Изготовление ленточного фундамента: Страница не найдена — Remoo.RU

Автор

Содержание

Изготовление ленточного фундамента, цена (стоимость) в ООО Проект

Ленточный фундамент применяется для малоэтажных построек, располагающихся на глинистых и песчаных грунтах. Проще говоря, это железобетонная полоса, которая идет по периметру всего сооружения. Этот тип основания наиболее распространен в строительстве и пользуется большей популярностью, нежели свайный или бетонный.

На стоимость изготовления ленточного фундамента влияют нескольких факторов:

  • высота;
  • размер;
  • способ заливки (миксером или вручную).

Строительство его подразделяется на два типа:

  • незаглубленный – залегает поверхностно на глубине 31-60 см, что дает возможность снизить его стоимость;
  • заглубленный – находится на глубине промерзания (60-120 см). Цена изготовления ленточного фундамента такого типа немного выше.

Ленточные фундаменты встречаются двух типов.

Монолитный. Для создания монолитной ленты изготавливается подушка – основание из щебня и песка, затем выполняется уплотнение слоев.

Подготовленный слой заливается раствором, создается опалубка, рассчитанная на высоту фундамента, которая укрепляется с помощью распорок и клиньев. Внутренняя сторона опалубки выстилается полиэтиленовой пленкой, чтобы предотвратить вытекание, из-за которого может пострадать несущая способность всей конструкции. Внутри опалубки создаются металлические арматурные элементы, которые не должны соприкасаться с ее стенками. Бетонная масса уплотняется при помощи глубинных вибраторов. Потом конструкция накрывается пленкой из полиэтилена. Цена изготовления монолитного ленточного фундамента рассчитывается индивидуально для каждого заказчика.

Сборный изготавливается с использованием железобетонных блоков различных размеров. Стоимость этого типа основания зависит от многочисленных факторов. Вначале создается фундаментная лента из песка толщиной практически 15 см, потом бетонная подготовка, а затем укладываются бетонные блоки. В итоге, образуется конструкция фундамента из блоков. Для придания конструкции прочности в кладке создаются армированные монолитные пояса.

От качества и надежности изготовления ленточного фундамента напрямую зависит устойчивость самой постройки, а также безопасность находящихся в ней людей. Он обязательно должен выдерживать массу всего сооружения, передавая нагрузку на грунт. Поэтому цена на изготовление ленточный фундамент будет рассчитываться с учетом материалов, которые использовались, а также стоимости работы профессионалов.

При заливке фундамента профессионалами ООО «Проект» в стандартный комплекс услуг входит:

  • разметка основания;
  • подготовка траншеи;
  • установка и разборка опалубки;
  • заливка бетона в уже подготовленную опалубку;
  • вязка арматуры, чтобы укрепить основание постройки.

Сооружение может быть установлено и на армированную плиту, однако технология ленточной укладки по цене является более выгодной для заказчика.

К преимуществам ленточного типа фундамента можно отнести:

  • бетонная конструкция имеет относительно малый вес;
  • возможность изготовления на мягких почвах;
  • конструкция основания подразумевает наличие в постройке подвала, а, следовательно, и незаметное размещение коммуникационных систем не будет проблемой;
  • работы выполняются в кратчайшие сроки;
  • высокая прочность и надежность конструкции и, конечно же, долговечность;
  • ленточный фундамент можно использовать для зданий любой формы;
  • высокий коэффициент выдерживаемой нагрузки;
  • нагрузка на основание распределяется равномерно благодаря соединению из нескольких рам;
  • возведя сооружение на ленточном фундаменте, впоследствии можно будет делать различные пристройки, а также монтировать все по своему желанию.

Определившись с выбором фундамента, лучше доверить работу профессионалам. ООО «Проект» окажет услуги по его изготовлению на высоком профессиональном уровне и по доступным ценам в Подмосковье и в Москве. Большой опыт в строительстве и отличные специалисты – это гарантия надежности и качества зданий!

Ленточный фундамент своими руками пошаговая инструкция

Экономически оправдан ленточный фундамент для тяжелых построек на сложных грунтах. Это обусловлено высоким бюджетом снижения сил пучения. Максимальным ресурсом обладают исключительно монолитные конструкции, пошаговая технология которых будет рассмотрена ниже.

Технология ленточного фундамента пошагово

Для проектов без подземного/цокольного уровня предпочтительнее незаглубленные, малозаглубленные ленточные фундаменты, наземные монолитные пояса. Заглубленная лента эффективна лишь при глубине заложения в пределах 3 м.

Если грунты на этой глубине не удовлетворяют характеристикам здания (просадка от сборных нагрузок), необходимо усилить ленту сваями либо пересмотреть проект в пользу плиты, ростверка по сваям.

Для удобства частных застройщиков без профильного образования, регулярной практики далее приведена пошаговая инструкция строительства ленточного фундамента.

Разметка осей

Основными проблемами любой ж/б конструкции, эксплуатирующейся в подземных агрессивных средах, является коррозия внутренней арматуры, растрескивание структуры бетона, вспучивание прилежащих грунтов при замерзании. Поэтому основными задачами проектировщика, затем застройщика являются операции, позволяющие защитить ленточный фундамент от влаги, промерзания. Обеспечение несущей способности закладывается в любой проект по умолчанию.

Таки образом, для малозаглубленной ленты МЗЛФ предпочтительнее разметка траншей, для заглубленного фундамента ГЗЛФ – котлована. В любом случае необходим доступ рабочих к наружным граням фундамента (гидроизоляция, распалубка), изготовление дренажной канализации. Поэтому ширина разметки увеличивается на 1,2 м наружу (котлован), 0,8 м внутрь (траншеи).

Оптимальным вариантом для разметки осе являются обноски из двух колышков с горизонтальной перекладиной 60 – 80 см. для каждой внутренней/наружной несущей стены потребуется две обноски. Технология разметки имеет вид:

  • монтаж обносок в полутора метрах от котлована
  • выравнивание в единой горизонтальной плоскости на 5 см выше проектной отметки
  • натягивание струн, шнуров для боковых граней ленты, оси стены (линия, по которой будут уложены плиты перекрытия)

Для удобства разметки применяется следующая схема:

  • первая стена (парадный фасад) параллельна улице, отстоит от оси проезжей части (красная линия в проекте межевания) на 5 м (3 м от оси проулка/проезда), находится дальше 3 м от границ соседних владений
  • две прилегающих к ней стены отходят под прямыми углами, откладываемыми способом треугольника (катеты 4, 3 м, гипотенуза 5 м)
  • сверка диагоналей должна показать одинаковый результат, допустимая погрешность должна укладываться в 1 см, отсутствовать в идеале

Края котлована, траншей достаточно отчертить мелом, известковым раствором по грунту.

Важно: Если в проект заложен МЗЛФ с полами по грунту, плодородный слой внутри периметра траншей придется снять полностью. Плиту бетонировать по этому грунту нельзя, она гарантированно просядет после 2 – 6 месяцев эксплуатации.

Выемка грунта

Для МЗЛФ достаточно снять пахотный слой в траншеях (перекрытие по балкам) либо со всего периметра (пол по грунту). Если необходим

ленточный фундамент глубокого заложения, проще арендовать спецтехнику, изготовить котлован глубиной 2 – 2,5 м экскаватором. В последнем случае придется дополнительно вывезти грунт. Боковые стенки имеют уклон наружу, защищающий от обваливания породы при дальнейших работах.

Котлован

При использовании экскаватором рекомендуется копать чуть выше проектного уровня, чтобы подравнять дно вручную. Если ковш заглубится на отдельных участках, позже придется снимать весь слой до этой отметки – выравнивать ямки этим же грунтом, даже утрамбованным, запрещено категорически.

Траншеи

Минимальный бюджет строительства обеспечивает ленточный фундамент МЗЛФ. Из траншей удаляется пахотный слой на глубину 60 – 80 см. Затем изготавливается траншея-в-траншее для дренажной канализации сечением 50 х 50 см. От этой кольцевой разработки на 4 м минимум отводится траншея к подземной емкости, в которую самотеком будут собираться стоки.

Подстилающий слой

Назначение подсыпки из инертных материалов является замена пучнистых грунтов, выравнивание периметра, обеспечение дренажа подошвы ленты. Пошаговая инструкция работ данного этапа выглядит следующим образом:

  • подсыпка слоя – толщина 10 см, материал песок при низком УГВ, щебень при высоких грунтовых водах, ширина вдвое больше ленты
  • уплотнение – ручными трамбовками, виброплитами, чтобы на песке не оставался след

Операция повторяется до достижения 40 – 80 см в зависимости от характера грунта. После чего, ленточный фундамент необходимо защитить от влаги, уложенный в опалубку бетон от обезвоживания, арматуру от коррозии.

Все эти проблемы решает подбетонка с наплавлением гидроизоляционного ковра:

  • по периметру монтируется опалубка – высота 7 – 10 см, ширина равна отсыпке (вдвое больше подошвы ленты)
  • внутрь нее укладывается, уплотняется смесь В7,5 (тощий бетон)
  • после набора прочности 70% на стяжке раскатывается мембрана, полиэтиленовая пленка (0,15 мм минимум) либо рулонный материал, края должны выступать за периметр ленты на 20 – 30 см

Дрены должны располагаться за периметром подбетонки, в противном случае снижается эффективность отвода подземных вод.

Армирование

В отличие от бетона, композитный материал железобетон, армированный в двух уровнях стержнями переменного сечения, выдерживает, как сжимающие, так и растягивающие усилия. Изготовление каркасов, которыми армируется ленточный фундамент, производится по схеме:

  • монтаж продольных прутков в нижнем уровне – укладываются на пластиковые, бетонные прокладки высотой 2 – 4 см
  • обвязка хомутами – прямоугольной формы с шагом 30 см возле сопряжений, 60 см на прямых участках
  • установка верхнего пояса – аналогично нижним пруткам

Продольные стержни нарезают из 8 – 16 мм арматуры А400 периодического профиля. Анкеры, хомуты делают из гладкой 6 – 8 мм арматуры А240. Г-образными, П-образными анкерами усиливают углы, Т-образные сопряжения стен. В лентах глубокого заложения используется конструкционная арматура – дополнительные прутки в промежуточных поясах, необходимые для жесткости пространственных каркасов, обеспечения минимального процента армирования фундамента.

Элементы каркасов лучше соединять проволочными скрутками специальным инструментом – крючком. Нахлест при наращивании длины составляет 40 – 60 см, разбежка в соседних рядах рядом расположенных стыков 60 – 80 см. Допускаются сварные каркасы из специальной арматуры, в маркировке которой после всех цифр присутствует буква С.

Опалубка

Бетонируется ленточный фундамент обычно в съемную опалубку, щиты которой изготавливаются из ориентировано-стружечной плиты, многослойной фанеры, обрезной доски 4 см минимум. Это листовой, пиломатериал может пригодиться в дальнейшем, поэтому внутреннюю плоскость щитов покрывают полиэтиленом, дополнительно предотвращающим обезвоживание, протечки в щелях опалубки.

Щиты устанавливаются вплотную друг к другу, фиксируются в вертикальном положении внутренними стяжками, наружными подпорками. В обязательном порядке контролируется соосность со стенами здания. Верхний борт выставляется по шнурам, то есть на 5 см выше проектного уровня. Это позволит предотвратить расплескивание бетона при производстве работ.

На глубине 1,5 – 2 м необходимо установить гильзы для узлов ввода коммуникаций в коттедж. На отметке 40 см от отмостки нужно предусмотреть монтаж пустотообразователей (только для проектов с перекрытием по балкам). Эти отверстия являются продухами вентиляции подполья, предотвращают загнивание, коррозию элементов силового каркаса, отводят вредный радон. Их общая площадь должна быть примерно равна 1/400 от размера цокольной части фундамента.

Заливка

Ленточный фундамент бетонируют по стандартной технологии, укладывая слой 60 см по периметру, уплотняя его наконечником глубинного вибратора. Заглубленные фундаменты сложно залить за один прием, выдержать технологический перерыв меньше 2 часов. Поэтому часто применяется поэтапное бетонирование:

  • в средних третях прямых участков монтируются вертикальные перегородки
  • арматура пропускается в вырезанные бензопилой щели внутри щитов
  • снаружи монтируются подпорки
  • продолжение заливки возможно через 12 часов, поверхностная пленка с бетона должна быть счищена щетками, напоров воздуха, воды

В первые три дня боковая распалубка запрещена, на верхнюю грань ленты наносится увлажняющий компресс из регулярно смачиваемых опилок, ветоши, песка. Это позволяет завершиться гидратации цемента внутри смеси, обеспечить марочную прочность бетона, предотвратить раскрытие трещин, образование усадочных воронок.

Дополнительные меры защиты

Ленточный фундамент необходимо защитить от сил пучения, почвенных/грунтовых вод, промерзания. Обеспечивается комплексная защита следующими способами:

  • дренаж – укладывается под подошву ленты сразу после изготовления траншей/котлована, предупреждает намокание глинистых почв, позволяя исключить один фактор морозного пучения
  • замена почвы нерудным материалом – в песках, щебнях практически отсутствует глина, таким образом, избавляются от второго фактора вспучивания
  • утепление отмостки – теплоизолятор сохраняет тепло недр, не давая прилежащим к фундаменту участкам промерзнуть, исключается последнее условие сил пучения

Оклеивание наружных граней ленты глубокого залегания выносить точку росы наружу, избавляя от запотевания внутренних стен подвального этажа. Монтаж экструдированного пенополистирола на поверхность ленты любого уровня заглубления позволяет снизить касательные силы пучения. Этот метод назван скользяще-сминаемой защитой, имеет следующую схему:

  • на гидроизоляционную пленку наклеивается пенополистирол XPS высокой плотности
  • его поверхность укрывается двумя слоями полиэтилена, закрепленного лишь в цокольной части фундамента
  • к полиэтилену прижаты материалом обратной засыпки (песок) вертикально листы полистирола ПСБ 25 низкой плотности, не зафиксированные к фундаменту

Возникающие силы пучения сминают ПСБ, смещают его по гладкой пленке верх зимой, не разрушая основной контур утепления. После оттаивания конструкция вместе с уменьшившимся объемом почвы возвращается в исходное положение.

Классическая технология ленточного фундамента, независимо от глубины заложения, имеет указанный вид. Для индивидуального застройщика приведены все секреты изготовления собственными силами. Что позволит снизить бюджет строительства, избежать ошибок, обеспечить максимально возможный эксплуатационный ресурс.

Изготовление ленточного фундамента в Коломне

Изготовление ленточного фундамента в Коломне

        Не является ни для кого тайной тот факт, что ленточный фундамент обладает особой прочностью и надежностью, чем и отличается от обычного.

        По своей конструкции он может быть двух видов, а именно:

  1. Монолитный, то есть полосы с армированным поясом, которые залиты бетоном;
  2. Сборный, состоящий из лент из железобетонных блоков или же красного кирпича.

        Несмотря на различия в создании, оба вида ленточного фундамента имеют общую черту, и заключается она в том, что представляют они собой полосы, проходящие по всему периметру дома. В жизни это примерно выглядит так:

        Также полоса проходит между несущими и внутренними стенами. Проект ленточного фундамента изготавливают под дома, которые строятся из самых разнообразных материалов, а именно: газобетона, кирпича, шлакоблока.

        Помимо этого, его использование становиться вполне обоснованным в том случае, если в строящемся доме будет оборудован подвал.

        В последнее время ленточный фундамент под дом пользуется широким спросом, и это обусловлено его основными достоинствами:

  1. Дает возможность построить, как подвал, так и цокольный этаж;
  2. Способен выдерживать сильные нагрузки, а поэтому его целесообразно использовать при строительстве легких домов и тех, что имеют тяжелое перекрытие;
  3. Несмотря на то, что работа по созданию такого вида фундамента — трудоемкая, технология возведения довольно простая;
  4. Относительно невысокая стоимость;
  5. При его создании не требуется использования специальной техники;
  6. Долгий эксплуатационный срок, который напрямую зависит от материалов, задействованных в его создании. В том случае если использовался обычный кирпич, то фундамент простоит 30-50 лет, если железобетонный блок – 30-75 лет, монолитные армированные бетонные ленты – свыше 150 лет.

        Если решились на строительство, то лучше всего обратиться за помощью к профессионалам, поскольку они имеют большой опыт работы, а, соответственно, знают, как все сделать правильно и согласно существующим стандартам. Ведь изготовление ленточного фундамента под дом или же любое другое здание требует особых навыков и умений.

        Строительная компания «ДоммСтрой» является лидером в сфере строительства в городе Коломна и предлагает свои услуги по созданию подобной конструкции. Вы можете прийти в офис, или же связаться с нашим менеджером по телефону.

        При необходимости предоставляем профессиональную консультацию относительно услуг, что предлагаем клиентам.

Изготовление фундамента ленточного

Ленточный фундамент – это один из наиболее распространенных видов фундаментов для дома. Представляет собой своеобразную железобетонную ленту (отсюда и название). Укладывается под всеми несущими стенами – полностью и равномерно распределяет вес будущего дома по всему периметру. Это не самый дорогой фундамент, так как при устройстве ленточного фундамента выполняется меньшее количество земляных работ, чем, например, при строительстве монолитных плитных фундаментов.

Благодаря укладке по всему периметру, ленточный фундамент применяется при строительстве домов с тяжелыми стенами – кирпичными, бетонными. Подходит возведение ленточного фундамента и в том случае, если в доме планируется сделать подвал.

 

Если вы решите построить ленточный фундамент и сэкономить на строительных работах без привлечения специалистов – будьте готовы путем сложных расчетов получить все необходимые данные для самостоятельного строительства.Нужно выяснить тип грунта, его расчетное сопротивление, глубину промерзания в холодное время, учесть коэффициенты в зависимости от грунта и типа конструкции и заложить 20% надежности. Не забудьте посчитать нагрузку на фундамент от веса самого дома: здесь играет роль и тип кровли, вес стен и перекрытий…

К тому же, чтобы избежать излишнего давления тяжелых стен на фундамент, нужно учитывать следующий момент: ширина самого фундамента должна быть шире планируемых стен дома как минимум на 10 см, а лучше – больше.

Для предотвращения деформации фундамента из-за большой нагрузки необходимо соблюдать следующее соотношение: высота фундамента должна быть равна или больше его двойной ширины.

Если вы выполните расчеты или работы с ошибкой, то приготовьтесь к тому, что неправильно заложенный фундамент после строительства дома исправить уже не получится.

Так что лучше доверить работы по строительству ленточного фундамента специалистам «ТехноСтройЭксперт», которые, кроме необходимых знаний, имеют еще и многолетний опыт возведения домов на всех этапах строительства.

По способу устройства ленточный фундамент для дома бывает:

  • ленточный монолитный фундамент (бетонный фундамент с каркасом из арматуры внутри, самый распространенный вариант),
  • ленточный сборный фундамент (состоит из скрепленных друг с другомблоков ФБС, возводится довольно быстро, всего за день-два, но при этом прочность фундамента уменьшается почти на 20-25%),
  • столбчато-ленточный фундамент,
  • бутовые ленточные фундаменты (при бетонировании в раствор кладутся крупные камни или фундамент выполняется камнями в виде кладки, это красивый и дешевый вариант ленточного фундамента, но с низкой прочностью, поэтому подходит только для непучинистых каменных или песчаных грунтов),
  • свайно-ленточный фундамент (очень сложные расчеты такого фундамента, обычно строится на слабых грунтах, болотистой местности, местах, подверженных сезонному подтоплению).

Типы фундамента в зависимости от глубины заложения:

  • мелкозаглубленный ленточный фундамент (глубина заложения – всего 50-70 см),
  • ленточный фундамент глубокого заложения (закладывается ниже глубины промерзания почвыпримерно на 30 см, применяется при строительстве не только домов с тяжелыми стенами, но и при возведении домов с подвальными помещениями).

Решение по глубине заложения должно приниматься специалистом. На выбор глубины влияют, в первую очередь, тип почвы и рассчитанные нагрузки, возникающие под весом дома. Если вы запланировали строительство деревянного или каркасного дома на непучинистых грунтах, то вполне можно обойтись мелкозаглубленным фундаментом. Естественно, цена ленточного фундамента небольшой глубины заложения будет гораздо меньше, чем стоимость фундамента глубоко заложения.

Виды ленточного фундамента по форме:

  • форма фундамента – прямоугольник (вид в поперечном сечении),
  • форма трапеции (стенки фундамента расширяются книзу, таким образом, основание получается шире, чем верх фундамента; ленточный фундамент, возведенный в форме трапеции, считается более устойчивым).

Устройство ленточного фундамента. Особенности возведения монолитного ленточного фундамента для дома.

Самый распространенный и популярный ленточный фундамент – монолитный. Поэтому именно на его примере рассмотрим устройство данного типа фундамента, особенности возведения, достоинства и недостатки.

Разметка ленточного монолитного фундамента

Перед выполнением работ на участке под планируемый фундамент наносится разметка, которая выполняется с помощью обычного шнура и колышек. Отмечаются внутренняя и наружная сторона фундамента. Самый сложный момент, с которым у непрофессиональных строителей могут возникнуть сложности, – это прямые углы. Несмотря на кажущуюся простоту работ, при возникновении этой ошибки нарушится симметричность строения,исправления последствий будут серьезными и затратными.

Земляные работы

Следующий этап – выполнение земляных работ. Если вы планируете вручную выкопать траншею под фундамент – это дешевле, само выполнение работы будет более аккуратным, но весь процесс затягивается по времени. Разработка траншеи под фундамент спецтехникой – быстрее, но гораздо дороже.

Выкопанную траншею необходимо подготовить к следующему этапу строительства. Дно тщательно выравнивается и уплотняется. Затем укладывается так называемая гравийная или песчаная «подушка», толщина которой – около 15-20 см.Слой песка или гравия нужно тщательно утрамбовать. Следующий дополнительный слой такой же толщины из мелкобитого кирпича или щебня будет служить опорой для предстоящего армирования.

Изготовление ленточного фундамента

Ленточные фундаменты — наиболее распространенные фундаменты в индивидуальном строительстве. Они бывают сборные и монолитные. Их ширина зависит от величины нагрузки и типа грунта. Если вы планируете, наличие цокольного этажа или подвала, то фундамент будет являться стенами для них.

Сборочный ленточный фундамент.

Он не целесообразен для домов с подвалом, так как наличие швов открывает дорогу для грунтовых вод. В этом случае потребуются лишние затраты на качественную организацию гидроизоляции. Обычно при изготовлении сборочного ленточного фундамента используют железобетонные блоки. Сооружение такого фундамента невозможно без специальной грузоподъемной техники.
Блоки могут быть толщиной 300, 400, и 600 мм. Основанием для первого ряда является бетонная подгонка высотой 100мм. На установленный первый ряд наносят слой раствора, а затем второй ряд блоков. Промежутки между блоками одного ряда заполняют раствором. Вертикальные швы одного ряда не должны находиться рядом со швами других рядов. При недостаточной несущей способности грунта фундамент устанавливают на плиты шириной 800 — 2800 мм.

Заливку бутовых ленточных фундаментов начинают с укладки на сухой плотный грунт крупных бутовых камней. Затем их уплотняют с помощью кувалды или другого подходящего инструмента. Пустоты заполняются мелким щебнем и камнями. Далее производят заливку. Высота фундамента определяется уровнем пола первого этажа. Ширина же такого фундамента должна превышать ширину стена на 150 -200 мм. Ширина основания бутового фундамента должна быть не менее 500 мм.

Монолитный ленточный фундамент.

Основанием для такого фундамента является слой плотно утрамбованного щебня. Затем этот слой заливают цементным раствором. Эта подготовительная процедура предотвращает вытекания жидкого раствора при заливке фундамента. Следующим этапом является установка опалубки на высоту будущего фундамента. Расстояние между ними должно быть равно ширине будущего фундамента. При выкапывании траншеи вручную опалубкой могут стать ее откосы. При возведении искусственной опалубки необходимо жесткая фиксация во избежание ее расползания под тяжестью раствора. Для этого чаще всего применяют деревянные колья. Сверху щиты опалубки скрепляют планками. В дополнение ко всему вышесказанному хочется добавить, что покрытие внутренней стороны опалубки полиэтиленом или рубероидом позволяет относительно просто отделить опалубку от схватившегося фундамента.

На практике выяснено, что изготовление фундамента необходимо делать сразу же после отрывки траншеи. Промежутки между фундаментом и стенами котлована закрывают грунтом. До возведения фундамента дно котлована должно быть закрыто. Не допускается попадания воды в котлован. Если все же это произошло, следует удалить верхний слой со дна котлована и уплотнить его щебнем. Технология заливки монолитных фундаментов подразумевает под собой качественную гидроизоляцию. Так же устойчивость фундамента к воде можно повысить добавлением специальных компонентов.

Для бревенчатых, каркасно-панельных, брусовых домов можно использовать фундаментные панели. Их толщина составляет 260 мм. При изготовлении этих панелей используют специальные добавки, увеличивающие стойкость к воде. Технология их производства включает в себя закладку теплоизолятора в ячейки панели. В этом случае внешней теплоизоляции не требуется вообще, за исключением особых случаев. При необходимости в фундаментных панелях прорезают различные проемы, отверстия для проведения коммуникаций и крепления бруса перекрытия. Эти панели можно изготовить под любой проект дома.

Уважаемые читатели, комментируйте статью, задавайте вопросы, подписывайтесь на новые публикации — нам интересно ваше мнение 🙂

Статьи, которые Вам будут интересны:

Ленточный фундамент своими руками

Ленточные фундаменты относятся к монолитным фундаментам и являются наиболее востребованными в частном индивидуальном строительстве. К их преимуществам относится оптимальное соотношение таких качеств, как простота конструкции и невысокие трудовые и финансовые затраты на их возведение. Поэтому такой тип фундамента под силу изготовить практически любому владельцу загородного участка своими руками, решившему обзавестись личной недвижимостью. Требуется лишь произвести необходимые расчеты и ознакомиться с основными правилами подобного строительства, представленными ниже.

Назначение ленточного фундамента

Основная область применения ленточных фундаментов – земли с сухим непучинистым грунтом. На участках земли с неподходящим типом грунта возможно применение более прочного столбчато-ленточного фундамента. Изготовление ленточного фундамента глубокого заложения нерационально, поскольку при этом значительно возрастают финансовые и трудовые затраты. Поэтому в большинстве случаев глубина ленточного фундамента не превышает 0,5 м.

Ленточный фундамент целесообразно применять при строительстве дома с подпольем, подвалом или цокольным этажом, а также каркасного дома, бани, гаража, забора и других мелких хозяйственных построек. Приступать к работам по возведению ленточного фундамента можно после выбора подходящего участка и разработки проекта строения.

Разметка под ленточный фундамент

Первым делом необходимо провести разметку положения будущего ленточного фундамента на поверхности земельного участка. Для этого отмечаются местоположения углов внешней стороны стен, и в эти места забивается арматура. Окончательное обозначение внешнего периметра дома производится путем натяжения на эту арматуру прочного шнура, лески или тонкой проволоки. Прямые углы полученного периметра проверяются на точность лазерной рулеткой, угломером или же простым сравнением диагоналей. Для разметки внутреннего периметра производим отступ на 400 мм внутрь, и аналогичным образом натягиваем шнур (леску, проволоку) на арматуру.

Начальной точкой, с которой начинается рытье траншеи, является самое низкое место периметра. Для его определения используется водяной уровень (гидроуровень). Глубина фундамента в этом месте принимается равной 400 мм. При рытье траншеи необходимо соблюдать горизонтальность поверхности ее дна. Для этой операции также используют водяной уровень. Соблюдение этого условия позволяет обеспечить равную высоту фундамента по всему периметру.

Подушка ленточного фундамента

Подушка ленточного фундамента предназначена для смягчения и максимально равномерного распределения нагрузки, складывающейся из веса фундамента и опирающихся на него конструкций. Устройство подушки начинается сразу после того, как вырыта траншея. Она выполняется из песка и имеет толщину не менее 150 мм. Для того чтобы получить требуемую плотность подушки она обильно смачивается водой и трамбуется с помощью электротрамбовки. При необходимости процесс повторяют, добиваясь горизонтальности поверхности подушки, что проверяют тем же гидроуровнем.

Опалубка ленточного фундамента

Для экономии финансов изготовление опалубки своими руками рекомендуется производить из подручных материалов – обрезков фанеры и досок, кусков металлочерепицы и др. Для удобства ее изготовления следует выбрать ровный участок достаточной площади. Верхний край установленной по месту готовой опалубки должен быть выше уровня предполагаемой верхней поверхности фундамента. Этот уровень отмечается по всему периметру путем натягивания лески на арматуру.

Опалубка для ленточного фундамента может быть как демонтируемой, так и несъемной. В первом случае необходимо придерживаться следующего правила при изготовлении опалубки – ее сбивание производится изнутри, а загибание гвоздей производится снаружи. Таким образом, намного упрощается и облегчается процесс демонтажа.

Выполнение армирования фундамента

Для выполнения армирования ленточного фундамента используется метод скрепления арматуры с помощью вязальной проволоки или сварки. Однако сваренная армированная конструкция не обладает гибкостью. Рекомендуемые размеры ячейки должны быть равны 330х350 мм. Установка изготовленной армирующей конструкции производится на кирпичи, которые укладываются на подушку. Таким образом, выполняется условие изоляции металлических изделий от разрушающего действия грунтовых вод. Для этих же целей выполняется сплошной зазор не менее 50 мм между поверхностью опалубки и армированием. Окончательно фундамент должен представлять собой сплошной бетонный монолит, без каких либо выступающих металлических частей.

Выполнение проемов для вентиляции и коммуникаций

После изготовления и монтажа армирования необходимо предусмотреть вентиляционные и коммуникационные отверстия. В этом и заключается особенность ленточного фундамента – вентиляция и ввод коммуникаций осуществляется через него. Отличия этих двух проемов в расположении относительно уровня грунта – вентиляционные находятся выше, а коммуникационные – ниже него. Принцип же формирования их одинаковый – кусок трубы (пластиковой, асбоцементной и др.), длина которой сравнима с толщиной фундамента, предварительно заполняется песком во избежание попадания внутрь бетонной смеси, и прикрепляется в заданном месте к армированному каркасу. После окончательного формирования фундамента коммуникационные отверстия откапываются, и производится ввод всех коммуникационных соединений.

Следует отметить, что ввод водопроводных труб и вывод канализации не производится через ленточный фундамент.

Гидроизоляция ленточного фундамента

От правильности устройства гидроизоляции зависит срок службы фундамента, поскольку наибольшее негативное воздействие (разрушение) на бетон оказывают грунтовые и талые воды – проникая в его пористую структуру и застывая при низких температурах, оказывается механическое воздействие, нарушающее целостность монолита. Существует несколько различных способов устройства гидроизоляции ленточного фундамента. Самым простейшим (и, соответственно, наименее эффективным) является применение в качестве гидроизоляционного материала рубероида. Для ее выполнения перед заливкой бетона дно траншеи выкладывается листами рубероида до получения сплошного слоя. После заливки и застывания бетонной смеси опалубка удаляется и получившийся монолитный фундамент обкладывается листами рубероида. Для их фиксации на поверхности фундамента используется горячая смола.

При всей своей простоте долговечность гидроизоляционного слоя на основе рубероида не превышает трех лет. В течение этого срока начинается отслаивание гидроизоляционного покрытия, что вызывает необходимость в проведении регулярных ремонтов. В противном случае возникает опасность появления грибка и плесени вследствие высокой степени поглощения влаги бетоном.

Более эффективным способом гидроизоляции является применение новейших материалов, позволяющих частично изменить свойства самого материала (бетона), в частности гидростойкость, без ущерба прочности. Одним из таких материалов является пенетрон, представляющий собой химическую смесь компонентов, обладающую свойством глубокого проникновения в толщу бетона, делая весь бетонный массив водонепроницаемым. Еще одним преимуществом подобной гидроизоляции является сохранение первоначальных свойств материала в течение всего срока эксплуатации.

Водоотталкивающие свойства бетону придает разведенный до определенной консистенции раствор пенетрона. Его добавляют в бетон непосредственно перед заливкой фундамента. Обычно эту операцию проделывают в миксере для тщательного перемешивания смеси. После заливки и застывания бетонная поверхность приобретает требуемую водостойкость.

Особенности заливки бетона

Для ленточного фундамента наиболее подходящим будет бетон марки 400. Самым приемлемым вариантом будет заказать бетон заводского изготовления, поскольку в данном случае значительно снижаются трудозатраты, хотя и увеличивается финансовая стоимость строительства.

Если же вы все-таки решили самостоятельно изготовлять бетонную смесь, то учтите несколько моментов – во-первых, необходимо четко отладить работу всех механизмов, чтобы не произошло непредвиденных остановок в работе, во-вторых – предусмотреть возможность подачи бетонной смеси к любому месту опалубки. Также рекомендуется изготовить дополнительный (резервный) лоток для подачи смеси. Все эти действия необходимы для не допущения возникновения мостиков холода («холодных швов»), имеющих место при длительном перерыве в процессе заливки фундамента.

Еще одним условием качественности ленточного фундамента является полужидкая консистенция бетонного раствора – если он подсох, то его разводят небольшим количеством воды и тщательно перемешивают до образования однородной массы. Во время заливки необходимо проделывать следующие манипуляции – протыкать бетонный слой арматурой и утрамбовывать его (электрической или ручной трамбовкой). Это необходимо для устранения «воздушных карманов», снижающих прочность и долговечность фундамента. Верхняя поверхность фундамента выравнивается с помощью мастерка.

Правильность высыхания бетонной смеси также влияет на его качества. Для этого после заливки фундамент укрывается водонепроницаемым материалом, защищающим его от дождя. Если температура воздуха высокая, то потребуется периодическое смачивание поверхности бетона. Снимать опалубку можно через неделю, однако рекомендуется делать это не раньше, чем через месяц.

Как сделать монтаж ленточного фундамента своими руками

 

Вступление

В статье вы найдете почти инструкцию, как сделать монтаж ленточного фундамента: разметка, рытье траншеи, изготовление опалубки, заливка и правильная сушка фундамента.

Подготовка

Работа с фундаментом займет несколько дней. Поэтому перед работами нужно оборудовать участок для проживания. Лучший вариант установить бытовку. Аренда бытовки в г. Москва не так дорога, как может показаться. Если есть возможность бытовку нужно подключить к электропитанию.

Теперь прописные истины. Ленточный фундамент самый популярный и надежный фундамент для малоэтажного строительства. По конструкции это бетонная армированная лента, в сечении прямоугольник. Ленточный фундамент это мелкозаглубленный фундамент. Подробно о конструкции и назначении ленточного фундамента я писал в статье: «Что такое ленточный фундамент». Начинаем работы с проекта.

Проект фундамента

Проект фундамента лучше заказать у профессионалов. Часто фундаменты рассчитывают у продавцов домов, можно заказать расчет фундамента в местной районной организации, занимающейся капитальным строительством.

Самостоятельный расчет ленточного фундамента не такой сложный, но не рентабельный. Без практики и опыта можно ошибиться и через зиму получить трещины, как минимум в фундаменте. Считаем, проект фундамента есть. Делаем разметку.

Монтаж ленточного фундамента — разметка

Монтаж ленточного фундамента начинаем с разметки. Для ленточного фундамента требуется ровная площадка. Грунтовые воды должны проходить глубже 1 метра от поверхности. Разметка фундамента делается по проекту.

В принципе, размеры и схема фундамента составляется на основе строения, которое будет стоять на нем. Ленты фундамента, планируются под несущими, а лучше подо всеми стенами дома. Не забываем про веранду. Перед разметкой, нужно снять дерн (плодородный слой почвы).

Суть разметки в следующем.

  • Забиваем два колышка с поперечиной по одному углу фундамента с отступом 1 метр;
  • От него, на одном уровне от земли (30-40 см), натягиваем два строительных шнура по ширине фундамента. Отмеряем длину фундамента по обеим ниткам. Вбиваем аналогичную конструкцию на другом углу дома;
  • Аналогично вымеряем другие три стены фундамента;

Важно! Самое главное, чтобы получился прямоугольник или квадрат с точно прямыми углами. Для этого промеряются диагонали разметки. При прямых углах они должны быть равной длинны.

Конструкция для разметки остается до окончания всех работ, чтобы в любой момент можно было сделать контрольные промеры.

Рытье траншеи

Траншея роется шире фундамента для удобства установки опалубки. Расчетную глубину траншеи увеличиваем на 15 см для песчаной подушки и 15 см для слоя щебня.

Рыть начинаем с нижней точки.

Опалубка для фундамента

На дно готовой траншеи укладываем слой щебня (15 — 20 см) и слой песка (15-20 см). Слои трамбуем и выравниваем единый горизонтальный уровень.  На эти подушки будем ставить опалубку.

  • Изготавливаем опалубку из досок 5 см толщины.
  • Сначала делаем щиты. Размер щитов увеличиваем на ширину цоколя ( смотрим  свой проект). Собранные щиты собираем в опалубку.
  • Опалубку нужно укрепить. Для этого, забиваем колы по периметру опалубки и прочно подпираем опалубку досками для дополнительной прочности.
  • Высота опалубки должна быть выше расчетной на 30 мм. Это запас на усадку бетона.

Важно! Верхний край опалубки лучше выставить по уровню и использовать, как направляющие при заливке бетона.

Изоляция фундамента

Готовую опалубку нужно покрыть рубероидом. Он предотвратит впитывание воды из бетона и обеспечит его равномерное застывание.

Армирование фундамента

Бетон ленточного фундамента требует армирования. Армирование это «скелет» фундамента, сделанный из арматуры диаметром по проекту.

Арматурный каркас вяжется проволокой. От армированного каркаса до края фундамента должно оставаться расстояние в 5-7 см. Это в дальнейшем предотвратит коррозию арматуры от грунта.

Делая опалубку, не забываем про вентиляцию подполья и отверстий для ввода/вывода коммуникаций. Для этих целей в «скелет» арматуры закладываем асбестоцементные или пластиковые.

Заливка бетона

Бетон лучше купить на заводе.

Важно! Марка бетона рассчитывается по весу дома и весу общей нагрузки на фундамент. Лучше использовать покупной бетон марки согласно проекту (обычно В15 или М200).

Чтобы самостоятельно замесить бетон без бетономешалки не обойтись. Пропорции цемент М400:Песок речной:Щебень 20 мм:Вода = 1:3:4:вода. Консистенция бетона должна получиться не жидкой.

Залитый бетон выравнивается по уровню, уплотняется глубинным вибратором и сразу накрывается полиэтиленом  или рубероидом для равномерного высыхания. Чтобы укрытие не сдувало ветром, на него укладывают доски для пресса.

Полную прочность бетон достигнет, через 28 суток. Опалубку можно снять через 14 дней.

Специально для сайта «Дом и ты».

©DomiTy.ru

Другие статьи раздела: Фундамент дома

 

Похожие статьи

Количество бетона на ленточный фундамент. Расчет армирования бетонных и ленточных фундаментов.

Как рассчитать кубатуру фундамента? — Здесь поможет алгебра и геометрия школьного курса. В основном объем бетонной смеси рассчитывается по кубатуре вместимости внутренней опалубки, которая определяется на этапе проектирования либо по чертежам, либо еще точнее по данным, которые снимаются с готовой конструкции.

Самым простым решением является использование специальной программы-калькулятора, в которую вводятся расчетная длина, ширина, высота и толщина стены фундамента. В результате получается точный объем необходимого раствора и даются рекомендации по его приготовлению из песка, цемента и гравия.

Фундамент — это фундамент всей несущей конструкции. Технические и эксплуатационные качества конструкции зависят от правильности произведенных расчетов и ее укладки.Поэтому очень важен этап расчета стоимости строительства и составления соответствующей сметы.

Грамотно рассчитанная кубатура — это возможность избежать лишних денежных затрат на стройматериалы и не нарушить технологию процесса заливки.

Бетон измеряют по его объему, а не по массе из-за разницы значений веса на 1 кубометр смеси разных марок. При наличии сложной геометрии фундамента процесс расчета облегчается за счет разделения конструкции на более простые составляющие.


Важность состава почвы

Для качественного обустройства основания необходимо определиться с типом грунта под возводимую конструкцию. Грунты песчаного типа могут проседать, поэтому закладку фундамента проводят на глубину 4-8 дм.

Глинистые почвы могут промерзать, поэтому траншея под устройством фундамента роется на всю ее глубину. Глубина заливки основания также зависит от степени промерзания субстрата, что влияет на географическое положение.


Если глубина устройства основания зависит от состава грунта и расположения грунтовых вод, а длина будет зависеть от размеров конструкции, то ширина — от толщины возводимых стен — от 20 до 40 см. .Поэтому рассчитать базовый куб несложно, важно лишь определить его тип.

Это монолит, представляющий собой прямоугольный параллелепипед, расчет граней которого проводится по уже построенной конструкции опалубки или по чертежам.Табличка располагается под всей площадью здания.

Его давление на землю минимально, при этом сохраняются значительные опорные нагрузки. Объем этой конструкции рассчитывается путем умножения площади основания цоколя на высоту опалубки.


Площадь подошвы рассчитывается путем умножения ширины ростверка на длину.

Например, чтобы рассчитать базовый куб с параметрами решетки 10х12 м и высотой плиты 0.4 м, все значения нужно перемножить, чтобы получить 48 кубов. м (10х12х0,4 = 48 м3). Для точности кубатура армирующего слоя рассчитывается по этому результату.

Ленточный фундамент

Это аналогичный прямоугольный параллелепипед, полый изнутри, с возможным расположением внутри него опорных элементов для внутренних стеновых панелей.


Для малоэтажного строительства популярна ленточная основа благодаря высокой несущей способности, малым габаритам и простоте монтажа.Как рассчитать кубатуру фундамента в этом случае?

Для этого рассчитывается разница, где объем параллелепипеда от внешних стен опалубки действует как уменьшенный, а объем параллелепипеда из уже внутренних стен действует как вычитаемый.


Например, при объеме основания 10х12 м при ширине основания ленты 0,4 м и глубине 2 м с дополнительной 1-й внутренней лентой толщиной 0,5 м:

  • Внешний параллелепипед будет 10х12х 2 = 240 м3;
  • Внутренний — (10-0.4-0,4) х (12-0,4-0,4) х2 = 206,08 м3;
  • Объем ленточного основания под несущие конструкции 240–206,08 = 33,92 м3;
  • Внутренняя ленточная основа (10-0,4-0,4) х0,5х2 = 9,2 м3;
  • Требуемый куб заливки 33,92 + 9,2 = 43,12 м3.

Пример расчета фундамента смотрите на видео:

Свайная основа

— ориентированная группа опор, заглубленных в землю. Простая и экономичная основа.При его возведении методом бурения бетон заливается в предварительно пробуренные круглые скважины.

В данном случае кубатура — это сумма двух геометрических фигур. Первая фигура — подошва, в виде широкого и низкого параллелепипеда. Вторая фигура представляет собой столб в виде высокого узкого параллелепипеда.


Это значение умножается на количество опор столбов в основании, которые располагаются по периметру через каждые 2 м.

Например, для конструкции 6х6 м с количеством опор 20 столбов (4 по углам и 16 промежуточных), основание которой равно 0.5х0,5х0,2 м, а опоры столба 0,3х0,3х0,8 м объем основания будет 20х0,5х0,5х0,2 = 1м3. Для столбовых опор это значение составляет 20х0,3х0,3х0,8 = 1,44 м3. Соответственно кубатура насыпи 1 + 1,44 = 2,44 м3.

Пример расчета свайно-ленточного фундамента смотрите на видео:

Фундамент буронабивной с монолитным ростверком

Базовый объем в данном случае представляет собой сумму кубов опорных элементов и плиты ростверка.Сложная конструкция разбита на множество простых фигур, для которых объем рассчитывается отдельно.

Объем опорных элементов — произведение площади основания на высоту от подошвы до нижнего края монолитного ростверка. А площадь круглого основания равна 1/4 произведения удвоенного диаметра и числа π (3,14).


Пример для 20 опор сечением 0,4 м, углубленных на 2.5 м и элемент ростверка 10х12х0,3 м:

Объем опор выполнен как 20х (1 / 4х 3,14х0,4х0,4) х2,5 = 6,28 м3;

Кубатура элемента ростверка составляет 10х12х0,3 = 36 м3;
Всего будет 36 + 6,28 = 42,28 м3.

Создание базы — сложный и многоэтапный процесс. Полный курс расчета расходных стройматериалов — это масса нюансов, которые сможет сделать опытный инженер.


Вот упрощенные модели для расчета основы в помощь домовладельцу, который должен адекватно тратить свои деньги на строительные процессы.

При возведении здания важно правильно рассчитать фундамент. Рассчитать фундамент можно как при помощи специалистов, так и самостоятельно с помощью калькулятора фундамента. Рассмотрим самые важные моменты, сюда входит расчет нагрузки, объем котлована и советы, которые необходимо учитывать при создании проекта фундамента дома. Для расчета фундамента можно воспользоваться калькулятором фундамента.

1. Рассчитайте вес конструкции дома.

Пример расчета веса конструкции дома : Вы хотите построить дом высотой 1 этаж, 5 м на 8 м, также с внутренней стеной, высота от пола до потолка 3 метра.

Подставляем данные и рассчитываем длину стен: 5 + 8 = 13 метров, прибавляем длину внутренней стены: 13 + 5 = 18 метров. В итоге получаем длину всех стен, затем рассчитываем площадь, длину умножаем на высоту: S = 18 * 3 = 54 м.

Рассчитываем площадь подвала , длину умножаем на ширину: S = 5 * 8 = 40 м. Такой же площади будет и мансардный этаж.

Рассчитываем площадь крыши , длину листа умножаем на ширину, например лист кровли имеет длину 6 метров, а ширину 2 метра в итоге площадь одного лист будет 12 м, значит нам понадобится по 4 листа с каждой стороны. Всего получится 8 листов кровли площадью 12 м.Общая площадь кровли составит 8 * 12 = 96 м.

2. Рассчитайте количество бетона, необходимое для фундамента.

Чтобы начать строительство здания, необходимо спроектировать фундамент частного дома, из которого можно рассчитать необходимое количество стройматериалов для постройки. В нашем случае необходимо рассчитать количество бетона для создания фундамента. Тип фундамента и различные параметры служат для расчета количества бетона .

3. Расчет площади фундамента и веса.

Самым главным фактором является грунт под фундамент, он может не выдерживать больших нагрузок. Чтобы этого не произошло, нужно рассчитать общий вес постройки, включая фундамент.

Пример расчета веса фундамента : Вы хотите построить кирпичное здание и выбрали для него ленточный фундамент. Фундамент углубляется в землю ниже глубины промерзания и будет иметь высоту 2 метра.

Затем рассчитываем длину всей ленты, то есть периметр: P = (a + b) * 2 = (5 + 8) * 2 = 26 м, прибавляем длину внутренней стены, 5 метров, в итоге получаем общую длину фундамента 31 м.

Далее делаем расчет объема для этого нужно ширину фундамента умножить на длину и высоту, допустим ширина 50 см, значит 0,5 см * 31м * 2м = 31м2. Железобетон. имеет площадь 2400 кг / м 3, теперь находим вес фундаментной конструкции: 31м3 * 2400 кг / м = 74 тонны 400 килограмм.

Контрольная площадь будет 3100 * 50 = 15500 см 2. Теперь прибавляем вес фундамента к массе здания и делим на контрольную площадь, теперь у вас килограммовая нагрузка 1 см 2.

Ну а если по вашим расчетам максимальная нагрузка превышала эти типы грунтов, то меняем размер фундамента, чтобы увеличить его опорную площадь. Если у вас фундамент ленточного типа, то его опорную площадь можно увеличить за счет увеличения ширины, а если у вас фундамент столбчатого типа, то увеличить размер колонны или их количество.Но следует помнить, что общий вес дома от этого увеличится, поэтому рекомендуется произвести пересчет.

При возведении фундамента любого сооружения важным этапом является решение вопроса о том, как рассчитать кубатуру фундамента. Представленная процедура не требует сложных математических расчетов и выполняется за считанные минуты при знании отдельных показателей.

Общие особенности расчета и возможные решения

По общему правилу расчет кубатуры фундамента определяется объемом возведенной опалубочной системы.Простыми словами, какова вместимость внутренней полости опалубки, такое количество бетона потребуется для возведения фундамента.

Необходимое количество раствора поможет заполнить базу за один раз.

Вы можете установить нужный показатель еще на этапе проектирования по имеющимся данным на чертеже. При этом расчеты по второму способу позволят более точно провести расчет и заранее приготовить необходимое количество бетонной смеси.

Наряду с описанными выше методами определения объема, с развитием современных информационных технологий разработчики получили возможность проводить расчет с использованием специальных программных средств, имеющихся в информационной сети Интернет.

Загнав необходимые значения, практически мгновенно можно получить не только желаемое значение, но и советы специалистов по рациональному приготовлению смеси и рекомендуемым пропорциям составляющих компонентов.

Расчет кубатуры в зависимости от типа фундамента

Из курса школьной алгебры объем любого тела можно рассчитать, найдя произведение его высоты, длины и ширины. Однако расчет кубатуры распространенных типов фундамента дома определяет учет их индивидуальных характеристик.

Расчет объема монолита

Основание этого типа имеет форму прямоугольного параллелепипеда, грани которого можно определить, сравнив с эскизом на этапе проектирования или фактически измерив возведенную опалубку.

При замере высоты опалубки следует учитывать, что на ней проводятся отметки необходимого уровня бетона, и возводится она с запасом в 10-15 см.

Посмотрите видеоролик, в котором эксперт расскажет, как правильно рассчитать монолитную плиту.

Объем представленной базы рассчитывается по общей формуле: H x A x B, где H — высота, A — длина, B — ширина. Для наглядности стоит привести пример. Итак, при глубине фундамента 0.8 м, длиной 10 м и шириной 10 м, кубатура необходимого бетона 0,8 х 10 х 10 = 80 м3.

Для более точных расчетов следует учитывать объем армированной сетки, размещаемой во внутреннем пространстве возводимой опалубки. Однако арматура не сможет сильно повлиять на общие характеристики из-за своих незначительных, в данном случае, габаритов.

Расчет объема ленты

Расчет кубического объема ленточного фундамента дома также сводится к расчету объема прямоугольного параллелепипеда за вычетом внутренних полостей.Несмотря на кажущуюся сложность, на практике этот показатель легко рассчитывается.

Для расчета необходимо вычислить объемы внешнего и внутреннего параллелепипеда по составленному чертежу, найти их разность, а затем добавить к результату кубатуру внутренних ленточных элементов.

Итак, при размерах фундамента 12 х 15 м и ширине ленты 0,5 м, заглубленной в грунт на 1,5 м, с внутренней дополнительной лентой шириной 0,6 м кубатура основания рассчитывается следующим образом:

  1. Задайте кубическую форму внешнего параллелепипеда: 12 x 15 x 1.5 = 270 м3.
  2. Определяем аналогичный показатель для внутренней цифры: (12 — 0,5 — 0,5) х (15 — 0,5 — 0,5) х 1,5 = 231 м3.
  3. Находим разницу полученных значений: 270 — 231 = 39 м3.
  4. Рассчитываем кубатуру внутренней ленты: (12 — 0,5 — 0,5) х 0,6 х 1,5 = 9,9 м3.
  5. Общий объем заливки ленточного фундамента: 39 + 9,9 = 48,8 м3.

Счетный фундамент колонны

Объем оснований столбчатого типа рассчитывается как сумма объемов двух геометрических тел — параллелепипеда колонны и ее подошвы, умноженная на общее количество опорных элементов.

В цифровом выражении для строительства 8х8 м с общим количеством стоек с шагом 2 м в 16 экземплярах (4 угловых и 12 вспомогательных), подошвы которых размером 0,6 х 0,6 х 0,3 м и корпус столба опор 0,4 х 0,4 х 1, рассчитывается по следующему принципу:

  1. Общий объем подошвы: 16 х 0,6 х 0,6 х 0,3 = 1,73 м3.
  2. Итоговая кубатура опор столбов: 16 х 0,4 х 0,4 х 1 = 2,56 м3.
  3. Общий объем необходимого бетона: 1.73 + 2,56 = 4,29 м3.

Посмотрите видео, как правильно рассчитать фундамент колонны своими руками.

Подсчет объема буронабивного фундамента с цельной ростверковой частью

Суммарная кубатура фундамента дома представленного типа задается как сумма объемов буронабивных опор (цилиндров) и монолитной плиты перекрытия. часть ростверка (классический параллелепипед). Как и при расчете кубических объемов представленных выше оснований, для расчета общего объема бетона необходимо будет разбить фигуру на составные элементы, задать объем каждого из них и сложить полученные значения.

При этом необходимо помнить, что объем колонны или любого строительного элемента цилиндрической формы рассчитывается как произведение площади основания на высоту. В этом случае площадь подошвы находится по формуле:

, где π — математическая константа (3,1415 …), D — диаметр круга (подошвы).

Для наглядности приведем для примера общий объем основания на 20 опорах диаметром 0,5 м и глубиной 2 м в грунте, поддерживающем ростверк размерами 10 х 15 х 0.5 м, устанавливается по следующему принципу:

Кубатура столбов: 20 х (3,14 х 0,5 х 0,5 / 4) = 7,85 м3.

  1. Кубический размер марсоходной части: 10 х 15 х 0,5 = 75 м3.
  2. Общий объем: 7,85 + 75 = 82,85 м3.

Заключение


Расчет кубатуры фундамента — мероприятие достаточно простое. Расчет необходимого количества бетона осуществляется на интуитивном уровне и полностью реализуется самостоятельно без специальных знаний в строительстве.

Правильно рассчитав требуемый показатель, любой заказчик без труда заранее спрогнозирует свой бюджет и рассчитает необходимое количество смеси, что сэкономит массу времени.

Комментарии:

  • Расчет для фундаментной плиты
  • Расчет для столбчатого фундамента

Чтобы получить необходимое количество материалов, нужно знать формулу, как рассчитать кубатуру фундамента, и уметь ею пользоваться.Без этой стоимости количество заказанного бетона или количество закупленных материалов для его самостоятельного производства наверняка окажется намного большим или меньшим. Для работ по заливке основания обе эти ситуации одинаково вредны.

Какие данные нужны для расчета?

В большинстве случаев кубичность фундамента считается равной внутреннему пространству опалубки. Из этого логично следует, что, узнав наиболее точный объем опалубки, вы одновременно узнаете точную кубатуру фундамента.

В зависимости от проекта конструкция опалубки может быть:

Зная размеры опалубки, расчет кубатуры фундамента можно произвести до или после ее установки с помощью замеров. Второй вариант даст более точные результаты, поэтому при заливке фундамента покупным бетоном лучше его использовать. Воспользовавшись первым вариантом, вы сможете получить все необходимые стройматериалы до начала работ, что очень важно, если бетон предполагается производить непосредственно на строительной площадке.

Независимо от выбора варианта, для его выполнения потребуются следующие данные:

  • длина траншеи;
  • ширина траншеи;
  • высота опалубки.

Для каждого вида опалубки определение ее объема имеет свои особенности, которые вам обязательно стоит знать. Для наиболее точного определения необходимого объема бетона необходимо рассчитать кубатуру арматурной сетки и уменьшить полученную кубатуру фундамента на ее значение.Но на практике такой расчет арматурных ремней редко выполняется даже профессиональными проектными организациями. Для одно- или двухэтажных частных домов объем закладываемой в их фундамент арматуры не настолько велик, чтобы ее нельзя было пропустить без особого ущерба для точности расчетов.

Вернуться к содержанию

Расчет для плиты основания

Этот тип фундамента наиболее удобен для проведения расчетов. Он выполнен в виде прямоугольного монолитного параллелепипеда.Чтобы определить объем коробки, достаточно сначала умножить длину на ширину, чтобы узнать площадь, а затем полученное значение умножить на ее высоту.

Например, монолитная плита размером 9х12 м и толщиной 35 см. Сначала нужно умножить 9 м ширины на 12 м длины плиты. В результате получается 108 м² единственной площади будущей плиты. Далее следует площадь подошвы, умноженная на высоту плиты: 108 м², умноженную на 0.35 м, в сумме даст 37,8 м³. Соответственно, для заливки такой плиты потребуется 38 кубометров готового бетона.

Если плита сделана с дополнительными ребрами жесткости, то к полученному результату следует прибавить их объемы. Чаще всего их делают по 4 штуки, по одной с каждой стороны пластины. Для начала нужно узнать объем одного ребра, а затем результат умножить на их количество.

В приведенном выше примере плита может иметь два ребра жесткости длиной 9 м и два ребра жесткости длиной 12 м.Их ширина и высота обычно делаются одинаковыми, например, шириной 30 см и высотой 25 см. Следовательно, объем 9-метровой нервюры будет: 9х0,3х0,25 = 0,675 м³. Два таких ребра будут 0,675х2 = 1,35 м³.

Объем 12-метровой нервюры составит 12х0,3х0,25 = 0,9 м³. Объем двух ребер составляет 0,9х2 = 1,8 м³. Общий объем такой плиты будет 37,8 + 1,35 + 1,8 = 40,95 м³.

Вернуться к содержанию

Расчет для ленточной основы

Если пластина представляет собой монолитный прямоугольный параллелепипед, то лента представляет собой такую ​​же геометрическую фигуру, но полую внутри.Кроме того, в этой полости могут быть расположены один или несколько дополнительных элементов для поддержания внутренних несущих стен.

Есть два варианта подсчета. Первый — рассчитать объемы двух параллелепипедов: по внешнему периметру и внутреннему пустотному пространству. Затем необходимо вычесть меньшее из полученного большего числа и прибавить к полученному значению отдельно рассчитанные объемы внутренних элементов. Второй вариант предусматривает подсчет по каждой ленте отдельно.В этом случае общая кубатура фундамента будет суммой полученной стоимости всех его лент.

Например, ленточное основание 9х12 м с шириной ленты 40 см и высотой опалубки 1,5 м с дополнительной внутренней лентой шириной 40 см.

В первом варианте расчет будет производиться следующим образом: сначала распознается объем внешнего параллелепипеда (9x12x1,5 м), который в конкретном примере будет 162 м³. Затем определяется объем внутреннего параллелепипеда, который будет равен 137.76 м³ ((9–0,4–0,4 м) x (12–0,4–0,4 м) x1,5 м). Разница полученных значений составит желаемую кубатуру для наружной фундаментной полосы: 162 м³-137,76 м³ = 24,24 м³. Для получения окончательного результата к полученному значению необходимо прибавить объем внутренней ленты. Легко узнать: (9 м-0,4 м-0,4 м) х 0,4 м х 1,5 м = 4,92 м³. Общая кубатура фундамента, приведенная в примере, составит 24,24 + 4,92 м³ = 29,16 м³.

Для расчета ленточного фундамента нужно периметр умножить на длину и ширину.

Если этот метод кажется вам слишком сложным, вы можете поступить иначе. Для начала нужно узнать объем одной длинной ленты. В приведенном выше примере это будет 7,2 м³ (12 м x 0,4 м x 1,5 м). Затем нужно узнать объем ширины одной ленты.

Алгоритм расчета будет следующий: от общей длины ленты при ширине основания 9 м отнять 0,4 м ширины длины ленты и снова вычесть 0,4 м из ширины второй ленты длины. Остальное просто: 8.2 м х 1,5 м (высота) х 0,4 м (ширина) = 4,92 м³.

Основа имеет две ленты по длине, поэтому результат длинной ленты необходимо удвоить: 7,2 м³ х2 = 14,4 м³. В результате ширина ленты должна быть утроена, потому что в приведенном выше примере внутренняя лента имеет такие же размеры, как и внешние. Если размеры внешней и внутренней лент не совпадают (а такое случается практически всегда), то необходимо провести расчет сначала для внешних, а затем отдельно для внутренних.Но в данном примере все предельно просто: 4,92 м³ х3 = 14,76 м³. Для определения общего объема опалубки к полученным результатам следует сложить: 14,40 + 14,76 = 29,16 м³. Несложно проверить, что результат вне зависимости от метода расчета будет один.

Иногда встречаются ленточные фундаменты в виде расширяющейся к основанию трапеции. При такой форме ленты необходимо сначала определить ее площадь поперечного сечения. Для этого прибавьте его к ширине основы вверху и разделите результат на 2.Затем умножьте полученное значение на высоту ленты и умножьте площадь поперечного сечения на длину ленты (или на их общую длину, если все ленты одинаковой ширины и высоты))

Если в данном примере ленты будут такой формы, например, внизу 50 см, а вверху 40 см, то это следует рассматривать следующим образом: (0,5 м + 0,4 м): 2×1,5 мx длина ленты. Все полученные результаты вместе взяты и дадут общий желаемый результат.

Сегодня, в зависимости от грунта, на котором планируется строительство здания, используются три основных типа первичных элементов.

  1. Монолит.
  2. Лента.
  3. Колонна.

Каждый из вышеперечисленных типов фундамента имеет свои достоинства и недостатки. Это связано с тем, что каждый тип фундамента по-разному ведет себя на разных грунтах в зависимости от этажности возводимого дома.

Монолитный

Представляет собой монолитную решетчатую плиту из железобетона.Его делают путем заливки всей площади будущей постройки бетоном. Этот вид фундамента очень популярен при возведении построек на плавучих или рыхлых грунтах.

Преимущества:

  • Простота изготовления.
  • Возможность возводить конструкции на грунтах, имеющих плавучесть или большую просадку.

Недостатки:

  • Из-за необходимости большого количества бетона и арматуры этот тип фундамента стоит дорого.
  • Очень трудоемкий производственный процесс.

Лента

Изготавливается из железобетона и прокладывается только под несущими стенами здания и между перегородками помещения. Этот тип первичного элемента предпочтительно использовать для зданий с толстыми стенами или полами. Также для зданий, в которых требуется изготовление подвального оборудования.


Преимущества:

  • Высокая прочность.
  • Длительный срок службы.
  • Возможность использования для домов различной формы.

Недостатки:

  • Из-за необходимости проведения земляных работ процесс строительства сильно затягивается.
  • Дороговизна материалов.
  • Процесс трудоемкий.

Столбчатый

Это один из распространенных типов основания, так как имеет невысокую стоимость изготовления. Как правило, его используют на плавучих грунтах для построек с легкими стенами. Его делают путем установки железобетонных столбов, а пространство между ними засыпают землей.


Преимущества:

  • Не требует кропотливых затрат на строительство.
  • Низкая стоимость изготовления.

Недостатки:

  • Сложность установки.
  • Нельзя использовать для зданий с толстыми стенами.
  • Низкая устойчивость на плавучих грунтах.

Основным аспектом выбора фундамента является тип грунта, на котором планируется возведение здания.Также выбор первичного элемента зависит от типа здания, его этажности, строгости стен и потолка.


Влияние грунта на глубину фундамента

Незнание особенностей грунта, на котором планируется строительство, любого здания может привести к тому, что оно начнет проседать и разрушаться.

Как правило, верхний слой земли имеет значительное количество органических остатков, что сказывается на его неравномерной просадке и усадке.Поэтому такой слой грунта нельзя использовать как подушку под основание.

Крупные, средние песчаные и гравийные почвы лучше всего подходят для закладки фундамента. Минимальная глубина закладки может составлять 0,5 метра. Если почва состоит из мелкого песка или песчаного песка, стоит учитывать уровень грунтовых вод. Поскольку песок, набравшись воды, теряет несущие свойства. Также при промерзании такой грунт может неравномерно набухать и провисать.

Что касается глинистых и супесчаных грунтов, то они обладают хорошими несущими свойствами, но при намокании они начинают проседать под собственным весом.

Чтобы определить, на какой глубине необходимо закладывать фундамент, необходимо руководствоваться следующими особенностями.

  • Этажность дома, тип конструкции, строгость стен и полов.
  • Величина нагрузок на будущее.
  • Глубина первичного элемента в соседних постройках (если они есть).
  • Геологические и гидрогеологические свойства почвы, на которой планируется строительство.
  • Подошва земли под фундаментом не должна быть вздымающейся.
  • Максимальная глубина промерзания в местах, где планируется строительство.

Имея всю информацию о вышеперечисленных особенностях, вы сможете определить наиболее подходящую глубину для закладки фундамента.

Формула расчета кубической площади фундамента

Для расчета кубической площади первичного элемента воспользуйтесь формулой расчета объема. Для чего я использую следующие данные:

Эти данные перемножаем между собой и получаем кубическую площадь основания.Пример ШхВхГ = кубическая площадь. Также стоит помнить, что бетон имеет свойство усадки при высыхании, это связано с испарением из него воды, поэтому при расчете кубической площади следует учитывать этот фактор. Насколько процент усадки бетона зависит от марки бетона, эти данные вы можете узнать из его спецификации.

Как рассчитать

У каждого типа первичного элемента есть своя методика расчета необходимого объема бетона.Также для расчета необходимо знать тип грунта и его несущие свойства. Расчет объема первичной основы для каждого из видов выглядит следующим образом:

  • Плита монолитная. Для расчета плиточного основания нужно знать площадь возводимого здания и толщину заливаемого первичного элемента. Имея эти значения, достаточно их перемножить между собой, чтобы получить необходимое количество бетонных кубиков.Также, если в базовой конструкции предусмотрены ребра жесткости, необходимо рассчитать объем каждого ребра и прибавить их к общему количеству кубометров фундамента.
  • Ленточная основа. Чтобы рассчитать объем первичного элемента ленты, достаточно разделить его на условные стены. Затем рассчитайте их объем, умножив их ширину на высоту и длину. Полученные результаты необходимо суммировать между собой. Таким образом будет известно, сколько кубометров бетона нужно для укладки ленточного фундамента.
  • Основание столбчатое. Расчет объема первичного элемента сваи производится следующим образом, объем одной сваи умножается на их количество, в результате получается необходимое количество бетона. Единственная сложность при расчете свайного фундамента — это расчет объема одной колонны, так как их форма может быть как цилиндрической, так и пятиугольной. Расчеты объема простых цилиндрических форм производятся следующим образом: площадь круга (3.2, где R — радиус сваи, половина ее диаметра) основания колонны умножается на ее высоту.

Также при расчете объема первичного базиса могут возникнуть более сложные вычисления. Например, когда на одном объекте используется несколько типов фундаментов. В таких случаях необходимо произвести отдельный расчет для каждого вида, а затем подвести итоги.


Пример расчета

Допустим, вы хотите заложить ленточный фундамент под одноэтажный жилой дом длиной 10 метров и шириной 6 метров на ровной площадке.В этом случае грунт гравийный и минимальная глубина первичного элемента может составлять 0,5 метра. Ширина фундамента также планируется 0,5 метра.

Таким образом, есть все необходимые данные для того, чтобы произвести расчет, который состоит из следующих шагов:

  1. Необходимо узнать общую длину закладываемого фундамента. Для этого необходимо просуммировать между собой длину и ширину постройки. Пример D 10мx2 = 20м и W 6мx2 = 12м, 20м + 12м = 32м общая длина основания.
  2. Имея полную длину первичного элемента, вы можете рассчитать кубическую площадь, умножив его высоту на ширину и длину. Пример 0,5м х 0,5м х 32м = 8 кубометров.

По результатам примера следует, что для закладки фундамента под дом размером примерно 10 на 6 метров (так как процент усадки бетона неизвестен) необходимо 8 кубометров бетона.

Если плиточное основание будет использоваться в одном доме, то расчет будет следующим:

  1. Нужно узнать общую площадь фундамента, для этого длину постройки умножаем на ее ширину.Пример Д 10м х Ш 6м = 60 кв.
  2. Полученную общую площадь фундамента необходимо умножить на его толщину. Пример 60 м2 х Т 0,5м = 30 кубометров.

Как видно из примеров, процедура расчета кубической площади основания не содержит ничего сверх естественного, так что рассчитать ее может любой, не имеющий архитектурного образования.

Сметная стоимость

  1. Земляные работы. Стоимость земляных работ в среднем 150 рублей за кубометр. То есть за котлован глубиной 0,5 м и шириной 0,5 м, за ленточный первичный элемент для дома 10 на 6 метров придется отдать 1200 руб. Пример L 10mx2 = 20m и W 6m x 2 = 12m, 20m + 12m = 32m, L 32m x W 0.5mx W 0.5m = 8 кубометров земли которые умножаем на стоимость работ 8×150 = 1200 руб.
  2. Укладка песчаной подушки. После того, как котлован будет готов, необходимо сделать песчаную подушку по всему периметру фундамента толщиной 0.2 метра. Следовательно, 32мx0,5м x 0,2м = 3,2 кубометра песка. Примерная стоимость песка 600 руб. За куб 600х3,2 = 1920 руб. Также нужно учитывать стоимость работ, которая составляет 100 рублей за куб, выходит 1920 + 320 = 2240 рублей.
  3. Укладка щебеночного основания. Щебень для фундамента также укладывается по всему периметру толщиной 0,2 метра. Из предыдущих расчетов известно, что при такой толщине потребуется 3,2 кубометра щебня.Стоимость щебня с доставкой примерно 1500 рублей, а стоимость его укладки — 150 рублей за кубометр. Результат — 4980 руб. За работу и щебень.
  4. Установка опалубки. Для опалубки, как правило, используют обрезную доску толщиной не менее 0,2 мм и брус 50 х 50 мм для распорок. При высоте опалубки 0,5 м, ширине доски 30 см и длине 6 метров потребуется 16 штук. Стоимость одной доски примерно 200 рублей за штуку, получается 3200 плюс 700 рублей за брус итого 3900 за опалубку.
  5. Заливка бетона . Как известно из предыдущих расчетов, для заливки фундамента необходимо 8 кубометров. Стоимость одного кубометра бетона марки М 300 — 4200 рублей. Получается, что стоимость бетона будет 33 600 рублей.

Рассчитав примерную стоимость работ и материалов, можно резюмировать: 1200 + 2240 + 4980 + 3900 + 33600 = 45920 рублей; ориентировочная стоимость ленточной базы будет оглашена.

Пошаговая инструкция к устройству

Одним из самых простых оснований под постройку считается ленточный фундамент мелкого заложения.Несмотря на простоту в производстве работ, всегда есть вероятность сделать что-то не так, поэтому перед настройкой МЗФ следует ознакомиться с общей технологией. Сегодня мы пошагово рассмотрим устройство мелкой ленты.

Область применения MZLF

Фундаменты мелкого заложения используются для зданий с малой несущей способностью. В качестве примера можно привести дома на стальном или деревянном каркасе, а также постройки из легких элементов (пенобетон, ПП).Обычно этажность домов на МЗЛФ не превышает двух.

В определении MZLF мелкий — означает полностью расположенный в слое мерзлого грунта, подземная часть бетонной ленты редко превышает 500-700 мм. Силы морозного пучения при таком расположении не создают тангенциальных (разрушающих) нагрузок, но все здание вместе с фундаментом динамически перемещается вслед за расширением грунта. По этой и другим причинам не рекомендуется устраивать пологую ленту на участках с общим уклоном рельефа более 2%.На более крутых склонах неглубокий фундамент можно построить только после перепланировки грунта для образования горизонтальной террасы.

Целесообразность использования MZLF заключается в гораздо меньшем расходе материалов и простоте конструкции. Если под здание не планируется цокольный этаж, мелкая лента позволит уменьшить объем бетонной смеси и арматуры в 2–3 раза, обеспечивая при этом эквивалентную несущую способность.

Однако стоит отметить, что установить неглубокий фундамент на рыхлом торфе, илистых почвах и илистых супесях не получится.Такие грунты имеют слишком низкую плотность и высокую пластичность, поэтому требуют устройства свайно-ростверковых оснований на более плотных слоях грунта. Не следует устраивать МЗЛТ на почвах с показателями пучинистости более 4% или если УГВ выше глубины залегания, несмотря на то, что осушение участка не планируется, чтобы впоследствии не пришлось разбираться с последствиями.

Расчет профиля и конфигурации

Так как MZLF действует как балка, а не как элемент жесткости, обычно сечение ленты близко к прямоугольнику или трапеции.Лента в виде тройника или более сложных секций практически никогда не отливается из-за того, что экономия материала кажется слишком маленькой по сравнению с установкой более сложной опалубки.

Расчет МЗЛФ ведется по двум направлениям: достаточная несущая способность грунта в плоскости залегания и собственная конструкционная прочность, которая позволит ленте сохранять жесткость при полной расчетной нагрузке от стен, кровли, снега, пр.

Ширина верхней части фундамента определяется максимально возможной толщиной стены с учетом слоя внутренней и фасадной отделки.При устройстве перекрытий на бревнах может потребоваться формирование уступа или расширение фундамента порядка 50 мм.

Ширина ленты в плоскости залегания полностью определяется необходимой несущей способностью. Достаточно разделить общую массу постройки и рассчитать среднюю нагрузку на каждый метр периметра пояса, а затем рассчитать достаточную площадь поперечного сечения опоры в соответствии с характеристиками грунта. Для создания достаточно высокого запаса прочности толщина несжимаемого слоя не учитывается.

Схема мелкого ленточного фундамента: 1 — почвенный грунт; 2 — засыпка щебнем или гравийно-песчаной смесью; 3 — отмостка; 4 — арматура фундамента; 5 — фундамент ленточный мелкий с широким основанием для равномерного распределения нагрузки; 6 — стенка; 7 — гравийная подстилка внутренней части фундамента дома

Высота ленты определяется как составляющая ее подземной и надземной частей. С надземной частью все просто — она ​​должна быть не менее 80 мм и не более чем в четыре раза больше ширины верхнего края ленты.В свою очередь, высоту подземной части можно определить с учетом нескольких факторов:

  • фундамент не должен лежать на границе разнородных грунтов;
  • минимальная глубина фундамента 35–40 см, но, в зависимости от интенсивности пучения и глубины промерзания, высота подземной части может увеличиваться еще на 60–80%;
  • Для сохранения требуемых прочностных характеристик железобетонных изделий соотношение ширины к высоте должно быть не менее 3: 5.

Земляные работы и подготовка

Профиль траншеи для устройства МЗЛФ должен иметь ширину в 2,5 раза больше расчетной ширины ленты и глубину больше высоты подземной части на две ширины. Это связано с тем, что MZLF редко укладывают на грунтовую опалубку, используя опалубку из досок и плит из соображений содержания цементного молока и необходимости придания секции трапециевидной формы. Сразу отметим, что отступ стенок котлована от опалубки снаружи должен быть вдвое больше, чем изнутри..

Компенсация сил морозного пучения осуществляется за счет несжимаемой, непученной и гигроскопичной подстилки, а также заполнения боковых пазух аналогичным материалом. В качестве наполнителя используется песчано-гравийная смесь с крупным песком и гранитным или базальтовым щебнем фракции 25-30. Для стабилизации фундамента подготовленное дно траншеи покрывается подготовительным слоем бетона М 100 толщиной 30-50 мм без армирования.

Засыпка на дне траншеи помогает распределить нагрузку на опорный слой почвы, увеличить площадь опоры и привлечь силы с горизонтальным вектором приложения.Рекомендация относительно толщины засыпки, равная двум значениям толщины ленты, на практике соблюдается редко, чаще на слабнопучинистых грунтах ограничиваются подготовкой 25-30 см.

Однако следует помнить, что чем сильнее выражена пышность, тем больше ответственности ложится на подстилку. Иногда целесообразно заменить грунт на глубину промерзания и расширить внешние пазухи до формы перевернутого клина, основание которого соответствует ширине отмостки.

Армирование и анкеровка

Для MZLF общее содержание стальной арматуры без предварительного напряжения устанавливается не менее 0,1%, более реалистичный показатель 0,17-0,2% обеспечит правильное армирование без излишней прочности, но со значительным запасом прочности.

Минимальное значение защитного слоя для подземной части фундамента — 60 мм, максимальное — не более половины ширины ленты. Рабочую арматуру выполняют стержнями с периодическим профилем такого диаметра, что общее сечение арматуры можно разделить на 4 стержня для верхней и нижней линий арматуры.

Если в MZLF расстояние по вертикали между линиями армирования превышает 450 мм, добавить еще один ряд со стержнями, толщина которых составляет не менее 60% от толщины основных линий.

Конструктивное усиление выполняется с помощью хомутов или проволоки для обвязки с шагом в 2-2,5 раза превышающим среднюю ширину фундамента. Диаметр стержней, используемых для изготовления конструкционной арматуры, должен быть не менее 50% диаметра рабочей арматуры.

Кроме того, к арматуре MZLF прилагается ряд анкеров. На изгибах и Т-образных стыках ленты каждый ряд арматуры в пересекающихся направлениях необходимо соединять с гнутыми закладными одного сечения, перекрытие которых с основной арматурой определяется как 25 номинальных диаметров арматуры. Для приклеивания к основанию каркаса или кладки стены может потребоваться анкеровка с помощью закладных шпилек.

Бетонные работы

Перед проведением бетонных работ рекомендуется накрыть внутреннюю полость панельной опалубки полиэтиленовой пленкой, предотвращающей утечку жидкости из бетонной массы до ее схватывания.После этого устанавливаются сегменты арматуры, их выравнивание и расстояние с помощью пластиковых заглушек.

МЗЛФ заливают бетоном марки 350-450 в соответствии с расчетом бетонных изделий на прочность конструкции. Наполнитель следует использовать тяжелый, фракционный — не более одной десятой наименьшего линейного размера ленты.

При заливке бетона его штифтовывают параллельно, а затем виброусадку. К счастью, размеры и небольшая плотность ленточной арматуры не создают препятствий для растекания бетонной смеси.

Снятие опалубки допускается через 10-12 дней после заливки, бетон набирает полную прочность через 4 недели. Однако для МЗЛФ рекомендуется усадка за год до начала возведения стен с кладкой, тогда как монтаж каркасных конструкций можно начинать уже через 3 недели.

Гидроизоляция и уход за фундаментом

После схватывания бетонную ленту необходимо периодически увлажнять для более равномерного гидратации цемента. После разрушения опалубки бетон просушивают, затем наносят покрытие или оклейку гидроизоляцией и утепляют фундамент.

Чаще всего для защиты от влаги применяют битумные мастики, поверх которых накатывается утеплитель на основе стекловолокна или более дешевого рубероида. Если фундамент не требует сплошной гидроизоляции, достаточно оставшейся пленки гидробарьера.

Пазухи вокруг фундамента заполняются ПГС сразу после высыхания гидроизоляции. Засыпка производится слоями по 30–40 см с тщательным уплотнением. После этого остается только сделать вокруг дома отмостку, и МЗЛФ будет готов к дальнейшей длительной эксплуатации..

Строим ленточный фундамент своими руками по пошаговой технологии. Мелкий ленточный фундамент своими руками

Возведение зданий начинается с несущего основания, которое определяет не только срок службы самого здания, но и формирует комфорт и микроклимат внутри помещения. Ленточный фундамент — один из самых популярных типов фундаментов, используемых как для строительства частного жилья, так и для строительства технических построек.

Особенности ленточного фундамента

Ленточный фундамент — это несущий фундамент, представляющий собой замкнутый контур в виде ленты из железобетона, кирпича и блочных строительных материалов. Лента возводится под несущие стены здания, что способствует равномерному распределению нагрузки и дальнейшей передаче ее на нижележащие слои грунта.

Для изготовления монолитного ленточного фундамента используются высокопрочные марки бетона

Конструкция ленточного фундамента позволяет возводить здания как из дерева и пенобетона, так и из кирпича и бетонных блоков.При возведении фундамента требуется большой земельный участок и строительные работы. Несмотря на это, ленточный фундамент пользуется популярностью как у дачников и владельцев дачных участков, так и у профессионалов.

Устройство фундамента выполняется на предварительно утрамбованной подушке из песка и гравия. После застывания несущая лента покрывается изоляционным материалом, который защитит целостность железобетонной поверхности. Если общий вес возводимой конструкции невелик (до 50 тонн), то подготовкой нижележащей подушки можно пренебречь.

Конфигурация несущей ленты зависит от формы стен возводимого здания.

К конкурентным преимуществам ленточных фундаментов можно отнести:

  • Технологии, проверенные и отработанные годами. Правильно выполненный фундамент будет равномерно распределять оказываемую на него нагрузку без риска обрушения несущих конструкций здания;
  • прочности. Монолитная конструкция фундамента обеспечивает высокую надежность и долговечность.При соблюдении технологии срок службы фундамента может достигать 100 лет и более;
  • универсальность. Ленточный фундамент можно использовать как на пучинистых, так и на подвижных почвах, а также на суглинистых и глинистых почвах. Для повышения производительности его можно комбинировать с вертикальными сваями и опорами.

К недостаткам можно отнести то, что возведение ленточного фундамента — очень трудоемкий процесс, требующий значительных вложений.В среднем стоимость опорного основания составляет 15–20% от общего бюджета, выделенного на строительство дома.

Технология возведения фундамента предполагает, что заливка ленты будет производиться в рабочую смену, и приготовить такой объем бетонной смеси даже с помощью бетономешалки проблематично. Из-за этого возникает необходимость покупать бетон у производителя, что также является значительными отходами.

Типы ленточных фундаментов по глубине

Согласно СНиП 3.02.01-87 «Земляные конструкции, фундаменты и фундаменты» ленточные несущие основания классифицируются по двум критериям:

  • по глубине кладки;
  • приборным методом.

Глубина фундамента зависит от несущей способности грунта и расчетной нагрузки, которая будет приложена к возводимому фундаменту. Несущая способность грунта определяется исходя из его типа, глубины промерзания и наличия грунтовых вод в районе, где планируется строительство здания.О конструкции и способе устройства ленточного фундамента читайте в следующем разделе.

Ленточный фундамент мелкого заложения

Ленточный фундамент мелкого заложения представляет собой полосу из бетона и арматурного каркаса, расположенную на небольшой глубине в земле. Минимальный уровень кладки зависит от глубины промерзания почвы, ее пучинистости и высоты грунтовых вод.

Неглубокий ленточный фундамент может быть выполнен из железобетона, кирпича или пеноблоков.

Например, если грунтовые воды высоки, а глубина промерзания грунта велика, то на фундамент будут действовать как боковые, так и тангенциальные силы пучения, который будет сжимать и смещать неглубокую несущую ленту.И наоборот — чем ниже уровень грунтовых вод и чем выше уровень промерзания почвы, тем меньше влияние сил пучения.

Рекомендуемую минимальную глубину ленточного фундамента можно найти в СНиП II — Б.1–62. Для ознакомления предлагаем таблицу, составленную на основе данных из этого документа. В среднем по России глубина закладки колеблется от 0,4 до 0,75 м. Дополнительно можно учесть глубину сезонного промерзания почвы в регионе, где планируется закладка несущего фундамента.

Таблица: глубина залегания фундамента в зависимости от уровня промерзания грунта

Глубина мелкозаглубленного ленточного фундамента в центральном регионе России должна быть не менее 0,5 м.

Возведение мелкозаглубленных ленточных фундаментов возможно. рекомендуется в следующих случаях:

  • в регионах с высокими среднегодовыми температурами и небольшой глубиной промерзания почвы; №
  • при строительстве частных домов по каркасной технологии, а также зданий из газобетона, пенобетона и других материалов с малой массой; №
  • при утеплении несущей основы снаружи вкупе с обустройством отмостки из щебня, песка и бетона.

Строительство мелкого ленточного фундамента на грунте, состоящем из торфа, сапропеля, ила и других органических отложений, строго запрещено. Не рекомендуется возводить этот тип ленточного основания на смешанных и пучинных типах грунтов, перенасыщенных влагой.

Ленточный фундамент заглубленный

Заглубленный фундамент или глубокий фундамент — это несущая железобетонная или сборная лента, которая находится на 20-30 см ниже уровня промерзания грунта.

Глубина несущей ленты может достигать 1.5–2 м, в зависимости от уровня промерзания грунта

Основная идея глубокой укладки несущей ленты — опора на плотные слои грунта с большей несущей способностью. Такой тип фундамента предполагает еще большие объемы земляных работ и затрат на бетонную смесь.

Строительство глубокого ленточного фундамента рекомендуется:

  • в регионах с низкими температурами зимой и промерзанием почвы на большую глубину;
  • , если вы планируете построить двух- или трехэтажный дом из кирпича, железобетонных блоков и плит;
  • при наличии мелкозернистых почв, пересыщенных влагой.

Кроме того, заглубленный фундамент позволяет оборудовать цокольный этаж. При качественном утеплении и достаточном утеплении можно устроить цокольный этаж, предназначенный для проживания или хранения вещей.

Виды ленточных фундаментов по способу устройства

В зависимости от конструктивных особенностей ленточные фундаменты бывают монолитными и сборными. Они, в свою очередь, подразделяются на монолитные фундаменты с вертикальными опорами и сборные ленты из кирпича или пеноблоков.

Монолитный ленточный фундамент

При установке монолитного ленточного основания армирование и заливка фундамента производятся непосредственно на строительной площадке. Результатом является общая целостность и непрерывность несущей ленты.

Монолитный ленточный фундамент представляет собой неразрушаемую железобетонную ленту по всему периметру сооружения.

В зависимости от геологии участка глубина закладки монолитного фундамента варьируется от 80 до 250 см.При строительстве частных домов глубина кладки редко превышает 150 см.

Монолитные типы фундаментов, независимо от технологии, используются для строительства объектов различного назначения на пучинистых и подвижных типах грунтов. Прочность конструкции обеспечивает высокую прочность и надежность несущего основания.

Свайный и столбчато-ленточный фундамент

Свайно-ленточный и столбчато-ленточный типы фундаментов представляют собой монолитную ленту из железобетона, размещаемую на заглубленных в землю опорах.В основном эти типы фундаментов не более чем модернизированный вариант свайного или столбчатого фундамента с ростверком.

Столбы или сваи располагаются по периметру фундамента с шагом 2 м.

В первом случае в качестве опор используются стальные изделия в виде свай различной длины, которые вкручиваются в грунт вручную или автоматически. . Во втором — опоры делают из той же бетонной смеси, которую используют для заливки несущей ленты.

Устройство свайных и столбчатых фундаментов ленточного типа оправдано только при строительстве объектов на участках с большой глубиной промерзания грунта. Стальные сваи или железобетонные столбы, заглубленные ниже уровня промерзания почвы, будут распределять нагрузку, передаваемую от железобетонной ленты.

Сборный ленточный фундамент

Основным материалом для строительства сборного ленточного фундамента являются железобетонные фундаментные блоки (ФББ) из тяжелых марок бетона.Из блоков формируется несущая лента фундамента, которая располагается по периметру и площади будущей конструкции. Для соединения блоков между собой используется бетон марки М350 и стальная арматура Ø15 мм.

После сборки фундамента внешняя поверхность опорного основания обрабатывается гидроизоляционными материалами. Чаще всего используются битумные мастики и специальные битумные мембраны, которые имеют самоклеющуюся основу.

Сборный ленточный фундамент состоит из железобетонных фундаментных блоков, соединенных между собой бетоном.

Основным преимуществом сборного ленточного фундамента является короткие сроки строительства. В отличие от монолитного основания не нужно ждать минимальной прочности бетонной смеси. Приступать к строительству дома можно уже через несколько дней после сборки ленты.

Несмотря на это преимущество, сборные ленточные фундаменты используются для строительства частных домов несколько реже, чем монолитное бетонное основание. Во многом это связано с тем, что сборная конструкция не подходит для использования на подвижных типах грунта. При одинаковой толщине прочностные показатели сборной конструкции на 20–30% ниже, чем у монолитной.

Кирпичный ленточный фундамент представляет собой сборную конструкцию и часто используется при строительстве одноэтажных домов по каркасной технологии. Для изготовления ленты используется обожженный полнотелый кирпич. Глубина укладки — 40-50 см.

Кирпичный ленточный фундамент отличается высокой ремонтопригодностью, но требует устройства качественной гидроизоляции.

После сборки, как и в случае с блочными, необходимо устроить полноценный слой гидроизоляции. К достоинствам такого фундамента можно отнести:

  • жесткости конструкции;
  • высокая ремонтопригодность;
  • Простота размещения.

Если провести более детальное сравнение кирпича с железобетонными блоками, то основания из блоков менее гигроскопичны и обладают большей прочностью. Кирпич более хрупкий, что сказывается не только на частоте проводимых ремонтов, но и на сроке службы конструкции в целом. Учитывая это, ленточный фундамент из кирпича рекомендуется возводить на участках с сухим и твердым грунтом, а также с малой залеганием грунтовых вод.

Как сделать ленточный фундамент для дома

Для того, чтобы приступить к возведению ленточного фундамента, необходимо будет произвести расчетные операции, в ходе которых необходимо узнать глубину фундамента и ширину фундамента. несущая полоса.По возможности эти работы можно делегировать и обратиться в проектно-строительную организацию, где рассчитают все необходимые параметры, на основании которых будет составлен проект будущего фундамента.

Расчет ленточного фундамента

Если вы решили провести обследование почвы и составить проект самостоятельно, то будьте готовы к тому, что даже небольшая ошибка может привести к разрушению дома. Особенно, если вы планируете построить двух- или трехэтажное здание.

Таблица: глубина ленточного фундамента в зависимости от типа грунта

Для малоэтажных деревянных домов, гаражей, саун, курятников и технических построек расчет можно выполнить с учетом рекомендаций, приведенных в СНиП II — Б.1–62 «Фундаменты зданий и сооружений».

Самый простой вариант — проверить известные параметры по специальной таблице, позволяющей определить глубину ленточного основания. Указанная таблица представлена ​​выше.Справочно: 1 кН = 101,9 кг. Таблица составлена ​​на основе европейских стандартов, принятых в 2010 году.

Для выравнивания площадки используются подручные средства, ручной инструмент и спецтехника

В качестве примера рассчитаем параметры ленточного фундамента, необходимые для строительства. одноэтажного дачи из бруса, длина которого составляет 8 м, а ширина — 6 м. Высота коттеджа без учета крыши — 2,5 м. Конструкция возводится на земле из сухого мелкозернистого материала. песок.Глубина промерзания почвы 1,4 м, что соответствует средней полосе России.

Последовательность расчета ленточного фундамента следующая:

  1. Вес здания — для расчета общего веса здания у вас должен быть строительный проект, в котором описывается, какие материалы будут использоваться для его строительства. В среднем вес одноэтажного дома из бруса с мансардой составляет не более 70 тонн. К этому значению прибавьте вес изоляционных материалов, перекрытий и перегородок, а также снеговую нагрузку (160–240 кг / м 2).В итоге получается, что в среднем одноэтажная дача с указанными выше параметрами будет весить около 100 тонн.
  2. Площадь фундамента — длина несущей ленты: (6 + 8) * 2 + 6 = 34 м. Ширина ленты выбирается в зависимости от веса, но не менее 20 см. В результате получается Выяснилось, что площадь фундамента составляет: 28 * 0,2 м = 6,8 м 2. В дальнейшем это значение может быть скорректировано.
  3. Глубина залегания — грунт состоит из сухого песка, глубина промерзания которого 1.4 мес. Из этого можно сделать вывод, что почва на участке непористая. Поэтому для строительства одноэтажного дачи можно использовать неглубокий фундамент глубиной 0,6 м.
  4. Нагрузка на несущую ленту — согласно СНиП 2.02.01–83 «Фундаменты зданий и сооружений» для расчета нагрузки используется следующая формула: П = общая масса конструкции / площадь фундамента. Для мелкопесчаного грунта полученное значение должно быть менее 20 т (значение взято из ДБН В.2.1-10-2009). В нашем случае P = 100 / 6,8 = 14,7 т / м 2.

На основании этого можно сделать вывод, что указанная ранее ширина несущей ленты (0,2 м) идеальна для одноэтажного дачного участка массой не более 100 тонн. В итоге получается, что для строительства бревенчатой ​​дачи площадью 48 м 2 потребуется ленточный фундамент шириной 0,2 м, который будет заглублен на 0,6 м в землю.

Используя таблицы, приведенные в этой статье, и СНиП 2.02.01–83, можно выполнить расчет для любого ленточного основания, которое будет возводиться на непористых типах грунта.Данные о весе стройматериалов можно взять из открытых источников, а для примерного расчета использовать онлайн-калькуляторы.

Подготовка участка

После завершения всех расчетных работ, получения проекта фундамента и будущего здания можно переходить к оформлению земельного участка. Во время подготовки необходимо очистить и разметить поверхность участка с помощью подручных средств.

Разметка площадки под ленточный фундамент выполняется с помощью деревянных колышков и натянутой между ними прочной веревки

Для подготовки необходимо сделать следующее:


Для окончательной проверки это необходимо замерить диагонали площадки под фундамент.Для этого нить натягивают крест-накрест. Если все сделать правильно, то диагонали будут равны. В противном случае необходимо перепроверить углы с помощью прибора и переставить колышки.

Копание траншеи

Во время земляных работ необходимо вырыть траншею на расчетную глубину, которая рассчитывается с учетом типа грунта и возводимого фундамента. Для этого можно использовать как спецтехнику, так и ручной инструмент в виде лопат и лома.

Выкапывается траншея под ленточный фундамент на расчетную глубину несущего основания и подстилающей подушки

Для устройства траншей по периметру фундамента необходимо выполнить следующие мероприятия:


Устройство опалубки

Для изготовления опалубки используется обрезная доска 20 × 150, 20 × 175 или 20 × 299 мм, которая крепится деревянными брусками 50 × 50 мм. По возможности можно использовать влагостойкую фанеру, которая монтируется на предварительно собранный каркас из бруса.Принцип действия панелей опалубки показан на фото ниже.

Установка опалубки осуществляется в следующей последовательности:


Если в фундаменте предусмотрена прокладка труб для коммуникаций и создание вентиляционных зазоров, то в опалубке выпиливаются специальные отверстия необходимого сечения. Для этого используется электродрель с корончатой ​​насадкой.

Видео: установка опалубки

Установка арматурного каркаса

Для армирования ленточного фундамента используется каркас из стальной арматуры Ø12-15 мм.Каркас собирается сваркой или при помощи стальной проволоки.

Вязание арматурного каркаса происходит следующим образом:


При вязании помните, что каркас необходимо скрыть под слоем бетона на глубину 5–6 см. Максимальная длина перемычки при ширине ленты 40 см не должна превышать 30 см.

Для ускорения процесса вязания можно приобрести специальный строительный пистолет, работающий по принципу степлера, но вместо обычных скоб используется стальная проволока нужного сечения.

Видео: как связать арматурный каркас

Заливка бетонной смесью

При возведении ленточных оснований для частного жилья используется бетонная смесь марок М200, М250, М300 или М350. Бетон марки М200, как правило, применяется только для небольших каркасных бань и подсобных помещений. Бетон высших марок предназначен для заливки фундаментов при строительстве двух- и трехэтажных домов, а бетон М350 — только для больших построек.

Заливка фундамента происходит строго в один прием, поэтому важно обеспечить необходимый объем бетонной смеси, который рассчитывается исходя из размеров фундамента.Если нет возможности приготовить необходимое количество бетона, то фундамент заливают слоями с обязательным уплотнением каждого слоя.

Пропорции раствора для самосмешивания смеси: -1 часть цемента, 2 части просеянного песка и 4 части щебня фракции 20-40. При изменении пропорций раствора следует помнить, что щебня должно быть в 1,5-2 раза больше, чем песка.

Автоматическая подача бетонной смеси значительно ускорит процесс заливки ленточного основания.

Вы можете начинать заливку смеси из любого удобного места траншеи.Бетон подается порциями, чтобы его можно было равномерно распределить по объему траншеи. Для уплотнения смеси используется арматурный стержень или деревянная рейка.

Последняя часть бетона выравнивается по растянутой контрольной точке. Для этого сырой бетон покрывают сухим цементом и затирают деревянным шпателем. После этого основу накрывают полиэтиленовой пленкой и 2-3 раза в день смачивают небольшим количеством воды.

Ленточный бетонный фундамент наберет полную прочность не раньше, чем через 27 дней, но уже через 14-17 дней опалубку можно будет демонтировать.Через 27-30 дней фундамент гидроизоляют и засыпают.

Несмотря на относительно высокую стоимость, ленточные фундаменты являются одним из самых прочных видов несущих оснований. К тому же многие владельцы дачных участков отдают предпочтение этому типу фундамента, так как он позволяет оборудовать подвал или даже целый подвал.

Что такое ленточный фундамент — вопрос, на который вроде бы легко ответить, но правильно сформулировать может не каждый строитель. Ленточный фундамент представляет собой замкнутый контур из железобетонных балок, которые монтируются (заливаются) под всеми несущими стенами здания.

В зависимости от размеров балок и их глубины в грунте определяется прочность конструкции и ее несущая способность. Поэтому очень важно еще на этапе создания проекта рассчитать фундамент для всех показателей.

Виды ленточных фундаментов

Устройство ленточного фундамента классифицируют по нескольким показателям. По уровню проникновения:

  1. Утопленный ленточный фундамент — это когда траншея под конструкцию вырывается на 30-50 см ниже уровня промерзания грунта.
  2. Мелководье (МЗЛФ) — это когда глубина траншеи всего 20-50 см.
  3. Мелководье — фундамент дома, закладываемый на поверхность почвы без рытья траншей.

По понятным причинам углубленная версия сложнее выполнять работы и будет дороже других по стоимости. Но именно он чаще всего используется в жилищном строительстве. Он более надежен и может использоваться практически на любых почвах.

По типу строения:

  1. Монолитный — это заливка бетона в установленную опалубку.
  2. Фундамент сборный ленточный Это конструкция, собранная из готовых железобетонных изделий, специально изготовленных на заводах для фундаментов. Для их установки требуется явка. строительная площадка тяжелой техники, что увеличивает стоимость монтажных работ.

Достоинства и недостатки

Недаром ленточный фундамент (монолитный) так популярен среди частных застройщиков, потому что:

  • выдерживает огромные нагрузки;
  • проста в сборке, что дает возможность проводить все строительные операции своими руками;
  • у него огромный эксплуатационный ресурс;
  • Имею возможность выбрать классификацию условий строительства из представленного списка;
  • лента не уступит по надежности плиточному варианту;
  • дешевле печки в несколько раз; №
  • Есть возможность провести теплоизоляцию полов, укладывая несколько слоев утеплителя между балками.

И недостатки:

  1. Не монолитный на всех почвах возможна заливка железобетонного ленточного фундамента.
  2. Если строится большой дом, то под него придется заливать большой объем бетона, что невозможно сделать на стройплощадке за один день. Причем заливать его нужно за один день, поэтому придется покупать уже готовый раствор, который стоит дороже, чем если бы вы сделали его самостоятельно.
  3. Большой объем подготовительных работ под ленточный фундамент, особенно земляной.Придется выкопать глубокую траншею, что может занять несколько дней. Если вы воспользуетесь услугами экскаватора, работа пойдет быстрее, но за использованную технику придется платить.

Этапы строительства ленточного фундамента

Перед тем, как сделать ленточный фундамент, нужно спланировать все работы и разбить их на этапы. Первый этап — подготовительный. Что включает:

  • обозначение строения на местности;
  • рытье траншей;
  • подготовка траншей с засыпными подушками;
  • установка опалубки;
  • установка арматурного каркаса.

В разметке

Самым ответственным моментом при возведении заглубленного ленточного фундамента является точная разметка конструкции на строительной площадке. Если участок и дом большие, то самостоятельно нанести точную разметку очень сложно. Весьма вероятно, что он будет применен неправильно. Поэтому пригласите специалиста с лазерным уровнем, который отметит оси лучей на земле с привязкой к границам участка.

  1. Вбить клинья по осям и обвязать шпагатом.
  2. От оси в две стороны отложить половину толщины ленточного фундамента. Например, если толщина ленты по проекту составляет 50 см, это означает, что от оси нужно отвести по 25 см в каждую сторону.
  3. Забейте стойки вдоль каждой стороны оси и также обвяжите их шпагатом. Затем вы можете удалить колышки и веревки, определяющие оси. Схема фундамента для частного дома формируется на земле.
  4. Выкапываемые траншеи с учетом глубины конструкции фундамента. Стены траншей выравниваются по возможности вертикально.
  5. Дно засыпано песком слоем 20-30 см, хорошо утрамбованным. Рекомендуется полив.

Опалубка

Сборка опалубки. В зависимости от типа грунта на участке опалубка подбирается на всю высоту фундамента или только для цокольной части.Если почва твердая, то применяется второй вариант, если рыхлый, то первый. Сама опалубка собирается из плоских материалов: досок, фанеры, плит OSB, профнастила, металлических листов, шифера и др. Главное требование к ней — прочность конструкции, которая должна выдерживать давление бетона.

Армокаркас

Теперь о каркасе усиления. Вы можете сделать это самостоятельно или заказать. В проекте рассчитываются габариты каркаса, и из какого армирования он должен быть сделан.Поэтому сделать его своими руками — не проблема, главное выбрать, как скрепить его элементы. Это электросварка или проволока. Рекомендуется вязать арматуру.

Обратите внимание, как правильно установить каркас в опалубке и траншее. Его следует устанавливать не на подушку, а на подставки. Потому что по канонам строительства каркас должен располагаться в теле фундамента. В качестве опор используют полнотелый кирпич, бетонные блоки или специально изготовленные рогатки из металлического профиля (арматуры, уголка).

Расчеты

Все готово, можно приступать к заливке ленточного фундамента. Но перед этим нужно определиться с двумя вопросами: бетон какой марки используется при строительстве ленточной конструкции и как рассчитать количество бетона на фундамент.

Здесь все просто. Марка бетона для ленточного фундамента частного дома должна быть не менее М400. Поэтому при замешивании раствора на стройплощадке используйте соотношение:

  • 1 объем цемента марки М400;
  • 2 объема песка;
  • 3 объема мелкого и среднего щебня;
  • 0.4 объема воды.

Что касается расчета количества раствора, то для этого необходимо определить объем самой конструкции. В разрезе это прямоугольник со сторонами — шириной и высотой. Умножая их вместе, получаем площадь поперечного сечения ленты. Теперь нужно измерить длину всего контура со всеми внутренними сечениями.

Общая длина умножается на вычисленное значение секции. Это объем бетонной массы для ленточного фундамента.На серьезных строительных порталах предлагаются калькуляторы, с помощью которых можно рассчитать объем.

Заливка фундамента

Технология устройства ленточного фундамента основана на возведении железобетонной конструкции, в которой бетон является основным компонентом. Необходимо не только правильно его изготовить и определиться с вопросом, какая марка бетона нужна для ленточного фундамента, но и правильно его залить.

  • Заливать необходимо непрерывно, но если на перемешивание раствора требуется время, то время между заливками не должно быть более 4 часов.
  • Бетонный раствор равномерно распределен по всей конструкции фундамента. Каждый залитый объем подвергается вибрации, основной целью которой является удаление воздуха из бетонной массы. Потому что воздух, оставшийся в смеси, представляет собой раковины и поры после затвердевания бетона, которые снижают прочность камня. Вторая цель вибрации — уплотнение раствора.

После заливки поверхность ленты накрывается мешковиной или полиэтиленовой пленкой. Вы можете выбрать любой.Теперь к вопросу о том, сколько должен стоять фундамент. Чтобы укрепить свой бренд, необходимо, чтобы основа простояла 28 дней. Опалубку можно снимать через 7 дней после заливки.

Это не совсем простая пошаговая инструкция строительства ленточного фундамента своими руками.

Фундамент на откосе

Строительство дома на склоне с использованием ленточной конструкции — один из вариантов. Правда, фундамент на откосе ленточного типа — довольно сложная конструкция, требующая повышенного количества бетонного раствора.Но самое главное — правильно рыть траншеи. На высокой части участка проводится большой объем земляных работ, потому что фундамент заглублен относительно самой нижней точки локации. Именно от нее исходит расчет глубины кладки.

Например, если разница между торцами фундаментной конструкции по высоте составляет полметра, а глубина — 1,5 м, то на высокой части откоса придется рыть траншеи глубиной 2 м.а точнее — по нижнему краю на полметра.

Опалубка получится скошенной, поэтому в первую очередь задается высота ленты, а затем под нее подгоняются размеры досок. Это к вопросу о том, как правильно сделать опалубку для фундамента на откосе.

Добавляем, что если опалубка устанавливается только на цокольную часть, то на самом высоком участке по высоте она будет небольшой, а может и вовсе отсутствовать. Все зависит от конструкции фундамента.Например, с такой же разницей в полметра. Если в нижней части откоса опалубка для цоколя высотой 50 см, то в верхней части устанавливать ее не нужно.

Перед заливкой бетона необходимо провести все подготовительные операции, которые требуются для конструкции такого типа. Что касается вопроса о том, какой бетон использовать для ленточного фундамента, построенного на склоне, мы выбираем М400. Как и в предыдущем случае, раствор должен постоять 28 дней.

Часто на откосах возводят ленточно-ростверковый фундамент. Ростверк — что это? Это та же лента, только устанавливаемая на столбы. Рассчитать ленточный фундамент на сваях сложнее, потому что к ленте добавляются опорные стойки.

А сам процесс строительства усложняется, ведь придется учитывать несущую способность свай, то есть нужно точно определять глубину и диаметр каждого столбчатого элемента.Обязательно в столбы уложить армирующий каркас, а время отводится, чтобы фундамент простоял 28 дней.

Заключение по теме

Хотя фундамент в виде ленты представляет собой простую конструкцию, подходить к его возведению необходимо с позиции неукоснительного соблюдения норм и правил. Нельзя допускать отклонений во всем. Это касается и пропорций бетонного раствора, и правильного его замешивания, и грамотного распределения арматурной сетки, ее монтажа и других нюансов.

Незначительное отклонение обязательно приведет к снижению прочности. А этого допускать никак нельзя, ведь фундамент — это основа постройки, от него будет зависеть, сколько дом простоит.









При строительстве дома или других построек чаще всего отдают предпочтение ленточному фундаменту, так как такой фундамент имеет множество преимуществ.Ленточный фундамент для дома достаточно прост в устройстве и при необходимости его можно заливать без привлечения строительной техники. Такой фундамент является универсальной конструкцией и применяется при возведении легких деревянных и тяжелых каменных построек на различных типах грунтов. Более подробно, что такое ленточный фундамент, его виды, и как он устроен, мы рассмотрим в нашей статье.

Ленточный секционный фундамент Источник bayanay.info

Типы ленточных фундаментов

Прежде чем приступить к возведению такого фундамента, необходимо внимательно рассмотреть его особенности и разновидности.Это позволит правильно выбрать фундамент для возведения того или иного сооружения. Также это даст возможность правильно провести все необходимые работы. Ленточный фундамент — это не один из способов сделать фундамент под дом, их бывает несколько видов:

1. Цельнолитой

Монолитный или сплошной ленточный фундамент возводят непосредственно на строительной площадке. Для начала сооружается опалубка, в которую по всей длине укладывается армированный пояс.После этого заливается бетон.

Фундамент представляет собой замкнутый монолитный контур из железобетона. Это позволяет создать неразъемный каркас, подходящий для любых грунтов, в том числе неустойчивых. На этой основе легко можно построить дачный дом или каменный забор.

Среди достоинств данной конструкции — простота конструкции и надежность. В этом случае основание может иметь другую форму. Из недостатков — большая масса монолитной конструкции.

Сплошной ленточный фундамент — в подготовленную опалубку за один прием заливается бетон Источник sazhaemvsadu.ru

2. Сборный

Для возведения фундамента используются готовые железобетонные блоки. Из них прямо на участке выкладывается лента нужной формы. Их связывают цементным раствором. Они идеально подходят для строительства малоэтажных домов. Приобрести готовые блоки довольно просто, так как их производством занимаются многие фабрики.

Среди достоинств стоит выделить простоту сборки, что значительно экономит время на возведение цоколя. Но, наряду с этим, у сборных конструкций есть и недостатки. Нецелостная конструкция и необходимость привлечения тяжелой строительной техники снижает популярность ленточного фундамента этого типа.

Для справки! Если говорить о цене вопроса, то разница между сборным и монолитным ленточным фундаментом несущественная.Поэтому при выборе стоит ориентироваться на особенности конструкции.

Сборный ленточный фундамент собирается из готовых плит, стыки между ними заделываются. Источник kinozavr.info

3. Фундамент мелкого заложения

Этот тип фундаментов используется в основном при строительстве легких зданий. Так, это могут быть каркасные дома и конструкции из бруса и бревна. Особенность такого фундамента в том, что он немного выше уровня промерзания грунта.Поэтому его часто используют на менее проблемных почвах.

Неглубокие конструкции легко переносят набухание почвы зимой. При строительстве особое внимание уделяется гидроизоляции и теплоизоляции. Это убережет основание от негативного воздействия окружающей среды.

К преимуществам неглубокого фундамента можно отнести невысокую стоимость строительства. При этом нет необходимости в сложных земельных работах. У него есть несколько недостатков. Прежде всего, следует отметить, что такую ​​конструкцию нельзя использовать на всех типах грунтов и для возведения не всех конструкций.

Конструкция неглубокого фундамента стандартная — он просто уходит в землю не более чем на 50-70 сантиметров Источник novostroika93.ru

На нашем сайте вы можете найти контакты строительных компаний, которые предлагают услуги проектирования и ремонт фундамента. Пообщаться напрямую с представителями можно, посетив выставку домов «Малоэтажная страна».

Устройство ленточного фундамента данного типа выполняется ниже уровня промерзания грунта.Это дает возможность распределить нагрузку от будущей конструкции на устойчивый слой грунта. Благодаря этому при возведении многоэтажных домов используются глубокие фундаменты, которые имеют значительный вес.

Достоинства данной конструкции в том, что они подходят для возведения тяжелых конструкций. Также есть возможность обустроить подвал и подвал. Конечно, на оснащение базы потребуются значительные физические и материальные затраты. Особенно это актуально для земляных работ.

Глубокий ленточный фундамент заглубляется ниже уровня промерзания грунта — он может составлять 1,7-2,2 метра и ниже, в зависимости от региона Источник Diagnostika.spb.ru

Онлайн-калькулятор фундамента

Чтобы узнать примерную стоимость ленточного фундамента, воспользуйтесь калькулятором :

Плюсы и минусы ленточного фундамента

Выбирая фундамент, следует обращать внимание на достоинства и недостатки того или иного варианта.Это касается и монолитной ленточной конструкции. Преимущества включают:

  • возможность устройства подвала;
  • легкость конструкции;
  • низкая стоимость;
  • высокая прочность и надежность;
  • возможность использования на пучинистых грунтах.

К сожалению, у ленточного фундамента есть недостатки:

  • в некоторых случаях необходимы сложные земляные работы и использование тяжелой строительной техники;
  • Необходимость проведения гидроизоляционных и теплоизоляционных работ.

Следует учитывать, что понятие плюсов и минусов неоднозначно, так как здесь все зависит от глубины конструкции. Поэтому каждый тип фундамента нужно рассматривать отдельно.

Материалы для изготовления ленточного фундамента

Для изготовления основы потребуются различные материалы. Все зависит от его вида. Итак, для возведения сборного фундамента используются следующие материалы:

  • блоки и плиты бетонные определенной марки;
  • бетон для заделки отверстий между блоками;
  • материалов для гидроизоляции и теплоизоляции.

Фотография фундамента с разборной опалубкой:

Один из вариантов гидроизоляции — ее укладывают еще при сборке опалубки Источник readmehouse.ru

Ленту исключительно из блоков выложить практически невозможно. Поэтому для заделки зазоров используют бетонный раствор и даже кирпич. Также рекомендуется устроить железобетонную ленту, которая позволит связать все элементы в единое целое.

Что касается монолитной конструкции, то для ее возведения вам потребуется:

  • плиты или пенополистирол для строительства опалубки;
  • фитингов для изготовления ремней и соединительных элементов;
  • бетон определенного класса;
  • тепло- и гидроизоляционных материалов.

При устройстве ленточного фундамента для дома следует учитывать, что здесь необходимы определенные работы. Это касается и расположения подушки. Для этого потребуется песок или щебень, а также гидроизоляционный материал.

Процесс проектирования ленточных фундаментов

Проектирование фундамента — очень сложная и ответственная задача, решение которой лучше доверить профессионалам. В процессе нужно определить:

  • Тип почвы.
  • Его расчетное сопротивление.
  • Линейные нагрузки.
  • Глубина залегания.
  • Ширина подошвы тесьмы.
  • Назначение и особенности арматуры.
  • Возможность устройства дренажа.

Схема устройства дренажа ленточного фундамента Источник krovli-zabori.ru

Для определения этих значений необходимы определенные знания. Поэтому эту работу лучше доверить профессионалам.Только они смогут сделать это качественно. Стоит помнить, что от этого будет зависеть прочность и долговечность не только фундамента, но и возведенной на нем конструкции.

Подвал в доме с ленточным фундаментом

Обустройство подвала в доме с ленточным фундаментом — процесс очень трудоемкий и затратный. Для решения этого вопроса потребуется привлечение строительной техники и выполнение фальш-земляных и бетонных работ. Обустройство цокольного этажа осуществляется в следующей последовательности:

  • Выкапывается котлован установленных размеров.Если он строится под всем домом, то для этого потребуется тяжелая строительная техника. Процесс нужно проводить очень аккуратно, чтобы не обрушилась земля.
  • На дне котлована делается подушка из щебня и заливается бетон. Чтобы придать перекрытию прочность, выполняется армирование. Арматура должна немного выступать по периметру, в тех местах, где будут устанавливаться стены.

Источник doka-metal.ru
  • Когда пол полностью затвердел, стены армируют и устанавливают опалубку для дальнейшей заливки бетона.Если цоколь устанавливается только под частью дома, то производится арматура, которая в дальнейшем будет сообщаться с армированным поясом ленточного фундамента.

При возведении стен следует обращать особое внимание на их высоту. Их необходимо совместить с верхом фундамента. После возведения цоколя цоколь застилают заливкой монолитной плиты.

Глубина ленточного фундамента под дом

Глубина фундамента рассчитывается на этапе проектирования.Утопленную конструкцию устанавливают так, чтобы ее подошва находилась на 25 см ниже уровня промерзания почвы. Это убережет его от неравномерных деформаций, возникающих при морозном пучении почвы.

Высота конструкции зависит от климатических особенностей конкретной местности. Глубина промерзания определяется по формуле. Но есть готовая таблица, в которой можно найти эти значения для конкретного региона.

Примерная глубина промерзания почв в различных регионах РФ и СНГ Источник изчегопостроит.ru

Если говорить о неглубоком фундаменте, то он находится на расстоянии 85 см от уровня промерзания грунта. При возведении конструкции стоит учесть, что она будет иметь невысокую несущую способность. Также при возведении фундамента стоит учитывать уровень грунтовых вод. Подошва должна находиться от нее на расстоянии 20 см. Итак, как сделать ленточный фундамент?

Этапы строительства ленточного фундамента

Изготовление ленточного фундамента — не такая уж и сложная задача.Но чтобы выполнить работу правильно, нужно внимательно изучить все нюансы и требования. А начать стоит с составления схемы конструкции. На нем указаны размеры элементов, что позволит легко осуществить его возведение. Также по этой схеме можно рассчитать необходимое количество материалов.

Технология устройства ленточного фундамента выглядит так:

  • подготовка фундамента;
  • работы с опалубкой;
  • гидроизоляция;
  • усиление рамы;
  • бетонирование ленточного фундамента;

Подготовка основания

На этапе подготовки проводится расчет, разметка и другие не менее ответственные работы.Начать стоит с геологического выкупа — эту работу доверяют исключительно специалистам.

Для грамотного проведения геологоразведочных работ необходимо специальное оборудование и специальные знания Источник ro.decorexpro.com

В процессе геологического восстановления необходимо определить:

  • тип грунта на уровне подошвы основания;
  • уровень грунтовых вод;

После этого рассчитываются отметка и толщина монолитной ленты.Когда геологическая отчужденность закончена, они начинают отмечать участок. Для этого используйте деревянную доску и шнур. Также можно использовать известковый раствор. С его помощью делается отметка на земле, где будет проходить лента. Для упрощения задачи работы ведутся по заранее подготовленной схеме фундамента.

Маркировка начинается с одного угла. После этого обводится сторона. Лучше делать это параллельно забору или дороге. Далее намечается обратная сторона и так далее. В этом случае стоит внимательно проверить углы и диагонали.Это позволит избежать проблем с возведением стен. Допустимая погрешность между диагоналями — 2 см.

Судя по разметке, роют яму или траншеи. Первый вариант используется при строительстве домов с подвалом. Для этого потребуется использование тяжелой строительной техники.

Описание видео

Почему готовится фундамент смотрите в следующем видео:

На дне подготовленной котлована или траншеи устраивают песчаную подушку.Толщина заливки может достигать 50 см. Этот параметр зависит от характеристик почвы. Подушка тщательно уплотняется. Это делается путем вибрации или опрыскивания водой. Поверх подушки делается подготовленный слой. Для этого заливается тощий бетон толщиной не более 10 см.

Опалубка и гидроизоляция

Устройство ленточного фундамента осуществляется с использованием следующих видов опалубки:

  • съёмный, изготовленный из деревянных досок;
  • несъемный, из пенополистирола.

Особенность второго варианта в том, что пенополистирол играет роль тепло- и гидроизоляционного слоя. Опалубку выставляют строго по нанесенной разметке. Он возвышается на 10 см над фундаментом. Для обеспечения устойчивости конструкции она подпирается опорами изнутри и снаружи. В опалубку укладывается полиэтиленовая пленка, которая предотвратит растекание цементного молока.

На внутренней стороне опалубки делается отметка для верхней точки бетона.Для этого воспользуйтесь маркером. В процессе проведения этой работы используется гидравлический уровень. Это позволит равномерно заливать бетон.

Описание видео

Как выглядит несъемная гидроизоляционная опалубка, смотрите в следующем видео:

Усилитель рамы

Для изготовления каркаса используются три вида арматуры, выполняющие конкретную задачу:

  • рабочая продольная арматура диаметром 12 мм и более;
  • прижимы горизонтальные — от 6 мм;
  • зажимы вертикальные — от 8 мм.

Перед покупкой арматуры нужно рассчитать, сколько ее потребуется для постройки каркаса. В этом случае стоит учесть особенности его конструкции. Расстояние между зажимами в среднем 25 см. В углах и на стыках стен шаг немного уменьшается. При армировании стоит соблюдать определенные нормы и требования.

Описание видео

Подробнее об армировании смотрите в следующем видео:

Бетонирование ленточного фундамента

Теперь нужно определиться, чем заливать ленточный фундамент? Если он имеет значительные размеры, то лучше заказать уже готовый бетонный раствор, который позволит за один раз залить опалубку.

При бетонировании стоит придерживаться некоторых правил:

  • Розлив осуществляется в течение суток. Перерыв не должен превышать двух часов.
  • Заливать бетон из миксера необходимо с разных точек. Если раствор растянуть, это несколько снизит его качество.
  • Бетонный раствор можно сбрасывать с высоты не более двух метров.
  • Бетонный раствор уплотняют вибратором или штыком.

Заливать ленточный фундамент лучше при среднесуточной температуре около 20 ° С.После завершения конструкция накрывается полиэтиленовой пленкой, которая замедлит потерю влаги.

Описание видео

Для наглядного обзора всей технологии создания ленточных фундаментов смотрите следующее видео:

Заключение

Возведение ленточного фундамента хоть и кажется довольно простым делом, но зато на него тратится много сил и материалов, а по стоимости это около трети всего бюджета строительства. Под проект конкретного дома рассчитывается хороший фундамент и эту работу лучше доверить профессионалам.Не забывайте, что срок службы конструкции будет зависеть от качества и прочности основания.

Фундаментные работы не считаются самыми сложными строительными работами, но с точки зрения ответственности это одна из самых ответственных конструкций здания. Большинство ошибок при строительстве фундамента приводят к очень серьезным последствиям, исправить их очень сложно и дорого, а в некоторых случаях и невозможно. Все расчеты фундамента необходимо проводить согласно положениям СНиП 2.02.01–83.

Файл для загрузки. СНиП 2.02.01–83. Фундаменты зданий и сооружений. СП 22.13330.2011

При расчетах учитывается:

  • нагрузки, действующие на основание фундамента;
  • почвенных индикаторов, наличия и расположения подземных вод;
  • предельно допустимых деформаций и показателей несущих характеристик;
  • характеристики климатических зон и глубины фундамента.

Это очень сложные вычисления, мы не будем на них останавливаться. Для простейших конструкций строители берут за основу стандартные для данной климатической зоны параметры и характеристики грунта. У них уже есть большой запас прочности, что дает возможность обеспечить надежность конструкции.

Фундамент мелкий ленточный — параметры

Ознакомительная таблица примерной ширины ленточного фундамента

Минимальная ширина ленты в зависимости от этажности Ширина ленты, см
Несущая способность грунта 0.72 кгс / см2.
Пример: илистые, мелкослюдистые пески, илистые пески, илистая глина
Ширина пояса, см
Несущая способность почвы 1 кгс / см2
Пример: глина, песчаная глина, илистая глина, илистый неорганический ил
Ширина пояса, см
Несущая способность грунта 1,4 кгс / см2.
Пример: песок, глинистый крупный песок, илистый щебень, глинистый щебень
Ширина ленты, см
Несущая способность почвы> 1,92 кгс / см2.
Пример: гравийный песок, гравий, щебень
Каркасный дом 1 этаж 30 30 30 30
Каркасный дом 2 этажа 38 30 30 30
Каркасный дом 3 этажа 58 43 30 30
Каркасный дом, облицованный «полукирпич» 1 этаж 30 30 30 30
Каркасный дом облицованный «полукирпичом» 2 этажа 53 40 30 30
Каркасный дом облицованный «полукирпичом» 3 этажа 81 60 40 30
Дом кирпичный, кладка в 1 кирпич, 1 этаж 40 30 30 30
Дом кирпичный, 1 кирпичная кладка 2 этажа 73 53 35 30
Дом кирпичный, 1 кирпичная кладка 3 этажа106 81 53 40

Ширина ленты в зависимости от материала стен

Неглубокий ленточный фундамент — один из наиболее часто используемых вариантов в частном строительстве; во всех отношениях он удовлетворяет большинство разработчиков.Строительство фундамента можно условно разделить на три этапа: разметка, устройство траншеи и опалубки, заливка и выравнивание бетона.

Рассмотрим подробно каждый этап. Мы расскажем вам об этапах строительства неглубокого армированного фундамента на песчаной подушке.

Работа должна выполняться аккуратно и медленно. Лучше потерять на разметку лишний час-два, чем потом иметь проблемы с уже готовой лентой для фундамента.

Шаг 1. Вбить деревянные колышки по периметру фундамента. Чтобы выровнять размеры и углы ленты, нужно подготовить простейшее приспособление в виде небольших скамеек. На небольшом расстоянии от углов фундамента вбейте в землю два колышка и закрепите к ним горизонтальные доски.

Шаг 2. Закрепите гвозди в досках, привяжите к ним веревки. Попробуйте сначала проверить угол между веревками с помощью обычного большого квадрата.Это поможет вам найти приблизительные линии фундамента.

Шаг 3. Совместите углы ленты, они должны быть ровно на 90 °. Делать это следует, проверив диагонали. Размеры двух диагоналей не могут отличаться более чем на два сантиметра. Этот разворот легко удаляется при возведении строительного бокса.




Шаг 4. Канаты не снимайте, используйте их с помощью лопаты, чтобы тщательно обозначить положение ленты, желательно выкопать траншею глубоко в штык лопаты (примерно 20 сантиметров).

Шаг 5. Теперь можно снять канаты и продолжить рыть траншею. Сразу решите, куда вы положите землю. Его можно вынести за периметр здания или выровнять под ним. В любом случае плодородный слой нужно удалить полностью.

Шаг 6. Ширина траншеи равна ширине стен здания. Если земля на участке плотная, то опалубку в траншее делать не нужно, если осыпаются стены, то придется заниматься опалубкой по всей высоте фундамента.

Глубина траншеи в пределах 60 ÷ 80 см с учетом песчаной подушки толщиной до двадцати сантиметров.

Видео — Схема под фундамент

Производство

Для можно использовать обрезную доску второго сорта или специальную водостойкую фанеру. Возьмем доски толщиной 20 ÷ 25 мм и шириной 20 см; для сборки досок будем использовать рейки и планки досок.



Шаг 1. Изготовление щитов опалубки.Не нужно делать их очень большими, тогда их будет сложно устанавливать и демонтировать. Длина щитов зависит от их высоты, но в любом случае старайтесь, чтобы общий вес конструкции не превышал 50 ÷ 60 кг. Этот груз без особых усилий могут поднять два человека. Старайтесь укладывать доски из досок без больших зазоров, прибивать вертикальные стойки на расстоянии 50 ÷ 60 сантиметров. Более точные показатели зависят от параметров фундаментной ленты.




Щиты — фото

Использование гвоздей для забивания, саморезов не только увеличит стоимость опалубки, но и создаст проблемы при ее демонтаже.После демонтажа опалубки практически весь пиломатериал можно использовать для дальнейшего строительства здания, желательно не повредить их повторно. Точно рассчитать длину щитов у вас вряд ли получится, оставьте запас примерно 1,5 ÷ 2 метра по длине, этот щит вы сделаете после точной установки всех предыдущих. В таком положении можно будет снять точные размеры до угла и сделать щит необходимой длины.

Шаг 2. Приступить к установке опалубки фундамента. Такую работу делать нельзя, нужно вызывать ассистента. Опустите все щиты по очереди в траншею, зафиксируйте положение колышками и угловыми упорами. Между панелями следует вставить распорки, чтобы они не меняли своего положения при креплении опалубки. При заливке бетона распорки не работают, они имеют значение только при сборке опалубки. Советуем сразу подготовить распорки для шаблона, количество определяется с учетом длины и высоты фундаментной ленты и параметров досок.

Шаг 3. Надежно закрепите щитки, угловые опоры лучше ставить чаще, чем потом выравнивать фундамент. Выставляйте щиты вдоль веревки, постоянно следите за их положением. Стыки досок заделываются доской, в этом месте необходимо произвести крепление. Забейте колышки как можно глубже, угловые опоры к щиткам необходимо закрепить специальными небольшими упорами из обрезков досок. Необходимо исключить даже малейшую возможность нарушения целостности опалубки при заливке бетона.Такая «авария» всегда обходится дорого.

Шаг 4 … При установке опалубки всегда необходимо предусмотреть ее дальнейший демонтаж. Это значит, что гвозди следует вбивать в те места, откуда их можно будет удалить. Все разборные элементы размещайте только на внешней доступной стороне опалубки.

Шаг 5 … Проверить правильность установки опалубки. Обратите внимание не только на линейность плоскостей, но и на надежность фиксации.Приложите к опалубке разнонаправленные усилия — при обнаружении даже незначительных колебаний конструкции сразу же установите дополнительные упоры. Помните, что исправлять ошибки при установке опалубки при заливке бетона крайне неблагодарно.

Опалубка в сборе — фото

Цена на Доска обрезная

Доска обрезная

Видео — Производство опалубки

Шаг 6. Уложить пластиковые трубы в опалубку в местах расположения вентиляционных каналов и инженерных коммуникаций.Закрепите верхние доски щитов опалубки досками или стяните их проволокой во избежание разрыва.



Наш фундамент необходимо укрепить — его несущая способность значительно увеличивается. Для армирования используется строительная арматура с периодическим профилем Ø 10 мм. Арматуру можно связать, что очень долго, но при заливке бетона можно укладывать только горизонтальные стержни. Мы, конечно, выбрали второй вариант.По прочности ленточный фундамент практически ничего не теряет, а труда и денег потребуется гораздо меньше.

Если все в порядке, можно начинать заливку бетона.

Заливка бетона

Бетон изготовим сами из цемента марки 400, песка и гравия или щебня.




В наше время такая тяжелая физическая работа больше не выполняется вручную, вам необходимо приобрести или одолжить небольшую бетономешалку с объемом барабана примерно 0.2 м3.

Перед началом работ нужно рассчитать необходимое количество стройматериалов, расчеты производятся с учетом общего объема фундаментной ленты. Посчитать объем несложно, длину умножить на ширину и высоту. На один кубометр бетона потребуется 325 кг цемента, 760 кг песка и 1100 кг щебня. Это приблизительные цифры, они нужны только для ориентировки количества материалов. При покупке материалов увеличивайте их количество на 10%.Для песчаной подушки нужно купить еще больше песка.

При производстве бетона никто не взвешивает отдельные ингредиенты с точностью до грамма. При приготовлении бетона на одну лопату цемента возьмите две лопаты с песком и три лопатки для щебня или гравия. Вода используется по мере необходимости, конкретное количество определяется опытным путем, бетон должен иметь оптимальную вязкость.

Шаг 1. Насыпать в траншею слой песка толщиной ≈15 ÷ 20 сантиметров. Песок необходимо хорошо утрамбовать, использовать для этого любые подручные средства или сделать самое простое приспособление.

Шаг 2. Залить бетон по периметру здания, не допускать больших перепадов высоты. Если у вас есть электрический вибратор, отлично, он может уплотнить бетон сразу по всей высоте фундамента. Если утрамбовка производится вручную, то бетонный слой не должен превышать 25 ÷ 30 сантиметров по высоте.

Шаг 3. Одновременно с заливкой обратите внимание на «поведение» опалубки, при обнаружении различных выпуклостей или искривлений немедленно примите меры по их устранению.

Шаг 4. Решили, что усиление фундамента будем выполнять упрощенным способом. Стержни кладут прямо на бетон. Всего в ленте у нас получится четыре ряда арматуры, по два в каждом слое. Покройте песчаную подушку слоем бетона толщиной примерно 30 ÷ 40 сантиметров. Выровняйте его по горизонтали, уложите два ряда арматуры. Особо стараться не стоит, стержни тогда наполнятся массой, и небольшой угол наклона (если он есть) не имеет негативного влияния.

Шаг 5. Продолжаем заливку фундамента по периметру, когда до верха ленты останется двадцать-тридцать сантиметров, кладем второй ряд арматуры. Обратите внимание, что концы арматурных стержней перекрываются примерно на 20 ÷ 30 сантиметров.

Шаг 6. Выровняйте нулевую отметку ленточного фундамента, разброс высоты по углам не может превышать двух сантиметров. Используйте натянутую веревку, с ее помощью вы сделаете центровку быстрее и качественнее.

Настоятельно рекомендуется залить весь фундамент в течение одного рабочего дня.

В большинстве случаев это возможно для бань, но все зависит от конкретных размеров, умения организовать строительные работы, профессионализма и количества рабочих. Если на следующий день вам предстоит оставить часть работ, то жидкий бетон в опалубке необходимо обрезать по возможности горизонтально. Наличие «ступенек» с большим перепадом высоты значительно снижает несущие характеристики фундамента.Опалубку следует снимать через две недели после заливки бетона. Если на улице жаркая и сухая погода, рекомендуется смачивать бетон несколько раз в день большим количеством воды. У быстросохнущего фундамента расчетной прочности не будет.

Почему? Бетон — уникальный материал. В идеальных условиях прочность бетонных конструкций постоянно увеличивается. В течение первых 14–15 дней бетон набирает 70–80% от максимальной прочности, затем скорость увеличения прочности замедляется, и через 30–40 лет его прочность увеличивается лишь на доли процента.Но он увеличивается! Конечно, это происходит только тогда, когда на конструкцию не действуют осадки, перепады температур, внешние силы и т. Д. Поэтому не рекомендуется снимать опалубку менее чем за две недели. Не спешите его демонтировать, за это время лучше подготовиться к следующему этапу строительства.

Цены на бетонную смесь М400

бетонная смесь М400

Видео — Семинар по заливке фундамента

Теперь, когда у вас уже есть общее представление о технологии возведения фундамента, можно дать несколько практических советов… С их помощью можно будет не только упростить и облегчить ряд строительных работ, но и улучшить их качество и удешевить.

Как делать бетон

Многое зависит от правильной организации работы, даем советы мастеров, имеющих солидный практический опыт.

Бетономешалка должна стоять на неподвижном месте, готовый бетон тачками доставляют в фундамент.

Есть «умельцы», которые советуют протаскивать бетономешалку по фундаменту по мере его заливки.На каждое новое место отдельно доставляют ведра с водой, песком, цементом и гравием. Смотреть на эту «технику» и смешно, и больно. Такая организация работы увеличивает трудоемкость минимум вдвое и на столько же увеличивает время.

Что мы рекомендуем? Бетономешалка должна быть стационарной, устанавливайте ее с учетом возможности подъезда. Поставьте возле бетономешалки бочку с водой объемом примерно 200 литров. Разложить песок и щебень в кучи, цемент оставить на поддонах в мешках.Все материалы должны быть доступны для заливки в бетономешалку без перезагрузки.

Набросьте мешок с цементом на кучу песка и лопатой разрежьте ее примерно пополам. Половина мешка цемента — это просто норма на одну партию бетона. Включите бетономешалку, налейте в нее полтора-два ведра воды, возьмите руками полмешка цемента и вылейте в воду. Можно сразу бросить гравий или щебень, мелкие комочки цемента хорошо разломают гальки.Далее по очереди бросаем в миксер песок и гравий. Расчет прост — на одну лопату цемента нужно две лопатки с песком и четыре лопатки для гравия.

Конкретное количество зависит от размера ваших лопат. Для первой партии вы можете измерить количество цемента в половине мешка, это даст вам приблизительное ориентирование. В дальнейшем у вас будет опыт и вы уже будете определять качество бетона на глаз по вязкости массы.Если раствор слишком густой, добавляйте воду небольшими порциями. Если он окажется жидким, добавьте песок, щебень практически не влияет на вязкость бетона, он мало впитывает воду. Пришлось добавить много песка — закинуть в миксер еще одну лопату цемента. Цемент, пролитый на песок, собирают и используют в бизнесе.

С водой тоже сразу не угадаешь, количество воды зависит от влажности песка и гравия. Для первой партии лучше взять немного меньше воды и потом добавлять по мере необходимости.Слишком много воды может вызвать неприятности — не хватит объема смесителя для добавления большого количества песка и гравия.

Готовый бетон необходимо доставлять в фундамент тачками. При планировании организации работы необходимо предусмотреть такое количество людей, чтобы работа шла конвейерным методом, никто никого не ожидал. Время заливки фундамента бетоном должно быть равно времени его изготовления. На эти показатели влияет множество факторов: расстояние до фундаментной ленты, объем бетономешалки, профессионализм и трудолюбие рабочих.

Бетоносмеситель цены

бетоносмеситель

Важно


Пожалуй, это все, что мы можем посоветовать новичкам, в будущем у вас будет собственный опыт и вы сможете изменить и улучшить алгоритм изготовления бетона.

Как собрать опалубку

Абсолютно все отдельные узлы работают на изгиб или сжатие. Почему мы об этом говорим? И тогда при сборке опалубки нет необходимости использовать огромные гвозди, а потом загибать их на пять сантиметров с обратной стороны.Ни один гвоздь не работает. В угловых упорах на гвозди действуют изгибающие силы и очень небольшие тяговые усилия. Использование обычных гвоздей не снизит прочность конструкции, но значительно облегчит вам работу при ее демонтаже.

Большая часть досок после опалубки идет на дальнейшее строительство — после снятия опалубки сразу разбирать ее и чистить доски. Бывают случаи, когда для опалубки используются качественные доски — рекомендуем накрыть их полиэтиленовой пленкой.Установите пленку с внутренней стороны опалубки, зафиксируйте обычным степлером. Стоимость пленки копейки по сравнению со стоимостью пиломатериалов. Загрязненные цементом доски на машинах не будут обрабатываться никаким мастером, а полиэтилен сохранит материалы в их первоначальном состоянии.

Цены на гвозди строительные

гвозди строительные

Как рыть траншею

Казалось бы, нет ничего проще — копай глубже и кидай дальше.Но так думают те, кто никогда не копал. У каждой работы есть свои секреты, вот лишь некоторые из них.

  1. Первый шаг — подрезать корни травы по всей длине траншеи. С помощью лопаты обрежьте дерн по линии с обеих сторон фундаментной ленты на глубину примерно десяти сантиметров. Это не только упростит удаление дерна, но и сделает края ровными.
  2. Первую выкопанную землю нужно выбросить как можно дальше от краев ленты.Вам все равно придется пойти дальше, чем вы думаете. Пока вы не пойдете глубже, это будет легче сделать. Со временем траншея станет глубже, придется затрачивать больше усилий, чтобы выбросить землю. А если вы уже сделали бугорок по краям, то придется его перебрасывать.
  3. Увеличить глубину штыка лопаты по всей длине траншеи, сразу выровнять края. Затем лопатой очистите рыхлый грунт, начните работу с того места, где закончили копать штыковой лопатой.Таким образом, вы сами не будете протыкать землю. Закончили расчистку земли — повторите все сначала, поработайте штыковой лопатой по всей длине, затем очистите дно траншеи.

Видео — Как рыть траншею под фундамент

Мы гарантируем, что таким образом вы сможете закапывать фундамент намного быстрее и без «подвигов труда». Рассказать обо всех тонкостях строительных работ в одной статье невозможно.Не стоит долго заниматься монотонной работой, она ускоряет физическое и умственное переутомление, по возможности поменяйте ее через час-два.

Можно дать один универсальный совет: ищите логику в каждой работе. Все действия должны быть направлены на одно — получение максимального результата с минимальными потерями. Неважно, какие траты: время, деньги или усилия. Если прислушаться к нашим советам, то работа всегда будет в радость, а не в наказание. Тем более, если это будет сделано своими руками и для себя.

Видео — Ленточный фундамент мелкого заложения своими руками

Монолитный ленточный фундамент представляет собой неразъемную конструкцию из стальной арматуры и бетонной ленты. Располагается по периметру здания и под всеми несущими стенами и элементами. При соблюдении технологии конструкция становится единым целым — монолитом — и имеет очень высокие характеристики надежности и прочности. По этой причине он популярен как при строительстве многоэтажных домов, так и частных коттеджей.

Целесообразно использовать монолитный ленточный фундамент с низким уровнем грунтовых вод: при их расположении ниже необходимой глубины фундамента. В противном случае необходимо организовать дренаж, а это дополнительные (и немалые) средства.

Устройство и типы

По глубине ленточные фундаменты бывают мелкими и глубокими. Мелкие могут применяться на спокойных немысливых почвах с хорошей несущей способностью для построек небольшой массы — деревянных и возводимых по каркасной технологии.

В этом случае лента должна заходить на 10-15 см в твердый слой, который находится под плодородным. При этом по нормам не может быть меньше 60 см.

Монолитный ленточный фундамент глубокого заложения предназначен для тяжелых массивных домов. В общем случае их опускают на 10-15 см ниже уровня промерзания почвы для данного региона. В этом случае подошва должна поддерживаться слоем с хорошей несущей способностью. Если это не так, вам нужно углубиться ниже.Например, если уровень промерзания грунтов составляет 1,2 м, а плодородный слой заканчивается на 1,4 м, то вам придется опуститься ниже 1,4 м.

С опалубкой или без нее

В целом технология возведения монолитного ленточного фундамента предусматривает монтаж. Это панельные конструкции, которые формируют бетон и не дают ему растекаться. Понятно, что опалубка — это дополнительные затраты на материалы, а также дополнительное время на ее сборку и установку.

Опалубка — конструкция из досок или фанеры, придающая форму фундаменту

Иногда в целях экономии на хороших грунтах котлован под фундамент выкапывается точно по разметке — на необходимую ширину и глубину.И в эти отверстия бетон заливается без опалубки. Такая технология не может гарантировать требуемую степень надежности; результат невозможно предугадать. Дело в том, что бетону требуется определенное количество воды, чтобы набрать нормальную прочность. Без опалубки вода хоть и немного впитывается в почву, что может сказаться на качестве самого бетонного камня. В худшем случае он может рассыпаться.

Выходят из положения, расстелив в траншее полиэтиленовую пленку. Но потом по ней ходят — нужно делать подкрепление.И штанги, и ботинки не раз повреждают пленку. В результате влага все равно уходит.

Фундамент без опалубки — дело рискованное

В некоторых случаях такой фундамент может без проблем прослужить несколько лет. Но рано или поздно появляются трещины или бетон начинает крошиться. Вторая сложность работы с таким фундаментом — его далеко не идеальная геометрия. Чтобы уменьшить теплопотери, фундамент утепляют, причем чаще всего пенопластами или экструдированным пенополистиролом.Попробуйте наклеить их на неровную поверхность. Такая же ситуация с пароизоляцией: очень сложно (практически невозможно) приклеить пленку на неровный пористый бетон с вкраплениями грунта. Оправдан ли такой подход или нет — решать вам, но рекомендовать такой фундамент можно только для забора или сарая.

Подвал в доме с ленточным фундаментом

Подвал может быть той же площади, что и дом, или может занимать только часть пространства. А с его размером нужно определиться еще до дизайна.

Если подвал занимает лишь определенную часть пространства, можно будет не снимать всю почву, а выкапывать только траншеи под ленту. Еще они роют подвал по определенным правилам. Его размещение и обустройство также можно проработать еще на этапе проектирования.

Ленточный монолитный фундамент с цоколем — сложная проектная задача (для увеличения картинки щелкните по ней правой кнопкой мыши)

Если цоколь решено было сделать позже, то нужно выбрать место и определить глубину, чтобы при проведении линий от цоколя дома под углом 45 ° они не проходили через пустоты (показано на фото справа).

Если подвал располагается под всей площадью дома, то весь грунт удаляется на необходимую глубину. В целом такой проект нельзя назвать бюджетным: работы и затрат намного больше. Во-первых, требуется усиленное армирование стен и большая их толщина. Поскольку внутри не будет грунта, стенам подвала нужно будет противостоять давлению грунта извне. Следовательно, толщина ленты будет намного больше и арматура нужна более мощная, она подходит с меньшим шагом, да и количество армирующих лент тоже увеличится.В результате расход арматуры увеличится только на фундаменте. Во-вторых, потребуется бетонирование и, возможно, усиление цокольного этажа по всей площади. И это снова материалы — бетон и арматура. В-третьих, потребуется эффективная вентиляция для удаления подземных газов. Самостоятельно спроектировать такую ​​конструкцию не получится. Должен работать профессионал с большим опытом работы.

Один из вариантов устройства фундамента под дом с подвалом (чтобы увеличить картинку кликните по ней правой кнопкой мыши)

Монолитный ленточный фундамент: этапы строительства

Даже если организация или команда построят дом, разработчику необходимо знать технологию: это единственный способ контролировать процесс и быть уверенным в качестве работы.

В целом технология следующая:

  • Разметка площадки.
  • Земельные работы.
  • Уплотнение основания, подсыпка и утрамбовка.
  • Маркировка ленты.
  • Гидроизоляция.
  • Монтаж и установка опалубки.
  • Арматура вязальная.
  • Заливка и вибрация бетона.
  • Отверждение.

Требуются некоторые пояснения. Двойная разметка — участок и лента — нужны, если в доме будет подвал под всей площадью дома.Первое время вы размечаете площадь дома с учетом припусков на установку опалубки. Здесь без этого не обойтись. Затем, после того как яма будет вырыта и дно залито и утрамбовано, необходимо будет разметить ленту. Эти отметки затем будут использованы для установки опалубки, которая сформирует «профиль» вашего дома.

А теперь чуть подробнее о каждом из этапов.

Разметка площадки

Так как грунт исследовался на определенной территории для проектирования, его необходимо плотно связать.Подземная структура часто бывает неоднородной, и смещение на полметра может быть критическим: внезапно появляются проседающие породы или полость. Вряд ли стоит позиционировать с точностью до сантиметра, но желательно не упускать лишнего.

Земляные работы

Их объем и техника зависят от того, будет ли у вас дом с подвалом или без него. Если нет, значит, вы отметили ленту — так вам нужно будет удалить почву. Только с запасом на установку опалубки — а это иногда 50 * 80 см с каждой стороны.Для щитов нужны проставки, которые не позволят им развалиться.

Если в доме есть подвал, необходимо удалить всю землю. Размеры котлована на 2-5 м больше размеров фундамента. Это тот же приклад для опалубочных стоек.

Если в доме есть подвал, котлован получается большой

Для больших объемов лучше использовать специальную технику. Аренда стоит недешево, но работа бригады «землекопов» на несколько дней не обойдется дешевле.Скорости непропорциональны.

Верхний плодородный слой укладывается отдельно, его можно сразу распределить по саду. Остальной грунт сваливается в кучу: частично пойдет на засыпку, частично нужно будет вывозить.

Уплотнение дна котлована и подсыпки

После того, как основная масса почвы удалена, дно необходимо выровнять и утрамбовать. При работе экскаватором часто бывает, что некоторые участки оказываются на 20-30 см глубже, чем необходимо.Все эти неровности необходимо исправить: засыпать и утрамбовать.

Утрамбовка и выравнивание необходимы по всей площади котлована или траншеи. Причем не с помощью колоды. Его можно использовать, если вы строите забор. Даже при строительстве бани или дачи лучше использовать виброплиту.

Разберемся почему. На этот уровень ложится вся нагрузка здания. Даже небольшие пустоты и неровности могут вызвать неравномерную усадку и растрескивание.И дно после выкопки земли неровное. И это можно устранить трамбовкой. Еще лучше, если на дно насыпают слой песка со средними и мелкими зернами. За счет меньшего размера лучше выравнивается. Но для более качественной и быстрой утрамбовки его нужно смачивать (залить водой, чтобы смочить весь его объем). Виброплита создает силу, уплотняющую песок на 15-20 см. Именно этот слой нужно заливать за один раз. Если по проекту слой песка 30 см, то сначала нужно насыпать 15 см, пролить и утрамбовать до высокой плотности.Затем влейте вторую, разлейте и утрамбуйте.

Часто проект требует создания песчано-гравийной подстилки. Затем на утрамбованный песок насыпается еще один слой щебня фракцией 30-60 мм. И это тоже уплотнено. Толщина этого слоя засыпки 10-15 см. Его тоже нужно заливать небольшими слоями примерно по 5 см и каждый утрамбовывать.

При этом грунт не только выравнивается, он становится еще плотнее: щебень вбивается в подстилающую породу, увеличивая ее несущую способность.Поскольку плита ударяется о гальку с большой силой, уплотнение происходит на глубину 40-50 см. И это очень хорошо.

Опалубка для монолитного ленточного фундамента

Опалубка выполняется из досок толщиной не менее 40 мм, низкосортной фанеры или OSB. Фанера недорогая, особенная — опалубка. С одной стороны, ламинация — есть защитная пленка. Поэтому его можно использовать несколько раз.

Щиты из листовых материалов армированы поперечными и продольными стержнями.Из досок их крепят перекладинами. Собранные щиты выставляются по разметке ленты, закрепляются снаружи скосами, а внутри устанавливаются проставки. Все эти крепления должны придавать опалубке заданные размеры. Они не позволят щитам при заливке бетона разваливаться или выпирать: масса будет сильно давить на стены, поэтому крепеж должен быть надежным.

— неприменимый атрибут качественного фундамента

Арматура

В связи с особенностями конструкции — большой длиной и малой шириной — на ленточный фундамент в основном действуют силы, которые пытаются разорвать ленту поперек.Поэтому его необходимо укрепить по длинной стороне. Используется мощная оребренная арматура диаметром от 10 мм. Вся поперечная арматура только стабилизирует продольные стержни в пространстве, поэтому ее можно принять гладкой и использовать с небольшой толщиной — 6-8 мм.

Причем в большинстве случаев, независимо от глубины залегания, достаточно двух армирующих поясов: вверху и внизу ленты. Исключение составляет возведение фундамента с подвалом под весь дом.

Схема представлена ​​на фото. В каждой точке соединения арматуру обвязывают специальной проволокой. Делается это вручную с помощью крючков или автоматов — вязальных пистолетов.

Есть еще способ: сварка. Но его использование не всегда оправдано. Работа шустрее, но связь тугая. При связывании проволокой арматура имеет некоторую свободу. И это помогает компенсировать некоторые деформации, не разрушая бетон. При сварке стыки получаются жесткими, что с одной стороны неплохо, но с другой, слишком жесткая конструкция может вызвать трещины.

Еще один момент: сварной шов всегда начинает разрушаться первым. Хотя арматура находится в толще бетона, а потому не подвергается коррозии (к ней не проникает кислород), при любых нарушениях и поступлении кислорода сначала разрушаются сварные швы.

На данном этапе прокладываются вентканалы и воздуховоды, по которым в дом будут подведены инженерные коммуникации. Если об этом забыть, придется разрушить монолит, а это очень нежелательно: чем меньше изъянов, тем прочнее будет конструкция.

Заливка ленточного фундамента

При строительстве более-менее большого дома проще и лучше заказать доставку товарного бетона на объект в миксере. Тогда пломбу можно будет делать за один день.

Бетон можно сделать самостоятельно. Но для этого потребуется бетономешалка. Невозможно обеспечить должную степень однородности, вручную смешивая компоненты в желобах.

Для ручной заливки потребуется как минимум три человека: один смешивает бетон в бетономешалке, второй распределяет готовую порцию, а третий вибрирует только что залитый участок.

Вибрация бетона осуществляется с помощью ручных или переносных погружных вибраторов. Этот процесс удаляет все пустоты и распределяет заполнитель более равномерно. В результате значительно улучшаются прочностные характеристики бетона, он приобретает морозостойкость за счет того, что намного меньше впитывает воду. Поэтому не пропускайте этот этап: при тех же компонентах в растворе получается бетон более высокого класса.

Еще момент: при заливке из машины нужно использовать специальные желоба.Во-первых, с ними легче доставить бетон в нужную точку, а во-вторых, раствор не должен падать с большой высоты. Если высота падения превышает 150 см, он расслаивается. Результат — низкая прочность.

Лечение

Если работы проводились в жаркую сухую погоду, ленту необходимо накрыть полиэтиленовой пленкой или любым другим материалом, препятствующим быстрому испарению влаги. Поскольку глубина бетона большая, смачивание поверхности ощутимых результатов не даст.Главное, не дать высохнуть верху и пленка отлично справляется с этой задачей.

Если выдерживать температуру во время и после заливки в районе + 20 ° C, через три дня после заливки бетон наберет прочность примерно на 50%. А на четвертый день опалубку можно снимать и приступать к дальнейшим работам.

При более низких температурах нужно ждать дольше: при + 10 ° C это уже 10-14 дней, а при + 5 ° C процесс схватывания практически прекращается. В таких условиях необходимо либо утеплить опалубку, либо прогреть бетон.

Монолитный ленточный фундамент готов, но предстоит еще работа по его утеплению и гидроизоляции. Только после этого засыпают (засыпка).

(PDF) Расчет ленточного фундамента на твердом упругом основании с учетом карстового обрушения

3

1234567890

ITE8 IOP Publishing

IOP Conf. Серия: Материаловедение и инженерия 221 (2017) 012023 doi: 10.1088 / 1757-899X / 221/1/012023

Однако реализация этих мер не всегда исключает возможность развития

карстовых деформаций, а в некоторых случаях становится технически невозможно или нецелесообразно их использовать.

В этом случае обеспечить строительные мероприятия, назначенные на основании расчета фундаментов

и

подземных сооружений с учетом возможного развития карстовых деформаций

[14, 15].

Строительство фундаментов зданий, возведенных на карстовых территориях, имеет свои

характеристики. Расчеты фундаментов выполнены на основе прогноза размеров

карстовых проявлений

и вероятности их образования в основании проектируемого здания.

Расчетные места отказов различаются и назначаются исходя из наиболее неблагоприятных эксплуатационных

условий строительства фундамента. Основы расчета задач на карстовых грунтах с учетом

с учетом совместной работы с надземными сооружениями решаются на компьютере.

Известные аварийные здания и строительные объекты в карстовых областях включали геотехническую категорию опасности

. Деформация из-за проседания земной поверхности передается в виде оседания

.В этой надстройке конструкция не срезана по вертикали, а сжимается с боков смещения

в свободное пространство. Поскольку смещение породы по направлению к центру тяжести пустотелого пространства также формируется вдоль горизонтального движения к вертикальному, что может вызвать удлинение или укорочение поверхностных структур

на месте расположения площадки, приводит к тому, что строительство растягивающегося или

сжатие. Эти или другие элементы процесса перемещаются по-разному, действуют на структуру в целом или на ее отдельную структуру

.Соответственно, требуются различные меры безопасности или специальные работы. Равномерное напыление

не создает дополнительных напряжений при строительстве зданий и поэтому не учитывается при проектировании и расчетах. Тем не менее, это может повлиять на условия санитарии

и относительный подъем грунтовых вод к поверхности, что приведет к созданию базовых сооружений гидратации. В добавлении

могут быть проблемы с подземными коммуникациями.

Разница в скорости седиментации приводит к наклону базовой структуры, который составляет

для максимума перехода от выпуклой части к проседанию вогнутой части. В связи с этим в

возникают дополнительные горизонтальные составляющие силы перекоса наряду с обычными вертикальными силами

, которые вызывают изгибающие моменты в строительных конструкциях. Напряжения, возникающие от изгибающих моментов

, зависят от прочности на изгиб и прочности соединения структурно связанных частей конструкции.Большинство зданий

имеют некоторую жесткость, поэтому они могут до некоторой степени следовать кривизне без повреждений.

При более жесткой опорной конструкции возможна более высокая концентрация напряжений [16].

При внезапном образовании провалов на грунте в некоторых частях конструкции образуются

пролетами фундамента и консоли. В этих случаях происходит перераспределение напряжений и, следовательно, неравномерное распределение нагрузки

конструкций на подложке, при этом нагрузка не может быть частично перераспределена.В конструкции

имеются сжимающие и растягивающие напряжения, которые могут восприниматься только до определенной степени,

— предел прочности при растяжении, превышающий трещину пласта.

При статическом анализе конструкций должна применяться разумная оценка диаметра разрушения, а также

учитывает глубину и частоту карста. Программы исследований преследуют следующие цели

: объекты с высоким риском карсто-разрушения должны быть тщательно защищены конструктивно,

необходимо для мониторинга возможных деформаций.При больших очагах поражения зачастую экономичнее

демонтировать

постройки и начать новое строительство [17, 18].

Теоретический анализ балок на упругом основании имеет большое значение в строительной практике.

Специалистам инженерных сооружений часто приходится прибегать к многократному проектированию при поиске эффективных форм

строительства этих зданий. В первую очередь это относится к зданиям на мягком грунте, ленточным фундаментам

железобетонных виадуков, плавучих мостов, высоких фундаментов знаний, подкрановых путей, этажей

промышленных зданий, бетонных тротуаров и аэродромов [19].На строительство таких объектов

уходит

почти половина бетона, используемого в строительстве. Такие огромные материальные и финансовые затраты требуют пристального внимания к вопросам расчета конструкций на упругом основании. Задачи

, связанные с исследованием конструкций, лежащих на упругом основании, представляют собой одну из наиболее актуальных, сложных

и интересных задач строительной механики. В последнее время внимание к этим проблемам

все больше растет.С одной стороны, это связано с насущными потребностями инженерной практики, а на

, с другой — развитием и совершенствованием методов расчета. Большую роль играют

Фундаментные системы для высотных сооружений

Фундамент с разнесенным фундаментом — это компоненты фундамента, которые передают свои нагрузки на грунт только за счет нормальных напряжений и касательных напряжений. Фундаменты с насыпью — это одинарные, ленточные или плотные фундаменты. Требование для разложенного фундамента — это несущая способность подпочвы под основанием фундамента.Если грунт имеет недостаточную несущую способность, требуется улучшение грунтового основания или альтернативные системы фундамента.

В основном, глубина уровня фундамента указывается для обеспечения незамерзания фундамента. В Германии это минимум 80 см от поверхности. Информация о различной региональной глубине промерзания содержится в [1–3].

При подготовке уровня фундамента необходимо избегать следующих инцидентов:

  • Выщелачивание
  • Уменьшение насыпной плотности за счет заносной воды
  • Мацерация
  • Циклическое замораживание и размораживание

Перед установкой слепящего бетона уровень фундамента должен быть проверен геотехником.

3,1 Фундамент однополосный и ленточный

Для выемки одиночных нагрузок, таких как колонны, используются одиночные фундаменты. Ленточные фундаменты используются для линейных нагрузок. Оба типа раздвижных фундаментов могут быть спроектированы с армированием или без него, при этом следует отдавать предпочтение армированным фундаментам из-за их большей прочности. На Рисунке 3.1 показаны два типа фундаментов.

Как правило, достаточно проектирования одинарных и ленточных фундаментов по контактному давлению.В большинстве случаев контактное давление можно определить методом трапеции напряжений. Деформации грунта и здания, а также взаимодействие грунта и конструкции не учитываются.

Рисунок 3.1 Одинарный и ленточный фундамент.

3,2 Плот-фундамент

Фундаменты на плотах используются, когда сетка нагрузок плотная и деформации основания и конструкции должны быть гомогенизированы. Плотный фундамент можно использовать как часть так называемого белого желоба или в сочетании с дополнительной системой уплотнения (например.ж., слои битума) для предотвращения притока грунтовых вод [4–7].

Толщина железобетонной плиты зависит от изгибающего момента, а также от продавливания (сосредоточенных нагрузок). Увеличивая толщину плиты или укладывая бетонные полы, можно избежать сдвиговой арматуры. Чтобы предотвратить проникновение грунтовых вод или отразить погодные условия, необходимо ограничить ширину трещин в бетоне. В любом случае монтаж строительных швов, компенсационных швов и осадочных швов должен быть точно спланирован и контролироваться на этапе строительства.

3,3 Геотехнический анализ
3.3.1 Основы

Две разные теоретические модели используются для геотехнического анализа SLS и ULS. Для анализа предельного состояния устойчивости (SLS) рассматривается линейно-упругое поведение материала грунта. Напротив, для расчета предельного состояния по пределу (ULS) рассматривается поведение жестко-пластичного материала грунта. Эта проблема с фондами распространения поясняется на Рисунке 3.2.

В соответствии с техническими стандартами и регламентами необходимо проанализировать следующие инциденты [8–11]:

  • Общая стабильность
  • Раздвижной

    Рисунок 3.2 Кривая нагрузки-расчета для насыпного фундамента.

  • Базовый отказ
  • Коллективное разрушение грунта и конструкции
  • Вырубка, прессование
  • Разрушение конструкции в результате движения фундамента
  • Крупные населенные пункты
  • Большое поднятие морозов
  • Недопустимые колебания

Если основания насыпи расположены в районе насыпей, необходим анализ провала откоса. Необходимо учитывать все возможные механизмы разрушения (круги скольжения, сложные механизмы разрушения) [12–14].

В простых случаях и при определенных условиях геотехнический анализ насыпного фундамента может быть выполнен на основе стандартных табличных значений. Стандартные табличные значения учитывают анализ защиты от отказов и вредных осаждений [10].

3.3.2 Распределение контактного давления

Знание распределения контактного давления является основой для анализа разложенного фундамента. Доступны следующие процедуры расчета [15,16].

  • Распределение контактного давления под жестким фундаментом по Буссинеску [17]
  • Метод трапеции напряжения
  • Метод определения модуля реакции земляного полотна
  • Метод модуля жесткости
  • Численные методы, например, метод конечных элементов

Распределение контактного давления под жестким фундаментом согласно Буссинеску (а) теоретически предлагает бесконечно большие напряжения на краю фундамента, которые не могут возникнуть из-за процессов переноса в подпочве под фундамент.Этот способ применим только в простых случаях.

Самой простой процедурой является метод трапеции напряжений (b), поскольку предполагается только линейное распределение напряжений. Распределение контактного давления как следствие метода трапеции напряжений — полезный подход при использовании небольших фундаментов и небольших глубин фундаментов.

Метод модуля реакции земляного полотна (c) и метод модуля жесткости (d) подходят, если глубина фундамента большая. Может использоваться для одинарных, ленточных и плотных фундаментов.Используя метод модуля реакции земляного полотна, грунт рассматривается как система независимых пружин. Равномерная нагрузка приводит к равномерному оседанию без отстойника. Методом модуля жесткости грунт рассматривается как упругое полупространство с системой связанных пружин. Равномерная нагрузка приводит к отстойнику. Метод модуля жесткости позволяет получить наиболее реалистичное распределение контактного давления.

Методы расчета (a) — (d) являются приблизительными решениями для определения распределения контактного давления под разложенным фундаментом.Этих методов обычно достаточно для анализа. Наиболее реалистичное распределение контактного давления дает численный анализ, поскольку можно учитывать жесткость конструкции, а также нелинейное поведение материала в грунте.

Распределение контактного давления зависит от жесткости фундамента, а также от соотношения между нагрузкой и устойчивостью грунта [18]. Возможные распределения контактного давления показаны на рисунке 3.3. Случай (а) показывает распределение контактного давления при плохом использовании несущей способности. Когда нагрузка приближается к несущей способности, могут возникнуть два разных механизма отказа. В случае (b) нагрузка приводит к пластиковому шарниру внутри фундамента, который вызывает перераспределение контактного давления. В этом случае несущая способность фундамента зависит от вращательной способности пластиковой петли. В случае (c) нагрузка приводит к перераспределению контактного давления к центру фундамента, что приводит к разрушению основания.

Если фундамент не обладает достаточной пластичностью, происходит хрупкое разрушение, превышающее внутреннюю несущую способность, например, пробивка. Перераспределения контактного давления не произойдет.

Предположение о постоянном распределении контактного давления дает безопасные результаты для анализа ULS. Для анализа SLS предположение о постоянном распределении контактного давления приводит к небезопасным результатам.

Рисунок 3.На фиг.4 показана осадочная впадина, распределение контактного давления и кривая момента в зависимости от нагрузки. С увеличением нагрузки в центре сильно увеличиваются постоянные осадки под фундаментом. При этом контактное давление, которое сосредоточено в приграничной зоне, смещается к центру фундамента. Изгибающие моменты сосредоточены под нагрузкой.

Рисунок 3.3 Распределение контактного давления при одиночном фундаменте.а) упругое поведение фундамента и грунта; (б) Пластиковая петля в фундаменте; (c) Разрушение базы. (Из Катценбаха и др., Baugrund-Tragwerk-Interaktion. Handbuch für Bauingenieure: Technik, Organization und Wirtschaftlichkeit. Springer-Verlag, Heidelberg, Germany, 1471–1490, 2012.)

3.3.2.1 Жесткость системы

Для определения переменной внутренней силы необходимо проанализировать контактное давление, которое зависит от соотношения жесткости конструкции и жесткости грунта.

Рисунок 3.4 Качественная динамика деформаций и напряжений одиночного фундамента в зависимости от его нагрузки. а) деформация; (б) контактное давление; (c) изгибающий момент. (Из Катценбаха и др., Baugrund-Tragwerk-Interaktion. Handbuch für Bauingenieure: Technik, Organization und Wirtschaftlichkeit. Springer-Verlag, Heidelberg, Germany, 1471–1490, 2012.)

Рисунок 3.5 Распределение контактного давления для мягких (а) и жестких (б) фундаментов.

Таблица 3.1 Различие между вялым и жестким основанием

К ≥ 0,1

Жесткий фундамент

0,001 ≤ K <0,1

Промежуточный участок

К <0,001

Фундамент Limp

Для фундаментов с мягким разбросом распределение контактного давления соответствует распределению нагрузки.Для жестких оснований возникает нелинейное распределение контактного давления с высокими краевыми напряжениями (рисунок 3.5). Различие между мягким и жестким фундаментом определяется жесткостью системы K согласно Кани, которая является величиной для оценки взаимодействий между конструкцией и фундаментом (уравнение 3.1). Дифференцирование указано в таблице 3.1 [16,21]. Жесткость системы K определяется согласно уравнению 3.2. Он определяется высотой компонента h, длиной l и модулем упругости строительного материала E B , который находится в упругом изотропном полупространстве (рисунок 3.6) [16–20]:

3.1 K = жесткость конструкции; жесткость грунта. 3,2 K = EB⋅IBEs⋅b⋅l3 = EB⋅b⋅h412Es⋅b⋅l3 = 112⋅EBEs⋅ (hl) 3

где:

E B

= модуль упругости конструкции [кН / м 2 ]

Я Б

= геометрический момент инерции раскладываемого фундамента [м 4 ]

E с

= эдометрический модуль упругости грунта [кН / м 2 ]

б

= ширина развернутого фундамента [м]

л

= длина развернутого фундамента [м]

ч

= высота разложенного фундамента [м]

Рисунок 3.6 Размеры для определения жесткости системы.

Фундаменты с круглым простиранием с высотой элемента h и диаметром d имеют системную жесткость K в соответствии с

. 3.3 К = 112⋅EBEs⋅ (hd) 3

При расчете разложенного фундамента обычно используется только жесткость компонента фундамента, чтобы учесть жесткость здания. Жесткость подъемной конструкции учитывается только в особых случаях.

Для слабо разложенных фундаментов (K <0.001) осадка в характерной точке такая же, как осадка жесткого разложенного фундамента (рисунок 3.7). Характерная точка для прямоугольных фундаментов находится на 0,74 полуширины наружу от центра. Для фундаментов с круговым разбросом характерная точка находится на 0,845 радиуса наружу от центра.

Независимо от положения и размера груза жесткие раздвижные фундаменты сохраняют свою форму. Распределение контактного давления имеет сильно нелинейный характер с большими краевыми напряжениями (Рисунок 3.5).

Рисунок 3.7 Характерная черта прямоугольного фундамента.

Для жестких раздвижных фундаментов, одинарных фундаментов и ленточных фундаментов большой толщины распределение контактного давления может быть определено по Буссинеску или методом трапеции напряжений [16]. В противном случае необходимы более подробные исследования или достаточно консервативные предположения, которые «на всякий случай».

3.3.2.2 Распределение контактного давления под жестким фундаментом согласно Boussinesq

Основываясь на предположении, что недра моделируется как упругое изотропное полупространство, в 1885 году Буссинеск разработал уравнения, которые в простых случаях можно использовать для твердых оснований [17].

Распределение контактного давления под жестким ленточным фундаментом шириной b определяется уравнением 3.4 (рисунок 3.8). Для эксцентрической нагрузки с эксцентриситетом e Боровицка улучшила следующие уравнения [22]:

3,4 σ0 = 2⋅Vπ⋅b⋅11-ξ2, где ξ = 2⋅xb 3.5 e≤b4, σ0 = 2⋅Vπ⋅b⋅1 + (4⋅e⋅ξb) 1-ξ2 3,6 e> b4, σ0 = 2⋅Vπ⋅b⋅1 + ξ11-ξ12, где ξ1 = 2x + b-4e2b-4e

Рисунок 3.8 Распределение контактного давления при жестком фундаменте по Буссинеску.

Рисунок 3.9 Распределение контактного давления под жесткими основаниями от центрических нагрузок на упругое изотропное полупространство

Для круглых и прямоугольных фундаментов с жестким разбросом распределение контактного давления можно определить с помощью рисунка 3.9.

На краю разложенного фундамента возникают бесконечно большие напряжения. Из-за предельной несущей способности, обусловленной прочностью грунта на сдвиг, эти пиковые напряжения не могут возникнуть. Подземный слой пластифицируется по краям фундамента, и напряжения смещаются к центру фундамента [23].

3.3.2.3 Напряжение трапеции методом

Метод трапеции напряжений — это статически определенный метод, который является самым старым для определения распределения контактного давления. Метод трапеции напряжений основан на теории балок и принципах упругости.

Распределение контактного давления определяется условиями равновесия ΣV и ΣM, без учета деформаций здания или взаимодействия грунта, соответственно. Для расчета грунт упрощается с линейным упругим поведением.Теоретически возможны даже большие краевые напряжения. Обнаружить уменьшение пиков напряжения из-за пластификации невозможно сразу. Все соображения основаны на предположении Бернулли о том, что поперечные сечения остаются плоскими.

Сила V является результатом приложенной нагрузки, собственного веса и выталкивающей силы. Равнодействующие сил и контактных давлений имеют одинаковую линию влияния и одинаковое значение, но указывают в противоположных направлениях. Чтобы определить распределение контактного давления произвольно расположенного основания, уравнение 3.7 используется. Для осей координат используется произвольно прямоугольная система координат, где нулевая точка соответствует центру тяжести подповерхности (рисунок 3.10) [24].

Рисунок 3.10 Система координат контактного давления (метод трапеции напряжений).

3,7 σ0 = VA + My⋅Ix-Mx⋅IxyIx⋅Iy-Ixy2⋅x + My⋅Ix-My⋅IxyIx⋅Iy-Ixy2⋅y

Если оси x и y являются главными осями системы координат, центробежный момент I xy = 0. Уравнение 3.7 упрощается до следующего уравнения 3.8. Если результирующая сила V действует в центре тяжести подпочвы, крутящие моменты M x = M y = 0. Результатом является постоянное распределение контактного давления в соответствии с уравнением 3.9.

3.8 σ0 = VA + MyIy⋅x + MxIx⋅y 3.9 σ0 = VA

Если эксцентриситет результирующих сил V слишком велик, теоретически возникают растягивающие напряжения, которые не поглощаются подпочвенной надстройкой системы. Возникает открытый разрыв. В этом случае уравнения с 3.7 по 3.9 не применимы, и определение максимального контактного давления выполняется в соответствии со следующим уравнением в сочетании с таблицей 3.2:

3.10 σ0, макс = μ⋅VA

Таблица 3.2 Коэффициенты μ для определения максимума контактного давления грунта

0,32

3,70

3,93

4,17

4,43

4,70

4,99

0.30

3,33

3,54

3,75

3,98

4,23

4,49

4,78

5,09

5,43

0.28

3,03

3,22

3,41

3,62

3,84

4,08

4,35

4,63

4,94

5,28

5,66

0.26

2,78

2,95

3,13

3,32

3,52

3,74

3,98

4,24

4,53

4,84

5,19

5,57

0.24

2,56

2,72

2,88

3,06

3,25

3,46

3,68

3,92

4,18

4,47

4,79

5,15

5,55

0.22

2,38

2,53

2,68

2,84

3,02

3,20

3,41

3,64

3,88

4,15

4,44

4,77

5,15

5,57

0.20

2,22

2,36

2,50

2,66

2,82

2,99

3,18

3,39

3,62

3,86

4,14

4,44

4,79

5,19

5.66

0,18

2,08

2,21

2,35

2,49

2,64

2,80

2,98

3,17

3,38

3,61

3,86

4.15

4,47

4,84

5,28

0,16

1,96

2,08

2,21

2,34

2,48

2,63

2,80

2,97

3.17

3,38

3,62

3,88

4,18

4,53

4,94

5,43

0,14

1.84

1,96

2,08

2,21

2,34

2.48

2,63

2,79

2,97

3,17

3,39

3,64

3,92

4,24

4,63

5,09

0,12

1,72

1.84

1.96

2,08

2,21

2,34

2,48

2,63

2,80

2,98

3,18

3,41

3,68

3,98

4,35

4,78

0.10

1,60

1,72

1.84

1,96

2,08

2,21

2,34

2,48

2,63

2,80

2,99

3,20

3,46

3,74

4.08

4,49

4,99

0,08

1,48

1,60

1,72

1.84

1,96

2,08

2,21

2,34

2,48

2,64

2,82

3.02

3,25

3,52

3,84

4,23

4,70

0,06

1,36

1,48

1,60

1,72

1.84

1,96

2,08

2,21

2.34

2,49

2,66

2,84

3,06

3,32

3,62

3,98

4,43

0,04

1,24

1,36

1,48

1,60

1,72

1.84

1,96

2,08

2,21

2,35

2,50

2,68

2,88

3,13

3,41

3,75

4,17

0,02

1,12

1,24

1.36

1,48

1,60

1,72

1.84

1,96

2,08

2,21

2,36

2,53

2,72

2,95

3,22

3,54

3,93

0.00

1,00

1,12

1,24

1,36

1,48

1,60

1,72

1.84

1,96

2,08

2,22

2,38

2,56

2,78

3.03

3,33

3,70

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0.22

0,24

0,26

0,28

0,30

0,32

e b / b

3.3.2.4 Метод определения модуля реакции земляного полотна

Исторически взаимодействие между грунтом и конструкцией было впервые учтено с помощью метода модуля реакции земляного полотна. Реакция подготовленного земляного полотна в зависимости от изменения формы была сформулирована в девятнадцатом веке Винклером [25].Создан для проектирования железнодорожных путей.

Согласно Винклеру, упругая модель грунта, которую также называют полупространством Винклера, представляет собой модель пружины, где в любой точке контактное давление σ 0 пропорционально осадке s (уравнение 3.11). Константа пропорциональности k s называется модулем реакции земляного полотна. Модуль реакции земляного полотна можно интерпретировать как пружину из-за линейно-механического подхода к поведению грунта (Рисунок 3.11). Однако этот метод не учитывает взаимодействия между независимыми, подвижными вертикальными пружинами.

3.11 σ0 (х) = ks⋅s (х)

где:

σ 0

= контактное давление [кН / м 2 ]

с

= осадка [м]

к с

= модуль реакции земляного полотна [кН / м 3 ]

Используя теорию изгиба балки, можно описать кривую изгибающего момента для произвольного, бесконечно длинного и упругого ленточного фундамента шириной b, который основан на полупространстве Винклера.

Кривая изгибающего момента ленточного фундамента с жесткостью на изгиб E b × I определяется как

3,12 M (x) = — Eb⋅I⋅d2s (x) dx2

Двойное дифференцирование уравнения 3.12 дает

3,13 d2M (x) dx2 = -q (x) = — EB⋅I⋅d4s (x) dx4

Рисунок 3.11 Модель пружины для метода модуля реакции земляного полотна.

Действие q (x) соответствует контактному давлению σ 0 (x), которое можно описать как

3,14 q (x) = — σ0 (x) ⋅b = -ks⋅s (x) ⋅b = EB⋅I⋅d4s (x) dx4

При длине резинки L, заданной как

3.15 L = 4⋅EB⋅Iks⋅b4

и исключая s (x), следует уравнение 3.16. Для большого количества граничных условий уравнение 3.16 может быть решено. Для бесконечного длинного ленточного фундамента распределение контактного давления σ 0 (x), распределение изгибающего момента M (x) и распределение поперечных сил получаются в соответствии с уравнениями с 3.17 по 3.19.

3,16 d4M (x) dx4 + 4M (x) L4 = 0 3,17 σ0 = V2⋅b⋅L⋅e-xL⋅ (cosxL + sinxL) 3,18 M (x) = V⋅L4⋅e-xL⋅ (cosxL-sinxL) 3,19 Q (x) = ± V2⋅e-xL⋅cosxL

Модуль реакции земляного полотна не является параметром грунта.Это зависит от следующих параметров:

  • Эдометрический модуль подпочвы
  • Толщина сжимаемого слоя
  • Размеры разложенного фундамента

Метод модуля реакции земляного полотна не учитывает влияние соседних контактных давлений. Поэтому он в основном подходит для расчета тонких, относительно слабых фундаментов с большими расстояниями между колоннами. Используя метод модуля реакции земляного полотна, невозможно определить осадки около насыпного фундамента (Рисунок 3.12).

Рисунок 3.12 Распределение осаждений по методу модуля реакции земляного полотна.

3.3.2.5 Метод модуля жесткости

Метод модуля жесткости согласно Ohde (1942) описывает взаимодействие грунта и конструкции более точно, чем метод модуля реакции земляного полотна, поскольку влияние соседних контактных давлений учитывается при оседании произвольной точки разложенного фундамента [19,26 ]. В методе модуля жесткости изгибающий момент смоделированного линейно-упругого разложенного основания связан с изгибающим моментом линейно-упругого, смоделированного изотропно смоделированного осадочного желоба.Возникают те же деформации.

На рис. 3.13 представлено распределение осадки разложенного фундамента по методу модуля жесткости.

В инженерно-геологической практике фундаментные фундаменты со сложной нагрузкой и геометрическими граничными условиями обычно исследуются с помощью компьютерных программ. В большинстве случаев для статически неопределимой системы уравнений нет замкнутых решений.

Предположение о бесконечном упругом грунте приводит к тому, что теоретически бесконечные большие пики напряжения возникают на краю разложенного основания.Из-за пластифицирующего действия грунта эти пики напряжений в действительности не возникают. Мощные компьютерные программы учитывают это основное механическое поведение почвы.

3.3.3 Геотехнический анализ

В следующем разделе определяется геотехнический анализ устойчивости и пригодности насыпного фундамента в соответствии с действующим техническим регламентом EC 7.

Рисунок 3.13 Распределение осаждений по методу модуля жесткости.

Анализ устойчивости включает

  • Анализ защиты от потери равновесия из-за опрокидывания
  • Анализ безопасности против скольжения
  • Анализ защиты от отказа основания
  • Анализ безопасности против плавучести

Анализ исправности включает

  • Анализ поворота фундамента и ограничения открытого зазора
  • Анализ горизонтальных перемещений
  • Анализ расчетов и дифференциальных расчетов
3.3.3.1 Анализ защиты от потери равновесия из-за опрокидывания

До сих пор анализ защиты от потери равновесия из-за опрокидывания проводился путем приложения равнодействующей сил ко второй ширине активной зоны. Это означает, что нижняя поверхность разложенного фундамента имеет лишь небольшую часть с открытым зазором. Этот подход описан в [27,28]. Таким образом, результирующая сила в первой ширине сердечника создает напряжение сжатия по всей нижней поверхности разложенного фундамента.

Согласно действующему техническому регламенту, анализ защиты от потери равновесия из-за опрокидывания основан на принципе механики твердого тела. Дестабилизирующие и стабилизирующие силы сравниваются на основе вымышленной наклонной кромки на краю разложенного фундамента:

3.20 Edst, d≤Estb, d

Расчетное значение дестабилизирующей силы оценивается в соответствии с уравнением 3.21, а расчетное значение стабилизирующего действия оценивается в соответствии с уравнением 3.22:

3,21 Edst, d = EG, dst, k⋅γG, dst + EQ, dst, k⋅γQ, dst 3,22 Estb, d = Estb, k⋅γG, stb

На самом деле положение наклонной кромки зависит от жесткости и прочности основания на сдвиг. При уменьшении жесткости и уменьшении прочности на сдвиг наклонная кромка перемещается к центру нижней поверхности разложенного фундамента.

Следовательно, самого этого анализа недостаточно. Он был дополнен анализом ограничения открытого зазора, который определен для предельного состояния эксплуатационной пригодности.Согласно [10], результирующая сила постоянных нагрузок должна быть приложена к первой ширине сердечника, а результирующая сила переменных нагрузок должна быть приложена ко второй ширине сердечника (рисунок 3.21).

3.3.3.2 Анализ безопасности против скольжения

Анализ защиты от скольжения (предельное состояние GEO-2) рассчитывается согласно уравнению 3.23. Силы, параллельные нижней поверхности разложенного фундамента, должны быть меньше полного сопротивления, состоящего из сопротивления скольжению и пассивного давления грунта.Если учитывается пассивное давление грунта, необходимо проверить предельное состояние эксплуатационной пригодности в отношении горизонтальных смещений.

3,23 Hd≤Rd + Rp, d

где: Rd = RkγR, hRp, d = Rp, kγR, h

Сопротивление скольжению определяется в трех следующих случаях:

  • Сползание в щель между насыпным фундаментом и нижележащим полностью уплотненным грунтом: 3,24 Rd = Vk⋅tanδγR, ч куда:

    V k = характерное значение вертикальных нагрузок [кН]
    δ = характеристическое значение угла базового трения [°]
  • Сползание при прохождении щели в полностью уплотненном грунте, например, при устройстве среза фундамента: 3.25 Rd = Vk⋅tanφ ′ + A⋅c′γR, h

где:

В к

= характерное значение вертикальной нагрузки [кН]

φ ′

= характерный угол трения для грунта под разложенным фундаментом [°]

А

= площадь передачи нагрузки [м 2 ]

c ′

= характерное значение сцепления грунта [кН / м 2 ]

  • Сползание по водонасыщенному грунту из-за очень быстрой нагрузки: 3.26 Rd = A⋅cuγR, ч

где:

А

= Площадь передачи нагрузки [м 2 ]

с u

= характеристическое значение недренированного сцепления грунта [кН / м 2 ]

Для насыпных фундаментов, которые бетонируются на месте , характеристическое значение угла трения основания δ совпадает с характеристическим значением угла трения φ ‘грунта.Для сборных раздвижных фундаментных элементов характерное значение угла базового трения δ должно быть установлено равным 2/3 φ ′. Характерное значение угла базового трения должно быть δ ≤ 35 °.

Пассивное давление грунта можно учесть, если фундамент достаточно глубокий. Из-за горизонтальных деформаций пассивное давление грунта должно быть ограничено до 50% от возможного пассивного давления грунта. По сути, необходимо проверить, существует ли пассивное давление грунта на всех возможных этапах строительства и на этапе эксплуатации фундамента.

3.3.3.3 Анализ защиты от отказа основания

Анализ защиты от разрушения основания гарантируется, если расчетное значение несущей способности R d превышает расчетное значение активной силы V d . R d рассчитывается согласно уравнению 3.27. Принципиальная схема выхода из строя опоры раздвижного фундамента представлена ​​на рисунке 3.14.

3,27 Rd = Rn, kγR, v

Сопротивление несущей способности определяется свойствами грунта (плотность, параметры сдвига), размерами и глубиной заделки разложенного фундамента.Подробную информацию можно найти в дополнительном стандарте [29,30]. Характеристическое сопротивление несущей способности R n, k рассчитывается аналитически с помощью трехчленного уравнения, которое основано на моментном равновесии показателя разрушения несущей способности в идеальном пластическом состоянии с плоской деформацией [31]. Трехчленное уравнение несущей способности учитывает ширину фундамента b, глубину заделки фундамента d и сцепление c ‘подпочвы. Все три аспекта необходимо разложить на множители с коэффициентами несущей способности N b , N d и N c :

Рисунок 3.14 Показатель разрушения несущей способности ленточного фундамента 1, Железобетонная стена; 2, площадь; 3, результирующее контактное давление; 4, цокольный этаж; 5, поверхность скольжения, форма зависит от угла трения φ; 6 — пассивная зона Ренкина тела разрушения; 7 — активная зона Ренкина тела разрушения; 8, зона Прандтля тела разрушения.

3,28 Rn, k = a′⋅b′⋅ (γ2⋅b′⋅Nb + γ1⋅d⋅Nd + c′⋅Nc)

где:

  • N b = N b0 · v b · i b · λ b · ξ b
  • N d = N d0 · v d · i d · λ d · ξ d
  • N c = N c0 · v c · i c · λ c · ξ c

Плотность γ 1 описывает плотность грунта над уровнем фундамента.Плотность γ 2 описывает плотность грунта под уровнем фундамента. Коэффициенты несущей способности N b , N d и N c учитывают следующие граничные условия:

  • Базовые значения коэффициентов несущей способности: N b0 , N d0 , N c0
  • Параметры формы: ν b , ν d , ν c
  • Параметр для наклона груза: i b , i d , i c
  • Параметры для ландшафтного наклона: λ b , λ d , λ c
  • Параметры для наклона основания: ξ b , ξ d , ξ c

Параметры коэффициентов несущей способности N b0 , N d0 , N c0 зависят от угла трения грунта φ ’и рассчитываются согласно таблице 3.3.

Таблица 3.3 Базовые значения коэффициентов несущей способности

Ширина фундамента N b0

Глубина фундамента Н d0

Сплоченность N c0

(N d0 –1) tan φ

tan2 (45 ° + φ2) ⋅eπ⋅tanφ

Nd0-1tanφ

Таблица 3.4 Параметры формы νi

План этажа

ν б

ν д

ν с (φ ≠ 0)

ν с (φ = 0)

Полоса

1,0

1,0

1,0

1,0

Прямоугольник

1-0.3⋅б’а ′

1 + b′a′⋅sinφ

vd⋅Nd0-1Nd0-1

1 + 0,2⋅b′a ′

Квадрат / Круг

0,7

1 + грех φ

vd⋅Nd0-1Nd0-1

1,2

Параметры формы ν b , ν d , ν c учитывают геометрические размеры разложенного фундамента.Для стандартной применяемой геометрии параметры формы приведены в Таблице 3.4.

Если необходимо учитывать эксцентрические силы, необходимо уменьшить площадь основания. Результирующая нагрузка должна находиться в центре тяжести. Приведенные размеры a ‘и b’ рассчитываются согласно уравнениям 3.29 и 3.30. Обычно применяется это a> b и a ′> b ′ соответственно. Для насыпных фундаментов с открытыми частями для анализа могут использоваться внешние размеры, если открытые части не превышают 20% всей площади основания.

3,29 а ‘= а-2еа 3,30 b ′ = b-2eb 3,31 m = ma⋅cos2ω + mb⋅sin2ω

, где ma = 2 + a′b′1 + a′b ′ и mb = 2 + b′a′1 + b′a ′

Усилия T k , параллельные уровню фундамента, учитываются параметрами i b , i d , i c для наклона нагрузки. Определение угла наклона груза показано на рисунке 3.15. Определение параметров наклона груза показано в таблицах 3.5 и 3.6. Ориентация действующих сил определяется углом ω (рисунок 3.16). Для ленточного фундамента ω = 90 °.

Рисунок 3.15 Определение угла наклона груза.

Таблица 3.5 Параметр ii для наклона нагрузки, если φ ′> 0

Направление

i b

i d

i c

δ> 0

(1 — тангенс δ) м + 1

(1 — тангенс δ) м

id⋅Nd0-1Nd0-1

δ <0

cosδ · (1-0.04 · δ) 064 + 0,028 · φ

cosδ · (1-0,0244 · δ) 0,03 + 0,04φ

Таблица 3.6 Параметр ii наклона нагрузки, если φ ′ = 0

i b

i d

i c

Не требуется, т.к. φ = 0

1,0

0,5 + 0,51-TkA′⋅c

Наклон ландшафта учитывается параметрами λ b , λ d , λ c для наклона ландшафта.Параметры зависят от наклона откоса β. Наклон откоса должен быть меньше угла трения грунта φ ‘, а продольная ось фундамента должна быть параллельна краю откоса. Определение параметров наклона ландшафта показано на Рисунке 3.17 и Таблице 3.7.

Рисунок 3.16 Угол ω для наклонно действующей нагрузки.

Рисунок 3.17 Эксцентричный, наклонно нагруженный ленточный фундамент на склоне.

Таблица 3.7 Параметры λi для ландшафтного наклона

Корпус

λ б

λ d

λ с

φ> 0

(1 — 0.5 tanβ) 6

(1 — tanβ) 1,9

Nd0⋅e-0,0349⋅β⋅tanφ-1Nd0-1

φ = 0

1,0

1–0,4 тангенса β

Таблица 3.8 Коэффициент ξi наклона основания

Корпус

ξ б

ξ d

ξ с

φ> 0

e −0.045 · α · тангенс φ

e -0,045 · α · тангенс φ

e -0,045 · α · тангенс φ

φ = 0

1,0

1−0,0068α

Наклон основания учитывается параметрами ξ b , ξ d , ξ c для наклона основания (Таблица 3.8), которые зависят от угла трения φ ‘подпочвы и наклона основания α выкладываемый фундамент.Определение наклона основания показано на Рисунке 3.18. Угол наклона основания α положительный, если тело разрушения формируется в направлении горизонтальных сил. Угол наклона основания α отрицательный, если тело разрушения образуется в противоположном направлении. В случае сомнений необходимо провести расследование по обоим неисправным органам.

Прямое применение определенных уравнений возможно только в том случае, если поверхность скольжения формируется в одном слое почвы. Для слоистых грунтовых условий допускается расчет с усредненными параметрами грунта, если значения отдельных углов трения не изменяются более чем на 5 ° от среднего арифметического.В этом случае отдельные параметры грунта могут быть взвешены в соответствии с их влиянием на сопротивление разрушению при сдвиге. Взвешивание происходит следующим образом.

Рисунок 3.18 Угол наклона основания α.

  • Средняя плотность связана с процентным соотношением отдельных слоев в площади поперечного сечения тела разрушения
  • Средний угол трения и средняя когезия связаны с процентным соотношением отдельных слоев в площади поперечного сечения тела разрушения

Авторитетным для поверхности скольжения является средний угол трения φ.Чтобы определить, имеет ли тело разрушения более одного слоя, рекомендуется определить тело разрушения в соответствии с уравнениями 3.32–3.38 (рисунок 3.19). Для простых случаев (α = β = δ = 0) должны применяться уравнения с 3.39 по 3.42.

3,32 ϑ = 45 ° -φ2- (ε1 + β) 2

Рисунок 3.19 Определение тела отказа.

где: sinε1 = -sinβsinφ

3,33 ϑ2 = 45 ° -φ2- (ε2-δ) 2 3,34 ϑ3 = 45 ° -φ2- (ε2-δ) 2

, где sinε2 = -sinδsinφ

3,35 v = 180 ° -α-β-ϑ1-ϑ2 3.36 r2 = b′⋅sinϑ3cosα⋅sin (ϑ2 + ϑ3) 3,37 r1 = r2⋅e0.00175⋅v⋅tanφ 3,38 1 = r1⋅cosφcos (ϑ1 + φ) 3,39 ϑ1 = 45 ° -φ2 3,40 ϑ2 = ϑ3 = 45 ° + φ2 3,41 v = 90 ° 3,42 г2 = b′2⋅cos (45 ° + φ2)

Для фундаментов, расположенных на уклонах, необходимо учитывать глубину фундамента d ‘(уравнение 3.43) и параметры λ b , λ d , λ c для наклона ландшафта (рисунок 3.20). Кроме того, необходимо провести сравнительный расчет при β = 0 и d ′ = d. Меньшее сопротивление лежит в основе анализа несущей способности при разрушении основания.

3,43 d ′ = d + 0.8⋅s⋅tanβ

Рисунок 3.20 Разложите фундамент на склоне.

3.3.3.4 Анализ защиты от плавучести

Анализ защиты от плавучести (предельное состояние UPL) выполняется с использованием уравнения 3.44. Это уравнение является доказательством того, что чистый вес конструкции достаточно велик по сравнению с подъемной силой воды. Сдвиговые силы (силы трения сбоку) можно учитывать только в том случае, если обеспечивается передача сил. Действующие поперечные силы T k могут быть

3.44 Gdst, k⋅γG, dst + Qdst, rep⋅γQ, dst≤Gstb, k⋅γG, stb + Tk⋅γG, stb

где:

G dst, к

= постоянная дестабилизирующая вертикальная нагрузка (плавучесть)

γ G, dst

= частичный коэффициент безопасности для постоянной дестабилизирующей нагрузки

Q dst, репутация

= репрезентативная переменная дестабилизирующая вертикальная нагрузка

γ Q, dst

= частичный коэффициент безопасности для переменной дестабилизирующей нагрузки

Г стб, к

= постоянная стабилизирующая нагрузка

γ G, стб

= частичный коэффициент безопасности для постоянной стабилизирующей нагрузки

т к

= поперечная сила

  • Вертикальная составляющая активного давления грунта E av, k на подпорную конструкцию в зависимости от горизонтальной составляющей активного давления грунта E ah, k , а также угла трения стенки δ a (Уравнение 3 .45) 3,45 Tk = ηz⋅Eah, k⋅tanδa
  • Вертикальная составляющая активного давления грунта в стыке недр, например, начинающаяся в конце горизонтального выступа в зависимости от горизонтальной составляющей активного давления грунта и угла трения грунта φ ′: 3,46 Tk = ηz⋅Eah, k⋅tanφ ′

Необходимо использовать минимально возможное горизонтальное давление на грунт E ah, k . Для расчетной ситуации BS-P и BS-T поправочный коэффициент составляет η z = 0.80. Для расчетной ситуации BS-A поправочный коэффициент составляет η z = 0,90. Только в обоснованных случаях сплоченность может быть принята во внимание, но она должна быть уменьшена поправочными факторами. Для постоянных конструкций необходимо определить, что в расчетной ситуации BS-A защита от плавучести дается без каких-либо поперечных сил T k .

3.3.3.5 Анализ поворота фундамента и ограничения открытого зазора

Как правило, предельные состояния по пригодности к эксплуатации относятся к абсолютным деформациям и смещениям, а также к дифференциальным деформациям.В особых случаях, например, необходимо учитывать зависящие от времени скорости смещения материала.

Для анализа вращения фундамента и ограничения открытого зазора результирующая статическая нагрузка должна быть ограничена первой шириной сердечника, что означает, что открытого зазора не возникает. Первую ширину сердцевины для фундаментов прямоугольного сечения можно определить в соответствии с уравнением 3.47. Для фундаментов с круговым разбросом используется уравнение 3.48. Кроме того, следует гарантировать, что результирующая постоянных нагрузок и переменных нагрузок находится на второй ширине сердечника, поэтому открытый зазор не может возникнуть поперек центральной линии разложенного фундамента.Вторую ширину жилы для прямоугольных схем можно определить согласно уравнению 3.49. Для фундаментов с круговым разбросом используется уравнение 3.50. На Рис. 3.21 показаны ширина первой и второй жилы для прямоугольного фундамента.

Рисунок 3.21 Ограничение эксцентриситета.

3,47 xea + yeb = 16 3,48 e≤0,25⋅r 3,49 (xea) 2+ (yeb) 2 = 19 3,50 e≤0,59⋅r

Для одинарных и ленточных фундаментов, которые основаны на несвязных грунтах средней плотности и жестких связных грунтах, соответственно, несовместимых перекосов фундамента нельзя ожидать при соблюдении допустимого эксцентриситета.

Анализ поворота фундамента и ограничения открытого зазора является обязательным согласно [10], если анализ защиты от потери равновесия из-за опрокидывания выполняется с использованием одной кромки разложенного фундамента в качестве наклонной кромки.

3.3.3.6 Анализ горизонтальных перемещений

Как правило, для насыпных фундаментов анализ горизонтального смещения наблюдается, если:

  • Анализ безопасности против скольжения выполняется без учета пассивного давления грунта.
  • Для средне-плотных несвязных грунтов и жестких связных грунтов, соответственно, учитываются только две трети характеристического сопротивления скольжению на уровне фундамента и не более одной трети характеристического давления грунта.

Если эти аргументы не соответствуют действительности, необходимо проанализировать возможные горизонтальные смещения. Следует учитывать постоянные нагрузки и переменные нагрузки, а также нечастые или уникальные нагрузки.

3.3.3.7 Анализ расчетов и дифференциальных расчетов

Определения осадки насыпного фундамента проводят в соответствии с [32].Обычно глубина воздействия контактного давления находится между z = b и z = 2b.

Из-за сложного взаимодействия между недрами и сооружением трудно предоставить информацию о приемлемых или дифференциальных оседаниях для сооружений [33]. На рис. 3.22 показаны коэффициенты повреждаемости угловой деформации в результате оседания [33–35].

Рисунок 3.22 Критерий повреждения.

Что касается опрокидывания высотных конструкций, анализ защиты от наклона должен проверять, что возникающий опрокидывание безвредно для конструкции [33].Анализ фундаментов прямоугольной формы выполняется в соответствии с уравнением 3.51. Анализ для фундаментов с круговым простиранием выполняется в соответствии с уравнением 3.52.

3,51 b3⋅EmVd⋅hs⋅fy≥1 3,52 r3⋅EmVd⋅hs⋅fy≥1

в уравнениях 3.51 и 3.52:

E м = Модуль сжимаемости грунта

h s = Высота центра тяжести над уровнем фундамента

f r и f y = коэффициенты наклона

V d = Расчетное значение вертикальных нагрузок

Более подробную информацию можно найти в [33] и [36].

3.3.3.8 Упрощенный анализ насыпных фундаментов в стандартных случаях

Упрощенный анализ разложенного фундамента в стандартных случаях состоит из простого сравнения между сопротивлением основания σ R, d и контактным давлением σ E, d (уравнение 3.53). Для насыпных фундаментов с площадью A = a × b или A ′ = a ′ × b ′ в стандартных случаях может применяться анализ безопасности от сползания и разрушения основания, а также анализ предельного состояния эксплуатационной пригодности.Эти стандартные случаи включают:

  • Горизонтальная нижняя поверхность фундамента и почти горизонтальный ландшафт и слои грунта
  • Достаточная прочность грунта на глубину, в два раза превышающую ширину фундамента, ниже уровня фундамента (минимум 2 м)
  • Никаких регулярных динамических или преимущественно динамических нагрузок; отсутствие порового давления воды в связных грунтах
  • Пассивное давление грунта может применяться только в том случае, если оно обеспечивается конструктивными или другими процедурами
  • Наклон равнодействующей контактного давления подчиняется правилу tgδ = H k / V k ≤ 0.2 (δ = наклон равнодействующей контактного давления; H k = характерные горизонтальные силы; V k = характерные вертикальные силы)
  • Соблюдается допустимый эксцентриситет результирующего контактного давления
  • Наблюдается анализ защиты от потери равновесия из-за опрокидывания
3,53 σE, d≤σR, d

Расчетные значения контактного давления σ R, d основаны на комбинированном исследовании разрушения основания и осадки.Если анализируется только SLS, допустимое контактное давление увеличивается с увеличением ширины разложенного основания. Если анализируется только ULS, допустимое контактное давление уменьшается с увеличением ширины разложенного фундамента. На рис. 3.23 показаны два основных требования для адекватного анализа отказов основания (ULS) и анализа оседания (SLS). Для ширины фундамента, превышающей ширину b s , допустимое контактное давление снижается из-за оседания.

Расчетные значения контактного давления σ R, d для упрощенного расчета ленточных фундаментов указаны в таблицах. Табличные значения также можно использовать для отдельных фундаментов [10,37,38].

Если уровень фундамента со всех сторон ниже уровня поверхности более чем на 2 м, табличные значения могут быть увеличены. Подъем может быть в 1,4 раза больше разгрузки из-за выемки грунта на глубину ≥2 м под поверхностью.

Расчетные значения в таблицах относятся к отдельно стоящему ленточному фундаменту с центральной нагрузкой (без эксцентриситета).Если возникают эксцентрические нагрузки, необходимо проанализировать эксплуатационную пригодность. Для применения текущих значений таблицы важно отметить, что в более ранних редакциях этих таблиц были даны значения характеристик [10].

Упрощенный анализ ULS и SLS ленточных фундаментов в несвязных грунтах учитывает расчетную ситуацию BS-P. Для расчетной ситуации BS-T табличные значения «в безопасности». Табличные значения применимы для вертикальных нагрузок. Промежуточные значения можно интерполировать линейно.Для эксцентрических нагрузок табличные значения могут быть экстраполированы, если ширина b ‘<0,50 м. Между нижней поверхностью фундамента и уровнем грунтовых вод должно быть расстояние. Расстояние должно быть больше ширины b или b 'фундамента. Для применения таблиц для несвязных грунтов должны выполняться требования таблицы 3.9. Краткие формы почвенных групп поясняются в таблице 3.10.

Рисунок 3.23 Максимальное контактное давление σR, d с учетом устойчивости (ULS) и работоспособности (SLS).

Таблица 3.9 Требования к применению расчетных значений σR, d в несвязных грунтах

Группа грунтов по DIN 18196

Коэффициент однородности согласно DIN 18196 C u

Компактность согласно DIN 18126 D

Степень сжатия согласно DIN 18127 D Pr

Точечное сопротивление пенетрометра q c [МН / м 2 ]

SE, GE, SU, GU, ST, GT

≤ 3

≥ 0.30

≥ 95%

≥ 7,5

SE, SW, SI, GE GW, GT, SU, GU

> 3

≥ 0,45

≥ 98%

≥ 7,5

Коэффициент однородности C и описывает градиент гранулометрического состава в зоне прохождения фракций 10% и 60% и определяется согласно уравнению 3.54 [39]. Согласно [40], компактность D описывает, является ли грунт рыхлым, среднеплотным или плотным. Плотность D определяется пористостью n согласно уравнению 3.55. Степень сжатия D pr представляет собой отношение между плотностью проктора ρ pr (плотность при оптимальном содержании воды) и сухой плотностью ρ d [41]. Степень сжатия рассчитывается с использованием уравнения 3.56.

Таблица 3.10 Расшифровка почвенных групп

Краткая форма согласно DIN 18196

Длинная форма согласно DIN 18196 на немецком языке

Длинная форма согласно DIN 18196 на английском языке

SE

Песок, Enggestuft

Песок с мелкой фракцией

SW

Sand, weitgestuft

Песок с широким распределением зерна

SI

Песок перемежающийся

Песок с прерывистой зернистостью

GE

Kies, enggestuft

Гравий с мелкой фракцией

ГВт

Kies, weitgestuft

Гравий с широким разбросом по зернистости

СТ

Песок тониг (Feinkornanteil: 5–15%)

Песок глинистый (мелкая фракция: 5–15%)

SU

Песок шерстяной (Feinkornanteil: 5–15%)

Песок илистый (мелкая фракция: 5–15%)

GT

Кис, тониг (Feinkornanteil: 5–15%)

Гравий глинистый (мелкая фракция: 5–15%)

ГУ

Kies, schluffig (Feinkornanteil: 5–15%)

Гравий глинистый (мелкая фракция: 5–15%)

3.54 Cu = d60d10 3,55 D = max n-nmax n-min n 3,56 Дпр = ρдрпр

Для упрощенного расчета ленточных фундаментов В таблице 3.11 приведены допустимые расчетные значения контактного давления σ R, d для несвязных грунтов с учетом адекватной защиты от разрушения основания. Если необходимо дополнительно ограничить расчет, необходимо использовать Таблицу 3.12. Для целей таблицы 3.12 осадки ограничиваются 1-2 см.

Допустимые расчетные значения контактного давления σ R, d для ленточных фундаментов в несвязных грунтах с минимальной шириной b ≥ 0.50 м, а минимальная глубина заделки d ≥ 0,50 м может быть увеличена следующим образом:

  • Увеличение проектных значений на 20% в таблицах 3.11 и 3.12, если отдельные фундаменты имеют соотношение сторон a / b <2, соответственно. a ′ / b ′ <2; для Таблицы 3.11 он применяется только в том случае, если глубина заделки d больше 0,60 × b соответственно. 0,60 × b ′

    Таблица 3.11 Расчетные значения σR, d для ленточных фундаментов в несвязных грунтах и ​​достаточная защита от гидравлического разрушения с вертикальным результирующим контактным давлением

    Наименьшая глубина заделки фундамента [м] Расчетное значение контактного давления σ R, d [кН / м 2 ] в зависимости от ширины фундамента b соотв. б ′
    0,50 м 1,00 м 1,50 м 2,00 м 2,50 м 3,00 м
    0,50 280 420 560 700 700 700
    1,00 380 520 660 800 800 800
    1.50 480 620 760 900 900 900
    2,00 560 700 840 980 980 980
    Для зданий с глубиной заделки 0,30 м ≤ d ≤ 0,50 м и шириной фундамента b соотв. b ′ ≥ 0,30 м210

    Таблица 3.12 Расчетные значения σR, d для ленточных фундаментов в несвязных грунтах и ​​ограничение осадки 1-2 см с вертикальной равнодействующей контактного давления

    Наименьшая глубина заделки фундамента [м] Расчетное значение контактного давления σ R, d [кН / м 2 ] в зависимости от ширины фундамента b соотв. б ′
    0,50 м 1,00 м 1,50 м 2,00 м 2,50 м 3,00 м
    0,50 280 420 460 390 350 310
    1,00 380 520 500 430 380 340
    1.50 480 620 550 480 410 360
    2,00 560 700 590 500 430 390
    Для зданий с глубиной заделки 0,30 м ≤ d ≤ 0,50 м и шириной фундамента b соотв. b ′ ≥ 0,30 м210
  • Увеличение проектных значений на 50% в таблицах 3.11 и 3.12, если недра соответствует значениям в таблице 3.13 на глубину вдвое большей ширины под уровнем фундамента (минимум 2 м под уровнем фундамента)

Допустимые расчетные значения контактного давления для ленточных фундаментов в несвязных грунтах в таблице 3.11 (даже увеличенные и / или уменьшенные из-за горизонтальных нагрузок) должны быть уменьшены, если необходимо учитывать грунтовые воды:

  • Снижение проектных значений на 40%, если уровень грунтовых вод совпадает с уровнем фундамента

    Таблица 3.13 Требования к увеличению проектных значений σR, d для несвязных грунтов

    Группа грунта согласно DIN 18196 Коэффициент однородности согласно DIN 18196 C u Плотность согласно DIN 18126 D Степень сжатия123 согласно DIN 18127 Точечное сопротивление пенетрометра q c [МН / м 2 ]
    SE, GE, SU, GU, ST, GT ≤3 ≥0.50 ≥98% ≥15
    SE, SW, SI, GE GW, GT, SU, GU> 3 ≥0,65 ≥100% ≥15
  • Если расстояние между уровнем грунтовых вод и уровнем фундамента меньше, чем b или b ‘, оно должно быть интерполировано между уменьшенным и несокращенным расчетными значениями σ R, d
  • Снижение проектных значений на 40%, если уровень грунтовых вод выше уровня фундамента, при условии, что глубина заделки d ≥ 0.80 м и d ≥ b; отдельный анализ необходим только в том случае, если оба условия не верны

Допустимые расчетные значения контрактного давления σ R, d в таблице 3.12 могут использоваться только в том случае, если расчетные значения в таблице 3.11 (даже увеличенные и / или уменьшенные из-за горизонтальных нагрузок и / или грунтовых вод) больше.

Допустимые расчетные значения контактного давления σ R, d для ленточных фундаментов в несвязных грунтах, указанные в таблице 3.11 (даже увеличенные и / или уменьшенные из-за грунтовых вод), должны быть уменьшены для комбинации характеристической вертикали (V k ) и горизонтальные (H k ) нагрузки следующим образом:

  • Уменьшение на коэффициент (1 — H k / V k ), если H k параллельна длинной стороне фундамента и если соотношение сторон a / b ≥ 2 соотв.а ′ / b ′ ≥ 2
  • Уменьшение на коэффициент (1 — H k / V k ) 2 во всех остальных случаях

Расчетные значения контактного давления, приведенные в таблице 3.12, могут применяться только в том случае, если расчетные значения σ R, d , указанные в таблице 3.11 (даже увеличенные и / или уменьшенные из-за грунтовых вод), больше.

Упрощенный анализ ULS и SLS ленточных фундаментов в связных грунтах предназначен для расчетной ситуации BS-P. Для расчетной ситуации BS-T табличные значения «безопасны».Табличные значения применимы для вертикальных и наклонных нагрузок. Промежуточные значения можно интерполировать линейно. Таблицы приведены для разных типов почв. Краткие формы почвенных групп поясняются в таблице 3.10. Если использовать таблицы 3.14–3.17, можно ожидать осадки 2–4 см. В принципе, таблицы с 3.14 по 3.17 применимы только для типов грунтов с зернистой структурой, которые не могут внезапно разрушиться.

Расчетные значения σ R, d для ленточных фундаментов в связном грунте приведены в таблицах 3.14–3,17 (даже уменьшенная из-за ширины фундамента b> 2 м) может быть увеличена на 20%, если соотношение сторон a / b <2 соответственно. а '/ Ь' <2.

Таблица 3.14 Расчетные значения σR, d для ленточных фундаментов в иле

Ил (UL согласно DIN 18126) Консистенция: от твердого до полутвердого

Наименьшая глубина заделки фундамента [м]

Расчетные значения σ R, d контактного давления [кН / м 2 ]

0.50

180

1,00

250

1,0

310

2,00

350

Прочность на сжатие без ограничений q u, k [кН / м 2 ]

120

Таблица 3.15 Расчетные значения σR, d ленточных фундаментов в смешанных грунтах

Смешанные почвы (СУ *, СТ, СТ *, ГУ *, ГТ * по DIN 18196)

Наименьшая глубина заделки фундамента [м]

Расчетные значения σ R, d контактного давления [кН / м 2 ]

Консистенция

Жесткий

полутвердый

цельный

0.50

210

310

460

1,00

250

390

530

1,50

310

460

620

2,00

350

520

700

Прочность на сжатие без ограничений q u, k [кН / м 2 ]

120–300

300–700

> 700

Таблица 3.16 Расчетные значения σR, d ленточных фундаментов в глинистых, илистых грунтах

Почвы глинистые, илистые (УМ, ТЛ, ТМ по DIN 18196)

Наименьшая глубина заделки фундамента [м]

Расчетные значения σ R, d контактного давления [кН / м 2 ]

Консистенция

Жесткий

полутвердый

цельный

0.50

170

240

490

1,00

200

290

450

1,50

220

350

500

2,00

250

390

560

Прочность на сжатие без ограничений q u, k [кН / м 2 ]

120–300

300–700

> 700

Таблица 3.17 Расчетные значения σR, d ленточного фундамента из глины

Почвы глинистые, илистые (УМ, ТЛ, ТМ по DIN 18196)

Наименьшая глубина заделки фундамента [м]

Расчетные значения σ R, d контактного давления [кН / м 2 ]

Консистенция

Жесткий

полутвердый

цельный

0.50

130

200

280

1,00

150

250

340

1,50

180

290

380

2,00

210

320

420

Прочность на сжатие без ограничений q u, k [кН / м 2 ]

120–300

300–700

> 700

Расчетные значения σ R, d для ленточных фундаментов в связном грунте приведены в таблицах 3.14–3,17 (даже увеличенные из-за удлинения) должны быть уменьшены на 10% на метр при ширине фундамента b = 2–5 м. Для фундаментов шириной b> 5 м ULS и SLS должны проверяться отдельно согласно классическому механическому анализу грунта.

3,4 Примеры выкладывания фундаментов из инженерной практики

В последние десятилетия рост плотности населения во всем мире привел к строительству все более высоких высотных зданий. До 1960 года во Франкфурте-на-Майне, Германия, здания в 10–15 этажей считались высотными.В 1961 году было построено первое 20-этажное здание, а в 1969 году была завершена первая 30-этажная башня Commerzbank Tower высотой 130 м. В 1970-х и начале 1980-х годов было построено еще несколько небоскребов высотой 150–180 м. Все они были основаны в очень активном поселении Франкфурт-Клей. Опыт Франкфурта-на-Майне показывает, что окончательные осадки при разложенном фундаменте могут быть в 1,7-2,0 раза больше, чем осадки в конце фазы строительства. Произошли окончательные осадки на 15–35 см [42,43].

Почти все высотные здания, построенные на раздвинутом фундаменте во Франкфурте-Глине, имеют дифференциальные осадки, которые приводят к наклону надстроек [43]. Статистическая оценка измерений показывает, что этот наклон составляет до 20–30% от средней осадки, даже если фундамент нагружен по центру [44]. Дифференциальные осадки возникают из-за неоднородности грунта Франкфурта.

3.4.1 Комплекс высотных зданий Zürich Assurance

Комплекс высотных зданий Zürich Assurance Company во Франкфурте-на-Майне, Германия, строился с 1959 по 1963 год.Он состоит из двух башен высотой 63 м и 70 м соответственно и пристройки высотой до восьми этажей. Весь комплекс состоит из двух подуровней и основан на разложенном фундаменте. Глубина фундамента — 7 м от поверхности. Вид земли показан на рисунке 3.24.

Состояние почвы и грунтовых вод типично для Франкфурта-на-Майне. На поверхности — насыпи и четвертичные пески и гравий. На глубине около 7 м ниже поверхности начинается третичная Франкфуртская глина, которая состоит из чередующихся слоев жесткой и полутвердой глины и известняка.На глубине 67 м под поверхностью следует Франкфуртский известняк. Уровень грунтовых вод находится примерно на 5–6 м ниже поверхности.

Измеренные осадки по окончании строительства надстройки составляют около 60% от окончательной осадки (рис. 3.25). После окончания строительства расчетная ставка снизилась из-за процесса консолидации. Примерно через 5 лет после окончания строительства поселения заканчиваются примерно на 8,5–9,5 см.

Рисунок 3.24 Вид с земли на комплекс высотных зданий Zürich Assurance.

Рисунок 3.25 Измеренные населенные пункты.

В 2001 и 2002 годах комплекс высотных зданий демонтировали. На его месте сейчас Опернтурм высотой 177 м [45,46].

3.4.2 Западные ворота

Высотное здание Westend Gate (прежнее название: Senckenberganlage) во Франкфурте-на-Майне, Германия, было построено с 1972 по 1974 год (рис. 3.26). Он имеет высоту 159 м и основан на системе разложенного фундамента.В подвале три подуровня. Здание представляет собой офисную башню до 23 этажа. Над офисной частью находится гостиница Марриотт. Состояние почвы и грунтовых вод схоже с комплексом высотных зданий Zürich Assurance.

Westend Gate — высотное здание с самыми большими поселениями во Франкфурте-на-Майне [47]. Измеренные осадки здания превышали 30 см, что вызвано сравнительно высоким контактным давлением 650 кН / м 2 . Фундаменты плота устроили только под многоэтажку.Подуровни пристройки заложены на едином фундаменте (рис. 3.27). Для контроля осадки и дифференциальной осадки между элементами фундамента и надстройкой были устроены компенсационные швы. Деформационные швы закрыли после отделки железобетонных стержней. Гибкая стальная конструкция, простирающаяся с третьего по 23 этаж, не пострадала от заселений и дифференциальных заселений. Этажи выше 23 этажа выполнены из железобетонных ячеек сравнительно высокой жесткости.Между гибкой стальной конструкцией и жесткими бетонными ячейками установлены гидравлические домкраты. Гидравлические домкраты уравновешивают возникающие осадки. Из-за длительного оседания почвы несколько стыков на верхних этажах оставались открытыми до двух лет после строительства [47,48].

Рисунок 3.26 Вестендские ворота.

3.4.3 Серебряная Башня

Серебряная башня (ранее Dresdner Bank) во Франкфурте-на-Майне, Германия, имеет высоту 166 м и была построена с 1975 по 1978 год (Рисунок 3.28). Серебряная башня построена на плоту со средней толщиной 3,5 м. Уровень фундамента находится на глубине 14 м от поверхности. Состояние почвы и грунтовых вод схоже с комплексом высотных зданий Zürich Assurance.

Из-за эксцентрической нагрузки на северо-западе под плотом фундамента были установлены 22 подушки давления (рис. 3.29) [42,49]. Напорные подушки имеют размер 5 м × 5 м и состоят из мягкой резины толщиной 3 мм. Перед установкой была проверена герметичность нажимных подушек.Подушки изначально были заполнены водой. Давление внутри подушек регулировалось, поэтому возникали только небольшие дифференциальные осадки. После окончания строительства и наладки многоэтажки воду в подушках заменили строительным раствором.

Рисунок 3.27 Этапы строительства.

Рисунок 3.28 Серебряная башня (левое здание; справа высотное здание Скайпер).

Рисунок 3.29 Гидравлические устройства для регулировки населенных пунктов.

3.4.4 Франкфуртский офисный центр (FBC)

FBC — это высотное здание высотой 142 м во Франкфурте-на-Майне, Германия, которое основано на плоту фундамента толщиной 3,5 м. Уровень фундамента находится примерно на 12,5 м ниже поверхности. На рис. 3.30 показано высотное здание с юга. Он строился с 1973 по 1980 год. Длительное время строительства было связано с нехваткой инвестиций во время нефтяного кризиса. Состояние почвы и грунтовых вод схоже с комплексом высотных зданий Zürich Assurance.

С начала строительства населенные пункты обмерены за 5 лет (рисунок 3.31). Максимальное окончательное оседание составило около 28 см в центральной части многоэтажки [42]. Примерно через 1,5 года после окончания строительства поселения составляли около 70% окончательных поселений. Дифференциальные осадки между высотным зданием и прилегающими зданиями составляют от 9,5 см до 20 см (рисунок 3.32). Наклон многоэтажки составляет около 1: 1350 [50].

Рисунок 3.30 Франкфуртский центр бюро (FBC).

Рисунок 3.31 Измеренные населенные пункты.

Рисунок 3.32 Поперечный разрез конструкции и обмерные поселения.

3.4.5 Башни-близнецы Deutsche Bank

Башни-близнецы Deutsche Bank во Франкфурте-на-Майне, Германия, имеют высоту 158 м и были построены с 1979 по 1984 год (рис. 3.33). Башни находятся на плоту-фундаменте размером 80 м × 60 м и толщиной 4 м. Уровень фундамента находится примерно на 13 м ниже поверхности [51].Состояние почвы и грунтовых вод схоже с комплексом высотных зданий Zürich Assurance.

Измеренные осадки от 10 см до 22 см. На рис. 3.34 показаны изолинии населенных пунктов. Чтобы минимизировать влияние башен-близнецов на прилегающие здания, были установлены гидравлические домкраты (рис. 3.35). Возможное регулирование дифференциала осадки гидравлическими домкратами составляло около ± 8 см.

Рисунок 3.33 Башни-близнецы Deutsche Bank.

Рисунок 3.34 Измеренные населенные пункты.

Рисунок 3.35 Разрез надстройки с гидроцилиндрами.

Список литературы

Bundesministerium für Verkehr, Bau und Stadtentwicklung (2012): Richtlinie für die Standardisierung des Oberbaus von Verkehrsflächen (RStO 12).

Bundesministerium für Verkehr, Bau und Stadtentwicklung (2009): Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau (ZTV E-StB 09).

Deutsches Institut für Normung e.V. (2001): DIN EN ISO 13793 Тепловые характеристики зданий: Тепловое проектирование фундаментов во избежание морозного пучки. Beuth Verlag, Берлин.

Deutscher Ausschuss für Stahlbeton e.V. (2003): DAfStb-Richtlinie Wasserundurchlässige Bauwerke aus Beton (WU-Richtlinie). Beuth Verlag, Берлин.

Deutscher Ausschuss für Stahlbeton e.V. (2006): Heft 555 Erläuterungen zur DAfStb-Richtlinie Wasserundurchlässige Bauwerke aus Beton. Beuth Verlag, Берлин.

Lohmeyer, G .; Эбелинг, К. (2013): Weiße Wannen einfach und sicher. 10. Auflage, Verlag Bau + Technik, Дюссельдорф, Германия.

Хаак, А .; Эмиг, К.-Ф .. (2003): Abdichtungen im Gründungsbereich und auf genutzten Deckenflächen. 2. Auflage, Ernst & Sohn Verlag, Берлин.

Deutsches Institut für Normung e.V. (2014): DIN EN 1997-1 Еврокод 7: Геотехническое проектирование: Часть 1: Общие правила. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2010): DIN EN 1997-1 / NA Национальное приложение: Параметры, определяемые на национальном уровне — Еврокод 7: Геотехническое проектирование — Часть 1: Общие правила.Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2010): DIN 1054 Недра: проверка безопасности земляных работ и фундаментов — дополнительные правила к DIN EN 1997-1. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2012): DIN 1054 Недра: проверка безопасности земляных работ и фундаментов — дополнительные правила к DIN EN 1997-1: 2010; Поправка A1: 2012 г. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2009): DIN 4084 Грунт: Расчет разрушения насыпи и общей устойчивости подпорных конструкций.Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2012): DIN 4084 Основание: Расчет общей устойчивости — Приложение 1: Примеры расчетов. Beuth Verlag, Берлин.

Hettler, A. (2000): Gründung von Hochbauten. Эрнст энд Зон Верлаг, Берлин.

Deutsches Institut für Normung e.V. (1974): DIN 4018 Грунт: Распределение контактного давления под плотным фундаментом, анализ. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (1981): DIN 4018, приложение 1 «Недра: анализ распределения контактного давления под плотным фундаментом»; Пояснения и примеры анализа. Beuth Verlag, Берлин.

Буссинеск, M.J. (1885): Application des Potentials à l’Etude de l’Equilibre et du Mouvement des Solides Élastiques. Готье-Виллар, Париж, Франция.

Katzenbach, R .; Зильч, К .; Мурманн, К. (2012): Baugrund-TragwerkInteraktion. Handbuch für Bauingenieure: Technik, Organization und Wirtschaftlichkeit. Springer Verlag, Гейдельберг, Германия, 1471–1490.

Кани, М. (1959): Berechnung von Flächengründungen. Эрнст энд Зон Верлаг, Берлин.

Кани, М. (1974): Berechnung von Flächengründungen, Band 2, 2. Auflage, Ernst & Sohn Verlag, Берлин.

Мейерхоф, Г. (1979): Общий отчет: Взаимодействие грунта и конструкции и основания. 6-я Панамериканская конференция по механике грунтов и проектированию фундаментов, 2–7 декабря, Лима, Перу, 109–140.

Боровицка, Х. (1943): Über ausmittig belastete starre Platten auf elastischisotropem Untergrund.Ingenieur-Archiv, XIV. Band, Heft 1, Springer Verlag, Berlin, 1–8.

Lang, HJ; Huder, J .; Аманн, П. (2003): Bodenmechanik und Grundbau. 7. Auflage, Springer Verlag, Берлин.

Смолчик, У .; Фогт, Н. (2009): Flachgründungen. Grundbautaschenbuch, часть 3: Gründungen und geotechnische Bauwerke. 7. Auflage, Ernst & Sohn Verlag, Берлин, 1–71.

Винклер, Э. (1867): Die Lehre von der Elastizität und Festigkeit. Verlag Dominicus, Прага, Чехия.

Охде, Дж.(1942): Die Berechnung der Sohldruckverteilung unter Gründungskörpern. Der Bauingenieur 23, Германия, Heft 14/16, 99–107 и 122–127.

Deutsches Institut für Normung e.V. (2005): DIN 1054 «Недра: проверка безопасности земляных работ и фундаментов». Beuth Verlag, Берлин.

Katzenbach, R .; Болед-Мекаша, Г .; Вахтер, С. (2006): Gründung turmar-tiger Bauwerke. Beton-Kalender, Ernst & Sohn Verlag, Берлин, 409–468.

Deutsches Institut für Normung e.V.(2006): DIN 4017 Грунт: Расчет расчетной несущей способности грунта под фундаментом мелкого заложения. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2006): DIN 4017 Грунт: Расчет расчетной несущей способности грунта под фундаментом мелкого заложения — Примеры расчетов. Beuth Verlag, Берлин.

Прандтль, Л. (1920): Über die Härte plastischer Körper. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematische Klasse, Берлин.

Deutsches Institut für Normung e.V. (2011): DIN 4019 Почва: Анализ оседания. Beuth Verlag, Берлин.

Arbeitskreis Berechnungsverfahrender Deutschen Gesellschaft für Erd- und Grundbau e.V. (1993): Empfehlungen Verformungen des Baugrund bei bauli-chen Anlagen: EVB. Эрнст энд Зон Верлаг, Берлин.

Skempton, A.W .; Макдональд, Д.Х. (1956): Допустимые поселения зданий. Труды Института гражданского строительства, 10 мая, Лондон, Великобритания, 727–783.

Бьеррум, Л. (1973): Допустимые осадки конструкций.Норвежский геотехнический институт, публикация Nr. 98, Осло, Норвегия, 1–3.

Schultze, E .; Мухс, Х. (1967): Bodenuntersuchungen für Ingenieurbauten. 2. Auflage, Springer Verlag, Берлин.

Ziegler, M. (2012): Geotechnische Nachweise nach EC 7 und DIN 1054: Einführung mit Beispielen. 3. Auflage, Wilhelm Ernst & Sohn, Берлин.

Dörken, W .; Dehne, E .; Клиш, К. (2012): Grundbau in Beispielen Teil 2. 5. Auflage, Werner Verlag, Нойвид, Германия.

Deutsches Institut für Normung e.V. (2011): DIN 18196 Земляные работы и фундаменты: Классификация грунтов для целей гражданского строительства. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (1996): DIN 18126 Почва, исследование и испытания: определение плотности несвязных грунтов для максимальной и минимальной плотности. Beuth Verlag, Берлин.

Deutsches Institut für Normung e.V. (2012): DIN 18127 Почва, исследование и испытание: тест Проктора. Beuth Verlag, Берлин.

Зоммер, Х. (1976): Setzungen von Hochhäusern und benachbarten Anbauten nach Theorie und Messungen.Vorträge der Baugrundtagung в Нюрнберге, Германия, 141–169.

Зоммер, Х. (1978): Messungen, Berechnungen und Konstruktives bei der Gründung Frankfurter Hochhäuser. Vorträge der Baugrundtagung в Дюссельдорфе, Германия, 205–211.

Sommer, H .; Tamaro, G .; ДеБенедитис, К. (1991): Башня Messeturm, фундамент самого высокого здания в Европе. Материалы 4-й Международной конференции по свайным и глубоким фундаментам, апрель, Стреза, Италия, 139–145.

Katzenbach, R .; Леппла, С.; Зайп, М. (2011): Das Verformungsverhalten des Frankfurter Tons infolge Baugrundentlastung. Bauingenieur 86, May, Springer VDI Verlag, Дюссельдорф, Германия, 233–240.

Katzenbach, R .; Леппла, С. (2013): Деформационное поведение глины из-за разгрузки и последствия для строительных проектов в городских районах. 18-я конференция Международного общества механики грунтов и инженерной геологии, 2–6 сентября, Париж, Франция, Vol. 3, 2023–2026.

Katzenbach, R. (1995): Hochhausgründungen im setzungsaktiven Frankfurter Ton.10. Христиан Ведер Коллоквиум, 20 апреля, Грац, Австрия, 44–58.

Моос, Г. (1976): Hochhaus Senckenberganlage во Франкфурте-на-Майне. Ph. Holzmann AG, Technischer Bericht, Франкфурт, Германия, 1–25.

Gravert, F.W. (1975): Ein Beitrag zur Gründung von Hochhäusern auf bindigen Böden. Deutsche Konferenz Hochhäuser, Deutsche Gruppe der Internationalen Vereinigung für Brückenbau und Hochbau, 2–4 октября, Майнц, Германия, 216–224.

Stroh, D .; Katzenbach, R. (1978): Der Einfluss von Hochhäusern und Baugruben auf die Nachbarbebauung.Bauingenieur 53, Springer-Verlag, Berlin, 281–286.

Katzenbach, R .; Bachmann, G .; Болед-Мекаша, Г .; Рамм, Х. (2005): Комбинированные свайно-плотные фундаменты (CPRF): подходящее решение для фундамента высотных зданий. Словацкий журнал гражданского строительства, № 3, 19–29.

Для чего используется ступенчатый фундамент? — Greedhead.net

Для чего используется ступенчатый фундамент?

Фундаменты служат опорой для конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки.

Что такое ступенчатый фундамент?

Фундамент, построенный в несколько этапов, которые приблизительно соответствуют уклону несущего слоя. Цель состоит в том, чтобы избежать горизонтальных векторов силы, которые могут вызвать скольжение. На наклонных участках необходимо сначала решить, будет ли цокольный этаж над землей в самой высокой точке или частично погружен под землю.

Где используется ступенчатая опора?

Ступенчатые опоры: Основная цель использования ступенчатых опор — удерживать металлические колонны от прямого контакта с почвой, чтобы уберечь их от коррозионного воздействия.Этот тип основания используется для того, чтобы нести нагрузку на металлические колонны и передавать эту нагрузку под землю.

Что вызывает обрушение фундамента?

Плохая подготовка площадки для строительства и грунта. В противном случае могут произойти неожиданные движения почвы под фундаментом. Мягкий грунт с низкой плотностью и неправильно уплотненный грунт под фундаментом — одна из основных причин разрушения фундамента.

Что такое фундаментный фундамент?

Фундаменты с насыпью — это фундаменты на небольшой глубине залегания, где сопротивление грунта по бокам фундамента не оказывает существенного влияния на несущее сопротивление.Некоторые положения этого Раздела могут также применяться к глубоким фундаментам, таким как кессоны и опоры [C6. 1 (1) П].

Почему вы закладываете фундамент?

Для домов на ровной застройке опоры очень простые и заканчиваются на одной отметке. Однако для более сложных конструкций опоры в конечном итоге меняют высоту и, следовательно, требуют «ступеньки» в уклоне. Ступенчатые опоры позволяют глубине опор переходить с одной отметки на другую.

В чем разница между фундаментом и опорой?

Фундамент — это конструкция, которая передает нагрузки от надстройки на землю, а фундамент — это фундамент, который контактирует с землей.Фундамент может быть неглубоким и неглубоким, а фундамент — это разновидность неглубокого фундамента. Итак, все основания являются основаниями, но все основания не могут быть основаниями.

Что такое ленточный фундамент?

Ленточная опора — это относительно небольшая полоса бетона, помещенная в траншею и армированная сталью. Основание выдерживает нагрузку на внешние стены и любую внутреннюю стену, несущую нагрузку или поддерживающую плиту, например, для ванной комнаты. Ленточные опоры можно использовать как для традиционных деревянных, так и для бетонных полов.

Какой тип фундамента самый дорогой?

подвал
Подвал — самый дорогой тип фундамента, и если вы не строите подвал с дневным освещением — подвал, построенный на склоне холма, который открывается дневному свету хотя бы с одной стороны — это пространство, созданное этим типом фундамента, может ощущаться похожа на пещеру, так как в ней отсутствует естественное освещение.

Что произойдет, если фундамент рухнет?

Распространение структурных повреждений. Когда фундамент ослабевает, он вызывает эффект домино, вызывая чрезмерное напряжение и нагрузку на конструкцию, которую он был спроектирован для поддержки.

В чем важность фундамента?

Функции фундамента Три наиболее важных функции — это выдержать нагрузку на здание, закрепить его против природных сил, таких как землетрясения, и изолировать его от грунтовой влаги. Относительная важность этих функций меняется в зависимости от типа земли под зданием и конструкции здания.

Почему мы используем насыпной фундамент?

Просторные опоры используются для поддержки фундамента или опор под зданием.Чтобы добавить дополнительную поддержку, раздвижные опоры сделаны из бетона и армированы сталью. Подвижное основание продлевает срок службы здания, сводя к минимуму структурные повреждения.

Фундамент Step дороже?

Ступенчатые фундаментные стены — обычная практика в строительной отрасли. Ступенчатая фундаментная стена также обеспечивает экономию средств. Бетон стоит дорого по сравнению со стоимостью пиломатериалов. Установка несущей стены каркаса вместо открытой фундаментной стены намного более рентабельна.

Что является первым основанием или фундаментом?

Три типа бетонных оснований

  1. Т-образные фундаменты применяют в местах промерзания грунта.
  2. Сначала устанавливается опора.
  3. Во-вторых, стены построены и залиты.
  4. Наконец, кладется плита.

Какой глубины должны быть опоры в доме?

12 дюймов
Глубина опор Опоры должны доходить до глубины не менее 12 дюймов под ранее ненарушенной почвой.Опоры также должны выходить как минимум на 12 дюймов ниже линии промерзания (глубина, на которую земля промерзает зимой) или должны быть защищены от мороза.

Нужна ли опалубка для ленточных фундаментов?

требует простой опалубки (без краевых фальцев) требует простой выемки грунта, которая проводится за минимальное время.

Какова максимальная высота ступенчатой ​​ступеньки?

На наклонных участках опоры должны быть ровными, поэтому опоры должны быть ступеньками. Длина шага должна быть не менее 2 футов., высота ступеней должна быть не более трех четвертей длины ступени, а вертикальные секции фундамента должны быть не менее 6 дюймов.

Что такое ступенька?

Нижний колонтитул ступени или опора — это ступенька, которая наливается на разных уровнях. Когда вы видите сложный, он выглядит как набор шагов, поскольку нижний колонтитул меняет высоту вместе с землей. Этот нижний колонтитул требуется, если здание построено на наклонной поверхности или когда часть здания не имеет полноценного фундамента.

Три бетонных профиля наложены друг на друга и образуют ступеньки.Этот тип опор еще называют ступенчатым фундаментом. Ступенчатая опора в основном используется в жилых домах.

Наложенный фундамент — это разновидность неглубокого фундамента. Фундаменты с насыпью широко используются в строительстве. Основание конструкции увеличивается или расширяется для обеспечения индивидуальной поддержки.

Насколько глубокой должна быть опора для ступенек?

Ступеньки входа

  1. Опоры должны иметь глубину не менее 42 дюймов.
  2. Это могут быть блочные, бетонные стены или опоры столбов.
  3. Кроме того, площадка ступеньки должна находиться на расстоянии не менее 36 дюймов от того места, где она упирается (примыкает) к дому до первой ступеньки.

Когда нужен ступенчатый фундамент под стену?

Ленточный фундамент (или ленточный фундамент) — это тип неглубокого фундамента, используемый для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн, построенных по центру над ними. Там, где естественная поверхность земли имеет уклон, наиболее экономичным решением может быть a.

Какое определение ленточного фундамента лучше всего?

Ленточный фундамент (или ленточный фундамент) — это тип неглубокого фундамента, используемый для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн, построенных по центру над ними. Если естественная поверхность земли имеет уклон,…

Как лучше всего построить наклонный фундамент?

Ступенчатый фундамент также широко известен как ступенчатый фундамент.Ступенчатая опора — одно из самых экономичных решений для строительства фундамента на склонах. Конструкция ступенчатой ​​опоры в основном состоит из ряда бетонных ступенек, построенных в горизонтальном направлении на наклонной поверхности земли.

Когда использовать ступенчатую опору на углу?

Ступенчатые фундаменты также могут использоваться для перехода от глубоких фундаментов к неглубоким, а также на углах и перекрестках. Регулярная установка ступеней по основанию также позволяет избежать резких и чрезмерных изменений уровня, которые могут вызвать слабость и привести к движению.

Плотный фундамент против ленточного фундамента — ézsé kft main — энергосберегающее проектирование и строительство дома

Плотный фундамент против ленточного фундамента

Плотный фундамент действительно дороже?

Автор: Тот Жолт, Олах Гергы, Вертеси Мони, Варнаги Сабина
2010-06-22

В нашей серии мы покажем вам, каковы затраты на различные рабочие процессы в обычном частном доме.Начнем с основ! Большинство архитекторов предпочитают ленточный фундамент плотному, и в общественном сознании считается, что ленточный фундамент дешевле. Мы думаем, что разница в цене незначительна, мы проиллюстрируем это на примере и хотели бы помочь вам принять лучшее решение.

В качестве предварительного пункта следует выбрать плотный фундамент при соблюдении любого из следующих условий:

  • Подвал запроектирован
  • план этажа комплекса
  • пересеченная местность
  • плохое качество почвы
  • Подземные воды появляются вокруг фундамента
  • Вам нужен дом с полностью тепловым отключением и низким энергопотреблением

Чтобы понять это, вы должны знать немного больше о двух типах фундаментов, а также должны увидеть пример.

Все расчеты и сравнения, приведенные ниже, относятся к среднему простому дому с полезной площадью 100 м2.

Конструкция ленточного фундамента

Добыча грунта ленточным фундаментом сложнее

Ленточный фундамент выдерживает нагрузку от фасадной стены и различных частей здания в зависимости от его формы с его узкими, но относительно глубокими полосами. Следовательно, ленточный фундамент затрудняет извлечение почвы, поскольку это не просто плоская «чаша», для земляных работ необходимо использовать подвижные и небольшие приспособления / машины.Только с помощью небольших машин можно выкопать узкие проезды (мини-экскаватор, экскаватор-погрузчик или рыси, оснащенные лопатой), но с такими машинами невозможно сразу положить выкопанный грунт на грузовик.

Опалубка и бетонирование в несколько этапов

Главный недостаток ленточного фундамента — необходимость опалубки и нескольких этапов бетонирования. Он больше подвержен воздействию тепловых мостов, так как не может быть изолирован вокруг, как плотный фундамент.

Это может быть хорошим решением, если нет необходимости в опалубке из-за рельефа местности, а бетонирование можно выполнить за меньшее количество шагов.

Чтобы оценить затраты, сначала посмотрите, сколько нужно бетона!

Суммируя объем каждой полосы и рассчитывая с достаточным припуском, получаем 28 м. 3 бетона необходимо для заливки ленточного фундамента. Добавьте к этому усиленное основание и перемычки (на схеме выше показаны красным цветом), которые выполняются отдельно, но являются неотъемлемой частью конструкции.С перемычкой и армированным основанием требуется всего 51,5 м 3 бетона. Опять же, следует отметить, что такого количества бетона хватит только на очень простые планы этажей. Если форма здания более сложная, чем форма ленточного фундамента, будет сложнее не только количество бетона, но и увеличатся земляные работы.

Расчет ленточного фундамента дома площадью 100 м2
Товар Материальные затраты
Затраты на оплату труда
Извлечение местности 15 000 HUF (50 €)
Выемка почвы 77 000 HUF (260 €)
Насыпь гравийная (5 см) 65 000 HUF (220 €)
Бетонирование ленточного фундамента насосом 392 000 HUF (1330 €) — бетон + 75 000 HUF (255 €) — насос 120 000 HUF (405 €)
Бетонирование усиленного основания и перемычки 329 000 HUF (1115 €) — бетон + 75 000 HUF (255 €) — насос 150 000 HUF (405 €)
Гидроизоляция (в два этапа) 226 000 HUF (765 €) 600 000 HUF (2 035 €)
Металлоконструкции 400 000 HUF (1355 €) 432 000 HUF (1465 €)

ИТОГО

1 497 000 HUF (5 750 €)

1 459 000 HUF (4 945 €)
2 956 000 HUF (10 020 €)
Обход в мир бетона

Что означает C 12-24 / KK под бетоном?

При заказе свежего бетона важно, чтобы подрядчик очень точно рассчитал необходимое количество бетона и заказал его хорошего качества.Чтобы понять, что это означает: под маркировкой C 12-24 / KK, C означает нормальную плотность (может быть LC, как легкий бетон, или HC, как тяжелый бетон). Первое числовое значение выражает прочность на сжатие, в данном случае это 12 Н / мм 2 . Вторая цифра указывает на максимально допустимый размер зерна в бетоне, в данном случае диаметром 24 мм. Последняя часть относится к консистенции, KK означает слегка пластичный бетон. После этого можно указать герметичность, морозостойкость и износостойкость бетона, но мы не будем это сейчас обсуждать.

Бетононасос

Бетононасос в большом объеме эффективен, по основам можно рассматривать только это решение. Стоимость в основном зависит от количества бетонировок, а не от того, сколько места следует заливать бетоном. Pumix (миксер и насос) стоит 15 000 форинтов (50 евро) в час, и вы можете арендовать его минимум за три часа. В этом нет ничего удивительного, так как на начало откачки уходит один час, а также по окончании работы один час занимает чистка помпы.В час можно производить около 10 м 3 бетона.

Стоимость может увеличиться, если необходимо оплатить плату за пользование дорогой. Например, в Будапеште, в 12-м районе, это 32-тонный грузовик и один раз 4500 форинтов (15 евро). Администрация при местном самоуправлении.

А что это значит для человеческих ресурсов? Чтобы подготовить ленточный фундамент, нужно четыре человека, на десять часов работы это стоит около 120 000 форинтов (405 евро).

Устройство плотного фундамента

Плотный фундамент поддерживает всю конструкцию или ее часть (например, подвал) как непрерывную конструкцию.В отличие от плоского фундамента, который не подходит в местах, где ожидается появление грунтовых вод, плотный фундамент может выдерживать нагрузку, возникающую от давления грунтовых вод. На неровных поверхностях эта технология также является хорошим выбором, поскольку обеспечивает большую устойчивость. Вокруг утеплить намного проще, чем ленточный фундамент, таким образом можно уменьшить линейные тепловые мосты, для пассивных домов обязательно следует выбирать плотный фундамент. По своей природе он не требует опалубки, да и самого бетона может быть меньше.Важным моментом является то, что его можно реализовать в однофазном режиме, в отличие от ленточного фундамента (см. Изображение выше).

Расчет фундамента плота, с фундаментом
Артикул Материальные затраты (/ м 2 ) Затраты на рабочую силу (м / м 2 )
бетон 8 см 1 280 HUF (4,3 €) 1000 HUF (3.4 €)
Гидроизоляция (два слоя) 2 260 HUF (7,6 €) 6000 HUF (20,3 €)
1 слой фольги 300 HUF (1.0 €) 400 HUF (1,4 €)
бетон 5 см 900 HUF (3,1 €) 1 000 HUF (3,4 €)
Железобетон 25 см 5000 форинтов (16.9 €) 1 800HUF (6,1 €)
Утюг 6000 HUF (20,3 €) 5 400 HUF (18,3 €)
ИТОГО (100 м 2 15 740 000 HUF (5 335 €) 15 600 000 HUF (5 290 €)
Гравийная засыпка 35 000 HUF (120 €) 30 000 HUF (100 €)

ИТОГО

1 609 000 форинтов (5 455 €)

1 590 000 форинтов (5 390 €)

3 199 000 форинтов (10 845 €)
Расчет фундамента плота, без фундамента
Артикул /100 м2
Начальная цена 3 199 000 HUF (10 845 €)
Подготовка зеркала 45 000 HUF (150 €)
Транспортировка вынутого грунта 175 500 HUF (595 €)

ИТОГО

3 419 500 форинтов (11590 €)

Если в доме нет подвала, придется добавить подготовку так называемого зеркала и удаление вынутого грунта.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *