиями цемента, и подчеркивают важность регулярных испытаний тепловыделения в период строительства.

    28-дневная прочность на сжатие, которая является наиболее часто используемым параметром класса качества, систематически снижалась с увеличением содержания летучей золы. Однако из-за значительного улучшения свойств бетонов из летучей золы по истечении 28 дней разница в прочности на сжатие между исследованными бетонами со временем уменьшалась.Через 91 день прочность на сжатие ANL исх. и ANL FA были в том же диапазоне (рис. 4 (c)). Выведенные параметры s , которые описывают развитие прочности бетона на сжатие, приведены в таблице 3. Значения s были в том же порядке величины, что и в других исследованиях (например, [51, 61]).

    28-дневная прочность на разрыв также снижалась с увеличением количества летучей золы (рис. 4 (d)). Однако разница в прочности на разрыв между бетоном со временем уменьшалась из-за значительного запоздалого развития свойств, наблюдаемых у бетонов из летучей золы.Модели фактически показывают, что прочность на разрыв ANL FA45 превосходит ANL FA33 примерно через 28 дней. Параметры модели были найдены в результате механических испытаний до 28 дней в соответствии с общепринятой практикой. Следовательно, модель и ее параметры не точно описывают значительное изменение свойств бетона из летучей золы после 28 дней. В то время как модель предсказывает предел прочности на разрыв 3,3 МПа и 3,4 МПа через 91 день для ANL FA33 и ANLFA45, соответственно, фактическая измеренная прочность на разрыв была намного выше: 4.1 и 4,0 МПа соответственно. Это следует принимать во внимание при оценке прочности на разрыв и риска растрескивания после 28 дней, но для большинства конструкций основной риск EAC будет возникать до 28 дней. Дальнейшие исследования и дополнительные данные необходимы для создания надежных моделей, которые учитывают позднее проявление свойств бетона из летучей золы.

    Было обнаружено, что модуль упругости при растяжении уменьшается с увеличением содержания летучей золы для всех возрастов испытаний (рис. 4 (е)). В ходе текущего исследования было замечено неудовлетворительное согласие между E-модулем, найденным из программы испытаний, E 28 , и E-модулем, вычисленным из приращений напряжения-деформации в TSTM, E TSTM .Предполагалось, что реалистичные температурные условия отверждения могут повлиять на механические свойства. Поэтому была проведена серия механических испытаний с целью изучения влияния температуры отверждения на прочность на сжатие, предел прочности при растяжении и модуль упругости [16]. Программа испытаний показала, что реалистичный температурный режим отверждения привел к увеличению начального изменения модуля упругости для бетонов из летучей золы, что не могло быть объяснено принципом зрелости.Поэтому было решено увеличить 28-дневный модуль упругости в соответствии с тестами TSTM в существующей базе данных материалов (см. Таблицу 3).

    Коэффициент теплового расширения (КТР) — это комплексный параметр, который изменяется как в зависимости от состава бетонной смеси, так и в зависимости от времени (степени самовысыхания) [62]. В данной работе применялось обычно используемое упрощение постоянного КТР, которое определялось как среднее значение, полученное из температурных контуров в конце испытаний на ограниченную нагрузку в TSTM.Тенденция небольшого увеличения CTE с увеличением количества летучей золы была замечена в таблице 3.

    Для каждого теста TSTM развитие AD определялось путем удаления TD из общей деформации, измеренной в установке расширения с использованием CTE. Развитие AD для исследуемых бетонов представлено на рисунке 4 (f), где графики обнулены в начальный момент развития напряжения, t 0 . Следует отметить, что кривые AD представлены как функция времени, а не срока погашения, т.е.е., они отражают развитие AD с течением времени в стене толщиной 800 мм, определенной в настоящее время для данного бетона, подверженного его собственной индивидуальной истории температур отверждения. Значительное изменение было замечено в выведенной AD, которая, как было обнаружено, сильно зависит от повышения температуры во время отверждения (см. [15, 63]). Примененное упрощение постоянного CTE внесет неточность в выведенный AD; однако текущие расчеты напряжения основаны на общей измеренной деформации и, следовательно, не зависят от выбора КТР.Если использовать вычисленную AD в сочетании с другой температурной историей, упрощение постоянного CTE будет иметь только ограниченное влияние на развитие напряжения, так как небольшая возможная погрешность AD возникает в фазе, где E-модуль все еще довольно низок. [15, 63].

    Параметры ползучести, первоначально использовавшиеся в расчетах, были приняты на основе предыдущего опыта с аналогичными бетонами. Однако обратные расчеты TSTM выявили отклонение между расчетным и измеренным развитием напряжения, которое систематически увеличивалось с увеличением содержания летучей золы.Предполагалось, что это отклонение вызвано предполагаемыми параметрами ползучести, и поэтому было решено провести специальные испытания на ползучесть для ANL FA и ANL FA33 в TSTM. Эти испытания на ползучесть и соответствующие результаты описаны и представлены Klausen et al. [46]. Новые параметры модели обеспечили гораздо лучшее согласие между измеренным и рассчитанным на основе исторических данных развитием напряжения (таблица 3 и рисунок 5 (а)). Это упражнение иллюстрирует основную концепцию текущей методологии TSTM, используя TSTM в качестве «решения» для оценки и калибровки определенных параметров модели исследуемого бетона.

    На рис. 5 (b) показаны измеренные и рассчитанные изменения напряжения для ANL ref. подвергнуты реалистичному температурному режиму отверждения, соответствующему норвежским летним условиям. Развитие напряжений было рассчитано с помощью TSTM-sim, CrackTeSt COIN и DIANA с использованием закона двойной степени (DIANA DPL), и все подходы были основаны на одних и тех же параметрах материала. Расчетные кривые напряжения показали очень хорошее совпадение как друг с другом, так и с соответствующим измеренным напряжением. Все подходы к расчету обеспечивали точное описание фазы сжатия, в то время как расчет DIANA дал немного меньшее развитие растягивающего напряжения с течением времени, чем другие подходы.Причина этого заключается в расчетах ползучести, поскольку коэффициент ползучести в DIANA не зависит от зрелости. В целом, следует сказать, что подходы к расчету в сочетании с ранее определенными параметрами материала обеспечивают очень точное моделирование развития напряжений в TSTM. Соответствующее согласие между различными подходами к расчету было также замечено для других исследованных бетонов, и, следовательно, специально разработанная программа моделирования TSTM-sim в Excel была оценена и проверена CrackTeSt COIN и DIANA.В дальнейшем TSTM-sim использовалась для обратного расчета измеренного развития напряжений, чтобы оценить и проверить свойства материала для остальных бетонов.

    Измеренные и рассчитанные изменения напряжений для исследованных бетонов, подвергнутых реалистичным температурным режимам отверждения, представляющим норвежские летние условия, представлены на Рисунке 6. Следует отметить, что каждый бетон подвергался своей собственной полуадиабатической температурной истории, представляющей сечение 800 мм. толстая стенка (рис. 5 (б)).Чтобы различать бетоны и их индивидуальные температурные характеристики, использовались следующие обозначения: « Имя бетона ( T ini / T max )», где T ini — начальная температура. свежего бетона и T max — максимальная температура бетона во время испытаний. Все реалистичные температурные испытания в TSTM применялись со степенью сдерживания R = 50%.

    На рис. 6 (a) показано измеренное и рассчитанное развитие напряжения для трех номинальных идентичных испытаний TSTM, выполненных с ANL ref.Измеренное развитие напряжения показало очень хорошую воспроизводимость между испытаниями со стандартным отклонением через 48 и 96 часов всего 0,03 и 0,06 МПа соответственно. Кроме того, было также очень хорошее соответствие между измеренным развитием напряжения и соответствующим обратным расчетом. Для ANL FA были выполнены два номинальных идентичных теста TSTM (рисунок 6 (b)). Испытания показали очень похожие изменения измеренного напряжения, а также хорошее соответствие измеренного и рассчитанного напряжения.На рисунках 6 (c) и 6 (d) показаны измеренные и рассчитанные изменения напряжения для ANL FA33 и ANL FA45, соответственно. Оба теста показали довольно хорошее соответствие измеренного и рассчитанного напряжения; однако для ANL FA33 наблюдалась небольшая недооценка развития растягивающего напряжения с течением времени. Это небольшое отклонение может быть вызвано первоначальным увеличением модуля упругости под действием температуры. Хотя влияние температуры на 28-дневное значение модуля упругости было скорректировано заменой E 28 на E TSTM , соответствующее повышение скорости развития модуля упругости под действием температуры по сравнению с первым несколько дней не учтено (см. [15, 16]).Таким образом, TSTM обеспечивает очень хорошую воспроизводимость номинальных идентичных тестов. Кроме того, испытания TSTM и соответствующие обратные расчеты подтвердили подходы к расчету и созданную базу данных материалов для всех исследованных бетонов.

    Норвежский климат с его холодными зимами может быть сложным, когда дело касается бетонного строительства. Было замечено, что предел прочности на разрыв для бетонов с большим объемом золы-уноса может быть очень низким при низких / умеренных температурах, и предполагалось, что этот эффект может перекрыть положительный эффект снижения тепловыделения.Поэтому было решено провести испытания в TSTM, где бетон подвергался норвежским зимним условиям, которые в текущем исследовании были определены как температура свежего бетона 10 ° C и температура окружающей среды 5 ° C. На рисунке 7 показано измеренное и рассчитанное развитие напряжения для ANL FA17 и ANL FA45 в зимних условиях. Измеренные и рассчитанные назад изменения напряжений также дали хорошее согласие для этих температурных условий отверждения. Следовательно, текущая методология EAC доказывает свою надежность, поскольку установленная база данных материалов оказалась действительной также для температурных условий отверждения, представляющих другие климатические условия.

    На рисунке 8 (а) показан скомпилированный набор кривых развития напряжений, измеренных в TSTM. При рассмотрении только бетона из летучей золы (все они основаны на одном и том же цементе Anlegg FA) как сжимающие, так и растягивающие напряжения уменьшались с увеличением содержания летучей золы для данного примера стены и температурных условий (стена толщиной 800 мм, летние и зимние условия). Как видно на Рисунке 4 (а), максимальная температура во время отверждения, T max , снижается с увеличением содержания летучей золы.Следовательно, уменьшение T max снижает как расширение бетона, то есть развитие начального напряжения сжатия, так и тепловое сжатие во время фазы охлаждения. Однако это вызванное летучей золой снижение развития растягивающего напряжения необходимо рассматривать в сочетании с соответствующим пониженным пределом прочности на растяжение. Таким образом, склонность бетона к растрескиванию оценивалась на основе индекса трещины, то есть возникающего растягивающего напряжения, деленного на соответствующую прочность на растяжение (см. Рисунок 8 (b)).Было обнаружено, что для исследуемых бетонов и структурного случая возрастающая замена цемента летучей золой снижает тенденцию к растрескиванию. Было установлено, что бетон с самым высоким содержанием золы, ANL FA45, обеспечивает самый низкий индекс трещин как в летних, так и в зимних условиях для данной стены толщиной 800 мм.

    Ссылка ANL. тесты внесли значительный вклад в документацию воспроизводимости TSTM; однако их нельзя было напрямую сравнивать с бетоном из летучей золы, поскольку они были изготовлены из другого цемента.Первоначально ANL исх. Ожидалось, что бетон без летучей золы будет давать самую высокую тенденцию к растрескиванию. Однако из-за сочетания нескольких неблагоприятных обстоятельств риск взлома как ANL FA17, так и ANL FA33 фактически превзошел ANL ref. с течением времени (рисунок 8 (б)). Причинами этого были (1) нерегулярное выделение тепла с высоким уровнем гидратации у используемой в настоящее время партии цемента ANL FA, (2) высокая AD, наблюдаемая для бетонов из летучей золы, подвергшихся воздействию высоких температур отверждения, (3) повышение E -модуль упругости в раннем возрасте, наблюдаемый для бетонов из летучей золы, и (4) низкая скорость развития прочности на разрыв в раннем возрасте для бетонов из летучей золы.

    В данной статье показано, что замена цемента летучей золой может снизить склонность бетона к растрескиванию; тем не менее, риск EAC также зависит от нескольких других параметров, таких как, например, партия цемента, тип заполнителя, соотношение массы и материала и добавление добавок, уменьшающих усадку (SRA) [64]. Таким образом, при проектировании бетонных конструкций следует включать точную характеристику свойств бетона и соответствующие методологии проектирования EAC.

    7.Резюме и заключение

    В ходе текущей работы была разработана и разработана методология проектирования по растрескиванию в раннем возрасте (EAC) и соответствующий метод определения свойств бетона, основанный на лабораторных испытаниях и установке для испытания температурных напряжений (TSTM): (i) TSTM обеспечил очень хорошую воспроизводимость и надежные результаты во время исследования. Например, параметры ползучести, полученные непосредственно из испытаний на ограниченную нагрузку в TSTM, дали очень хорошее согласие с соответствующими специализированными испытаниями на ползучесть.Благодаря своей надежности испытания в TSTM представляют собой ценную калибровку и проверку параметров материала и модели, установленных для данного бетона. Кроме того, тесты TSTM включают влияние реалистичного температурного режима отверждения на EAC и соответствующие параметры материала. (Ii) Было обнаружено хорошее согласие между развитием напряжения в раннем возрасте, рассчитанным с помощью TSTM-sim (Excel), CrackTeSt COIN и DIANA, соответственно. При корректировке влияния температуры на 28-дневное значение модуля упругости, расчеты также показали очень хорошее согласие с соответствующим развитием напряжения, измеренным в TSTM, как для летних, так и для зимних температурных условий отверждения.Это общее соглашение подтверждает достоверность и надежность подходов к расчету, а также параметров применяемой модели. (Iii) На основе текущего картирования свойств и калибровки в специальной программе CrackTeSt COIN была создана база данных материалов для исследуемых бетонов. CrackTeSt COIN и соответствующая база данных материалов теперь представляют собой средство, с помощью которого подрядчики и проектировщики конструкций могут оценить правильный выбор типа бетона, минеральных добавок и методов выполнения на месте, чтобы минимизировать или даже избежать растрескивания.(iv) Некоторые параметры материала, которые влияют на EAC, зависят от температуры отверждения бетона таким образом, что только до определенной степени можно описать принципом зрелости, например, предел прочности при растяжении, модуль упругости и автогенная деформация (AD). Следовательно, текущие результаты убедительно свидетельствуют о том, что такие параметры следует измерять при соответствующих реалистичных температурных условиях отверждения. (V) Для исследуемых бетонов и структурного случая было обнаружено, что возрастающая замена цемента летучей золой снижает тенденцию к растрескиванию.

    Ожидается, что в ближайшие годы бетон изменится из-за его текущего вклада в выбросы CO 2 и использования природных ресурсов. Отрасль должна быть подготовлена ​​к определению характеристик и проектированию EAC следующего поколения бетонов с низким содержанием CO 2 цемента и переработанного заполнителя.

    Доступность данных

    Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

    Раскрытие информации

    Текущая публикация основана на Ph.Докторская диссертация Клаузена «Ранняя оценка трещин в бетонных конструкциях, экспериментальное определение решающих параметров» [15].

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Выражение признательности

    Работа была выполнена в рамках проекта DaCS (Durable Advanced Concrete Solutions, 2015–2019) в рамках исследовательского инновационного проекта, ориентированного на пользователя, в COIN (Concrete Innovation Center, 2007–2014 гг. (Https: //www.sintef. no / en / projects / coin / coinp), Центр инноваций на основе исследований, созданный Исследовательским советом Норвегии).

    Контроль температуры укладки и выдержки бетона — ключ к успеху

    При бетонировании в холодную погоду преследуются три основные цели: 1) Защитить только что уложенный бетон от повреждений из-за раннего замерзания; 2) Поддерживайте условия отверждения, чтобы обеспечить адекватный прирост прочности; и 3) Защитите бетон от теплового удара и связанного с ним растрескивания в конце периода защиты.

    Если свежеуложенный бетон замерзнет, ​​это может привести к немедленному и необратимому повреждению. Повреждение происходит из-за того, что вода (т.е., замес или вода для смешивания) при замерзании расширяется в объеме на 9%. Образование кристаллов и линз льда, в результате чего происходит расширение пасты и микротрещины, может снизить прочность на сжатие и увеличить пористость затвердевшего бетона (рис. 1). Снижение прочности до 50% может произойти, если замерзание произойдет в первые несколько часов после укладки или до того, как бетон достигнет прочности на сжатие примерно 500 фунтов на квадратный дюйм. Последующее отверждение не устранит повреждения и не восстановит свойства бетона.

    Свежеуложенный бетон необходимо защищать от раннего замерзания до тех пор, пока количество воды для затворения или степень насыщения не будут в достаточной степени снижены за счет процесса гидратации, который описывает химическую реакцию между портландцементом или вяжущими материалами и водой. Во время гидратации степень насыщения бетонной смеси постоянно снижается, так как вода для смешивания соединяется с вяжущими материалами, и смесь начинает затвердевать и затвердевать. Из-за процесса гидратации количество доступной воды для смешивания, которая образует кристаллы и линзы льда, уменьшается, поэтому риск необратимого повреждения в случае замерзания бетона уменьшается.

    Когда нет внешних источников воды, критическая степень насыщения — так, чтобы один цикл замерзания не повредил бетон необратимо — возникает, когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм. При заданных температурах отверждения бетонные смеси с правильными пропорциями должны достичь этой прочности в течение примерно 24 часов. Для богатых цементом смесей или смесей с горячей водой и химическими ускорителями прочность 500 фунтов на квадратный дюйм может быть достигнута намного раньше. Поэтому очень важно, чтобы свежеуложенный бетон был защищен от замерзания в течение первых 24 часов или пока бетон не достигнет прочности не менее 500 фунтов на квадратный дюйм.

    Когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм, он может выдержать один цикл замораживания-оттаивания без повреждений, если бетон является воздухововлекающим и не подвергается воздействию внешнего источника воды. Для воздействия повторяющихся циклов замораживания и оттаивания новый бетон должен достигать минимальной прочности на месте не менее 3500 фунтов на квадратный дюйм, если подвергается повторяющимся циклам замораживания и оттаивания, и 4500 фунтов на квадратный дюйм, если также подвергается воздействию химикатов для борьбы с обледенением. Кроме того, недавно уложенный бетон, или, точнее, вода для смешивания в порах бетона, не замерзает до тех пор, пока температура не упадет ниже 32 ° F из-за щелочей внутри поровой воды и других факторов.Поэтому не паникуйте и предполагайте, что бетон замерз, если измеренная температура бетона составляет 32 ° F или на несколько градусов меньше. Чтобы избежать необратимого повреждения в раннем возрасте из-за холодной погоды, защитите бетон от замерзания как можно скорее после укладки, уплотнения и отделки.

    Рисунок 1. Крупный план отпечатков ледяных кристаллов в замороженном бетоне. Для этого образца повреждение от замерзания или микротрещина распространялась на бетон примерно на 2 дюйма. Фото предоставлено Дэвидом Ротштейном, DRP, Twining Company Рисунок 2.Сравнение прочности на сжатие в раннем возрасте для бетонов, изготовленных из цементов типов I и III и отвержденных при 40 ° F и 73 ° F. Кредит изображения: Клигер, П. Влияние температур смешивания и отверждения на прочность бетона, RDB RX103, Портлендская цементная ассоциация, 1958, www.cement.org

    Защитите, чтобы обеспечить адекватный прирост прочности

    Скорость затвердевания и набора прочности бетона зависит от температуры бетона. Как показано на рисунке 2, низкие температуры отверждения бетона снижают скорость гидратации и, следовательно, замедляют скорость набора прочности.Чтобы гарантировать, что вновь уложенный бетон приобретает необходимую прочность для безопасного снятия опалубки, опор и перекладин, а также для безопасной загрузки конструкций во время и после строительства, необходимо поддерживать адекватную температуру бетона в течение периода защиты или отверждения.

    Температура укладки и отверждения бетона: Все поверхности для укладки свежего бетона не должны иметь снега, льда и стоячей воды. Не кладите свежий бетон на замерзшие основания или основания. Избегайте разницы температур, превышающей 20 ° F между свежим бетоном и основным материалом для плит на земле; в противном случае может произойти непостоянное схватывание, быстрая потеря влаги, расслоение и растрескивание при пластической усадке.

    Обычно в спецификациях для бетонирования в холодную погоду устанавливаются минимальные температуры укладки бетона, минимальные температуры отверждения бетона и периоды отверждения для защиты бетона как от раннего замерзания, так и для обеспечения соответствующего увеличения прочности. Наиболее распространенные минимальные температуры укладки и отверждения бетона, указанные в DOT, составляют 50 ° F и 55 ° F, но некоторые из них достигают 40 ° F. Некоторые DOT имеют понижающуюся или понижающую минимальную температуру схватывания бетона в зависимости от времени.

    Большинство инспекторов будут измерять температуру свежего бетона в месте доставки или размещения.Однако некоторые могут измерить бетон после укладки или в формах. Для некоторых DOT указаны только минимальные температуры укладки бетона. Вместо указания минимальных температур отверждения в этих DOT указывается минимально необходимая изоляция (значение R) или температура обогреваемого корпуса на основе минимального размера сечения и температуры окружающего воздуха. Несмотря на то, что каждый DOT отличается, каждый DOT имеет спецификации начинать отверждение сразу после окончания, чтобы поддерживать температуру только что уложенного бетона, чтобы защитить его от замерзания в раннем возрасте и обеспечить адекватный прирост прочности.На следующей работе обязательно знайте минимальную температуру укладки и выдержки бетона; Кроме того, не забудьте учесть падение температуры бетона во время доставки.

    Периоды защиты: DOT по-разному определяют период времени отверждения. Некоторые требуют минимальных периодов времени с минимальной температурой отверждения, в то время как другие основывают минимальный период отверждения на основе прочности на сжатие или изгиб, в первую очередь определяемой методом созревания. Зрелость бетона — это косвенный способ оценки прочности бетона на месте путем сочетания температуры и времени (рис. 3).

    Некоторые DOT требуют минимального периода отверждения в 5, 7 или 14 дней с указанной минимальной температурой отверждения для различных типов структурных элементов, в то время как другие основывают продолжительность периода отверждения на набранной прочности бетона, определяемой методом зрелости. Например, DOT часто требуют, чтобы подрядчик поддерживал температуру дорожного покрытия на уровне 40 ° F или выше, пока бетон не достигнет прочности на сжатие на месте не менее 2000 фунтов на квадратный дюйм, или указать минимальный период отверждения с момента бетонирования. укладку до тех пор, пока бетон не достигнет заданного процента от требуемой прочности.Если разрешено, всегда используйте метод зрелости для оценки прочности на месте, потому что это, как правило, самый безопасный и экономичный способ.

    Способы защиты: Изоляция или одеяла для зимнего отверждения являются наиболее экономичным средством поддержания адекватных температур отверждения бетона, потому что этот метод использует тепло гидратации или тепло, выделяемое в результате химической реакции между вяжущими материалами и водой (Рисунок 4 ). В зависимости от массы бетона, содержания вяжущих материалов, температуры бетона и условий окружающей среды изоляция обычно может поддерживать адекватную температуру отверждения.

    Как можно скорее накройте бетон одеялом, не повреждая поверхность, чтобы улавливать как можно больше тепла гидратации. Улавливание раннего тепла поможет поддерживать температуру отверждения, но также способствует гидратации, что, в свою очередь, дает дополнительное тепло. Обязательно защитите края, углы и поверхности, поскольку эти области наиболее подвержены замерзанию и повреждению в раннем возрасте. Обязательно перекрывайте и закрепляйте одеяла, чтобы ветер и проезжающие грузовики не сдували их с бетона.

    В экстремальных зимних условиях иногда тепла гидратации недостаточно для поддержания адекватной температуры отверждения, и требуется дополнительное тепло. Дополнительное тепло можно подавать с помощью бетонных одеял с электрическим подогревом, водяных обогревателей с одеялами зимнего отверждения и обогреваемых шкафов. Конечно, использование дополнительного тепла может значительно увеличить стоимость бетонирования в холодную погоду.

    Рис. 3. Система зрелости в пробуренной стволе опоры моста, обеспечивающая оперативный, удаленный или беспроводной доступ к температуре и прочности бетона (данные о зрелости).Фото: Джон Гнэдинджер, Con-CureFigure 4. Установите зимние одеяла как можно скорее, чтобы уловить исходное тепло бетона и тепло гидратации.

    Защита от теплового удара и трещин

    В конце периода защиты постепенно снимайте изоляцию или другую защиту, чтобы температура поверхности постепенно снизилась в течение последующих 24 часов. В противном случае поверхность бетона может остыть слишком быстро, создавая большие температурные градиенты между поверхностью и внутренними частями бетона, и возникающие термические напряжения могут вызвать случайное растрескивание поверхности.По сути, поверхность бетона термоусадочная, но внутренняя часть остается теплой и не дает усадки, поэтому поверхность трескается. Рассмотрите возможность постепенного уменьшения количества источников тепла или оставьте изоляцию на месте до тех пор, пока температура бетона не остынет до средней температуры воздуха. Некоторые подрядчики снимают защиту днем, когда температура выше, и заменяют ее ночью, когда температура падает; однако это дорогостоящий подход с точки зрения рабочей силы.

    Спецификации обычно ограничивают максимальное падение температуры поверхности до 50 ° F в течение 24 часов.Однако ваши характеристики могут отличаться (менее 50 ° F) или основываться на минимальных размерах бетонной секции, поэтому проверьте максимальное падение температуры поверхности, допустимое после снятия защиты.

    Предварительное планирование — залог успешного бетонирования в холодную погоду. При разработке или реализации вашего следующего плана бетонирования в холодную погоду рассмотрите три основные цели: защитить бетон от раннего замерзания, защитить, чтобы обеспечить достаточный прирост прочности, и защитить от теплового удара и растрескивания.

    (PDF) Прогнозирование прочности и зрелости твердеющего бетона

    Прогнозирование прочности и зрелости твердеющего бетона

    твердеющего бетона

    Ирина Белых, Виктор Сопов *, Лариса Буцкая, Лидия Першина и Ольга Макаренко

    Харьковский национальный строительный университет и архитектура, Сумскаст. 40, 61002 Харьков,

    Украина

    Аннотация. При прогнозировании роста прочности и зрелости твердеющего бетона

    необходимо учитывать роль температурных факторов

    .Учет температурного фактора требует на начальной стадии

    твердения бетона низкие положительные температуры и невысокую скорость нагрева

    бетона. Уровень максимального нагрева бетона

    будет зависеть не только от экзотермии цемента, но и от амплитуды колебаний температуры окружающей среды

    . Проанализирован вклад в растрескивание бетона

    различных типов цементов с точки зрения тепловыделения

    при их гидратации.Проанализированы существующие модели для прогнозирования

    характера набора прочности и зрелости бетона на основе данных

    по тепловыделению при гидратации цемента в бетонных конструкциях. Показано, что лабораторных исследований недостаточно для оценки

    характера тепловыделения. Для эффективного прогнозирования физических и

    механических свойств необходимо проводить температурно-временной мониторинг

    во время твердения бетона в конструкции, чтобы учесть влияние внешних факторов

    .

    1 Введение

    Одной из основных проблем монолитного бетонирования является проблема обеспечения устойчивости бетона к температурному растрескиванию

    . Образование температурных трещин

    связано с нагревом и охлаждением бетона, когда он затвердевает в конструкции. Нагрев вызывается выделением тепла в бетоне

    в результате экзотермических реакций гидратации цемента при его взаимодействии

    с водой.Поскольку тепло не может передаваться мгновенно, в объеме уложенного бетона будут наблюдаться градиенты температуры

    , что приведет к развитию значительных растягивающих напряжений на внешних краях бетонного массива

    . Также образование трещин

    может быть вызвано влиянием колебаний температуры наружного воздуха и условий теплообмена

    элементов конструкции с окружающей средой.

    Контроль температуры в бетонной конструкции — одна из основных мер по обеспечению трещиностойкости бетона

    [1-4].

    При прогнозировании роста прочности и зрелости твердеющего бетона необходимо

    учитывать роль температурного фактора.

    С учетом температурного фактора требуются низкие положительные температуры и низкая скорость нагрева бетона

    на начальной стадии твердения бетона. В данном случае уровень

    * Автор для переписки: [email protected]

    © Авторы, опубликовано EDP Sciences.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons

    Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

    Сеть конференций MATEC 230, 03001 (2018) https://doi.org/10.1051/matecconf/201823003001

    Transbud-2018

    Температура твердения бетона имеет значение

    Вне зависимости от того, жаркие ли условия или холодные, идеальная температура твердения бетона должна поддерживаться на уровне около 55 ° F для достижения оптимальной прочности бетона.

    Лечение дамбы Гувера

    После завершения строительства в 1935 году плотина Гувера была самой большой плотиной в мире и чудом труда и инженерной мысли. Первая заливка началась 6 июня 1933 года. Рабочие построили плотину не как один бетонный блок, а как серию отдельных колонн. Трапециевидные колонны поднимались пятифутовым подъемником. Этот метод позволил рассеять огромное количество тепла, выделяемого застывшим бетоном. Если бы плотина была построена путем однократной непрерывной заливки, бетон стал бы настолько горячим, что для его охлаждения до температуры окружающей среды потребовалось бы 125 лет.Возникающие в результате напряжения могли бы привести к растрескиванию и обрушению дамбы.

    Жара и сухость Невады вызвали дополнительные сложные проблемы с температурой заливки и отверждения бетона. При первой заливке бетона речная вода циркулировала через охлаждающие змеевики из тонкостенных стальных труб диаметром 1 дюйм. После того, как бетон получил первое начальное охлаждение, охлажденная вода из холодильной установки на нижнем перемычке циркулировала через змеевики для завершения охлаждения.

    Отверждение бетона — искусство

    Мы живем в мире, где быстрее всегда кажется лучше; однако бетон, который затвердевает слишком быстро или в условиях затвердевания горячего бетона, на самом деле может привести к образованию слабого или нестабильного бетона.Если бетон выдерживается при более низких температурах окружающей среды (от 32 ° F до 50 ° F) и постоянно присутствует влага, увеличение прочности будет медленным, но в конечном итоге бетон достигнет высокой прочности. Бетон не должен нагреваться выше 90 ° F или высыхать в течение периода отверждения.

    Наилучшая температура отверждения бетона

    Под «лучшим» мы подразумеваем «самый тщательный», а не самый быстрый. Высокие температуры означают более быстрое отверждение, но быстрое отверждение в конечном итоге означает меньшую прочность.Следующее исследование, проведенное Полом Клигером в Исследовательском бюллетене № 103 Портлендской цементной ассоциации , иллюстрирует эту концепцию.

    График времени отверждения бетона

    при температуре

    В возрасте 1 дня бетон 120 ° F был самым прочным, а бетон 25 ° F — самым слабым. К 7 дням бетон, отвержденный при высокой температуре, имел не большую прочность, чем бетон 73 ° F, или даже меньше. К 28-дневному возрасту высокотемпературный бетон был слабее бетона с температурой 73 ° F.С 28 дней до 1 года бетон с температурой 55 ° F был значительно прочнее, чем бетон с температурой 73 ° F. Все это говорит о том, что при непрерывном отверждении бетон, выдержанный при температуре около 55 ° F в течение первых 28 дней, в конечном итоге достигает максимальной прочности (бетон).

    Пределы температуры бетона в жаркую погоду

    Бетонирование в жаркую погоду связано не только с температурой. Высокая температура окружающей среды, ветер и относительная влажность — все это играет роль в «жаркой погоде». В условиях горячего вереска основная проблема отверждения заключается в том, что верхняя часть бетонной плиты высыхает намного быстрее, чем нижняя.По мере высыхания бетон дает усадку. Это означает, что верх будет сжиматься, а нижний — нет. Это создает внутренние проблемы с бетоном, что приведет к повреждению плиты. Верх и низ заливки необходимо затвердеть с одинаковой скоростью (Размещение).

    Решения по температуре отверждения бетона

    Слишком жарко?

    North Slope Chillers производит портативное охлаждающее оборудование, которое предохраняет свежеулитый бетон от тепла.Портативные, изолированные и эффективные чиллеры North Slope эффективно регулируют температуру бетона как в обычных, так и в жарких условиях.

    Циркуляционное одеяло Fluxwrap комбинируется с охладителем или охладителем для достижения оптимальных результатов. Циркуляционное одеяло отводит тепло к одеялу, чтобы охладить бетон.

    • Используйте запатентованную технологию распределения тепла Powerblanket в обратном направлении — охлаждающее одеяло отводит тепло и снижает температуру бетона.
    • Покрывало и изоляция такие же, как и в прочной системе, используемой в обогревателях Powerblanket
    • Портативный
    • Контроль скорости схватывания свежеуложенного бетона даже в жарких условиях

    Слишком ХОЛОДНО?

    Можно ли заливать и выдерживать бетон зимой? Покрытия для отверждения бетона Powerblanket обеспечивают управляемый способ эффективного и уверенного отверждения бетона в холодные месяцы. Даже в теплую погоду отверждающие одеяла Powerblanket увеличивают производительность за счет быстрого отверждения при постоянном равномерном нагреве.

    • Бетон твердеет в 2,8 раза быстрее, чем обычные теплоизолированные покрытия
    • Обеспечивает прочность бетонирования в холодную погоду до 3925 фунтов на квадратный дюйм за 72 часа
    • Поддержание влажности на протяжении всего процесса увлажнения
    • Легко устанавливается и снимается
    • Предотвратить цикл замораживания
    • Оттаять землю и заморозить на стройплощадке перед заливкой
    • Сократите время простоя и увеличьте прибыльность
    • Обеспечение соответствия требованиям ACI для бетонирования в холодную погоду

    Powerblanket понимает, каково работать над большими бетонными проектами, когда погода и температура не работают.От Статуи Свободы до крупного межгосударственного моста в Канзас-Сити — мы принимаем участие в акции и доказали, что наши продукты являются лучшими в отрасли.

    Для получения дополнительной информации о решениях, ознакомьтесь с одеялами для отверждения бетона Powerblanket и найдите то, которое лучше всего соответствует вашим потребностям.

    Процитированные работы

    «Укладка бетона в жаркую или холодную погоду». Блог Сакрете. 16 мая 2017 г. https://www.sakrete.com/blog/placing-concrete-in-hot-or-cold-weather

    «История плотины Гувера — Очерки».Бюро мелиорации. 16 мая 2017 г. https://www.usbr.gov/lc/hooverdam/history/essays/concrete.html

    Поддержание идеальной температуры во время отверждения бетона

    Опубликовано автор: Келли

    Отверждение бетона звучит как простой процесс, просто смешайте цемент с водой и подождите, пока он высохнет, верно? Неправильный! Чтобы добиться максимальной прочности бетона, вам придется контролировать влажность и температуру, поэтому планируйте это заранее.

    При мониторинге процесса твердения бетона, помимо времени, играют роль два основных фактора: погодные условия окружающей среды и температура бетонной смеси.

    Проверить прогноз

    Перво-наперво: если достаточно жарко, где вы не хотите оставлять комфорт своего кондиционера, или достаточно холодно, чтобы надеть шляпу и перчатки, не следует укладывать бетон!

    Бетон рекомендуется выдерживать при умеренной температуре от 50 ° F до 90 ° F.В идеальном мире температура свежего бетона должна быть выше 50 ° F, но выдерживаться и поддерживаться на уровне 50 ° F. Но если вы не можете достичь отметки 50 градусов, бетон, выдержанный при этих температурах, будет превосходить бетон с температурой +90 ° F по прочности и долговечности.

    Укладывать бетон легко при дневном свете, но когда бетон заливается днем, охлаждение поверхности ночью может вызвать растрескивание. Один из способов — поливать ночью. Это позволяет бетону остыть, а затем повысить его температуру в начале дня, давая бетону больше времени для укрепления без растрескивания под действием напряжения.

    Испытание бетона

    Чтобы температура бетона оставалась на приемлемом уровне, рекомендуется использовать регистраторы данных с термопарами для непрерывного мониторинга. Перед заливкой бетона можно надежно разместить одну или несколько термопар для измерения и записи температуры на протяжении всего процесса отверждения.

    Испытания на зрелость обычно проводятся для оценки прочности бетона путем измерения температуры с течением времени.Имейте в виду, что температуры, достигнутые на ранней стадии отверждения бетона, напрямую влияют на конечную прочность и характеристики.

    Более длительное отверждение бетона увеличивает прочность и долговечность. Американский институт бетона предполагает, что бетон должен достичь идеальной прочности после 7 дней отверждения при 50 ° F или 3 дней при 50 ° F для бетонной смеси с высокой ранней прочностью.


    Щелкните здесь, чтобы изучить решения для регистрации данных термопар, которые обеспечивают непрерывный мониторинг температуры на протяжении всего процесса отверждения.

    Для получения дополнительной информации позвоните нам по телефону (603) 456-2011 или по электронной почте [адрес электронной почты защищен]

    О Келли:

    Келли Райт присоединилась к команде MadgeTech в мае 2016 года в качестве писателя маркетингового контента, принеся с собой годы образования и непосредственный опыт работы в СМИ и коммуникациях. Келли является ключевым участником исследования и разработки интересного и ценного контента.Как сертифицированный менеджер HACCP, Келли демонстрирует свой опыт на мероприятиях и выставках по всей стране, представляя MadgeTech.

    Как заливать бетон в жаркую погоду

    Жаркая погода — не общий термин, когда говорят о заливке бетонной плиты . Жаркая погода определяется как высокая температура окружающей среды выше 90 ° F, низкая относительная влажность и / или высокая скорость ветра. Эти условия дополнительно разъясняются в ACI 305 .Правильно, жаркая погода — это не просто температура воздуха. В некоторых районах жаркая погода может быть в любое время года из-за уровня влажности или скорости ветра.

    Проблема с жаркой погодой на самом деле не в жаре при заливке бетонной плиты, потому что бетон затвердевает за счет гидратации. Когда бетон нагревается выше 77 ° F, процесс гидратации ускоряется и генерирует внутреннее тепло. Когда цемент гидратируется, он использует воду и выращивает кристаллы вокруг частиц заполнителя. Когда слишком жарко, вода может теряться из-за испарения.Это не позволяет бетону должным образом гидратироваться из-за отсутствия воды и может привести к потере прочности. Основная проблема при работе в жаркую погоду — это не только температура воздуха, но и температура бетона.

    Заливка бетона в жаркую погоду может вызвать следующие проблемы:

    • Повышенные трудности при отделке бетона
    • Образование холодных швов из-за жаркой погоды, сокращающее время схватывания
    • Пониженная прочность и долговечность
    • Пониженная прочность на сжатие
    • Дополнительная усадка при высыхании затвердевшего бетона
    • Повышенный риск растрескивания

    Если температура бетона во время укладки бетона превысит 77 ° F, необходимо разработать план, чтобы свести на нет влияние высоких температур.

    1. Иметь достаточный персонал для работы с бетоном во время его заливки и для завершения процесса отделки — это работа не одного человека.
    2. По возможности избегайте заливки бетона в полдень или в периоды пиковой температуры горячего воздуха.
    3. При заливке бетона в жаркую погоду следует контролировать швы с меньшими интервалами, чем швы в холодную погоду.
    4. Используйте солнцезащитные козырьки или ветрозащитные экраны, чтобы уменьшить возможные суровые условия.
    5. Планируется, что внутренних плит будут залиты после того, как будут построены все стены и крыши.
    6. При заливке бетона в жаркую погоду держите на месте замедлитель испарения на случай, если температура станет выше и вода начнет быстро испаряться.
    7. Используйте лед в составе бетонной водной смеси для охлаждения бетона.
    8. Уменьшите время перемешивания после добавления воды.
    9. Мешки с бетонной смесью и все оборудование, необходимое для заливки бетона в жаркую погоду, должны оставаться закрытыми или в тени до последнего момента перед использованием.
    10. При заливке бетонной плиты сначала увлажните основание.
    11. Используйте прохладную воду для увлажнения боковых опор перекрытий или стен.
    12. Используйте правильный метод отверждения , чтобы бетон схватывался равномерно.

    Нужна помощь в заливке плиты? Помните об этих советах и ​​ посмотрите это видео .





    Назад в блог

    Бетонирование для холодной погоды | L&L Реди Микс

    ПРИМЕЧАНИЕ : Это обсуждение относится к приложениям из неармированного и традиционно армированного бетона.Он не полностью применим к предварительно напряженному бетону, бетону для покрытия несъемного металлического настила крыши или к приложениям, в которых разнородные металлы заделаны в бетон.

    Бетон для холодной погоды, как определено в ACI 306, — это период, когда в течение более трех (3) дней средняя дневная температура опускается ниже 40 градусов по Фаренгейту. Нормальные методы бетонирования могут быть возобновлены, когда температура выше 50 градусов по Фаренгейту, на более длительный срок чем пол дня.

    Одной из важнейших проблем, с которыми сталкивается строительная промышленность в холодную погоду, является производство плит перекрытия удовлетворительного качества.При воздействии холода на свежие бетонные плиты перекрытия возникают две важные проблемы: 1) трудность обеспечения удовлетворительного износостойкого покрытия из-за просачивания с последующим высыханием недостаточно гидратированной поверхности плиты, и 2) высокая стоимость отделки, из-за медленного схватывания и затвердевания плиты.

    Отверждение и гидратация портландцемента в бетонных смесях — это химическая функция, обычно называемая схватыванием и затвердеванием. Скорость, с которой происходит это химическое изменение, во многом зависит от температуры смеси.Повышение температуры отверждения в определенных пределах вызывает более быструю гидратацию и, соответственно, более высокую скорость набора прочности на начальном этапе. (до 3 месяцев)

    Бетон, уложенный в деревянные формы или большей массой при температурах выше, чем температура окружающего воздуха, будет гидратироваться и набирать прочность быстрее, чем тот же бетон, уложенный в тонких сечениях, таких как открытые плиты.

    Выделение тепла из-за гидратации портландцемента при температуре 70 градусов по Фаренгейту не проявляется примерно через три часа.При температуре 50 градусов по Фаренгейту тепло гидратации не проявляется в течение примерно 12 часов или дольше. Следовательно, при низких температурах нельзя полагаться на теплоту гидратации цемента для ускорения химической реакции гидратации.

    При низких температурах бетон схватывается медленно, и рост прочности замедляется. Таким образом, планирование работ по бетонированию в холодную погоду должно включать в себя одну или несколько из следующих защитных мер:

    1. Обогрев воды и бетонных материалов.
    2. Обогрев участка, в котором укладывается бетон.
    3. Использование дополнительного цемента или высокопрочного цемента.
    4. Добавление к смеси ускоряющей добавки.
    5. Особые условия для отверждения.

    Высокие ранние добавки ускоряют время схватывания, обеспечивая более ранний и более высокий предел прочности … и настоятельно рекомендуется для бетонирования в холодную погоду с этими мерами.

    Температура всех поверхностей, контактирующих с новым бетоном, должна быть повышена как можно ближе к температуре нового бетона.Избегайте наличия льда или возможности его образования во время бетонирования. Для ускорения схватывания бетона и развития высокой ранней прочности, когда ожидаются умеренно низкие температуры, используются высокорастущие, хлоридно-кальциевые, нехлоридные ускоряющие добавки, дополнительный цемент или цемент типа III. Допускается содержание хлористого кальция до 2% от веса цемента. Цемент с высокой ранней прочностью обеспечивает высокую прочность раннего бетона при низких температурах, но может иметь примерно те же характеристики времени схватывания, что и цемент типа I.

    Плиты теряют влагу и / или быстро нагреваются в холодную погоду. Защищать от быстрой потери влаги, при необходимости обеспечивать обогрев корпуса и защищать от ветра.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *