Столбчатый фундамент
Столбчатый фундамент – это основание, сформированное из столбиков, размещённых в углах будущего здания и в тех местах, где намечено пересечение стен, в том числе несущих конструкций.Виды столбчатых фундаментов
Столбы, могут изготавливаться с применением различных материалов исходя из чего, фундаменты разделяют на несколько видов:Тип материала определяет минимальное сечение столбов, например, если они сделаны из бута, то этот показатель составляет 600×600мм, а железобетонные изделия имеют параметры 300×300мм. Если столбы делают из кирпича, то их минимальное сечение достигает 510×510мм, а в случае с деревянными конструкциями составляет 200-400мм.
Актуальность применения столбчатых оснований
Использовать такие фундаменты актуально в следующих случаях:- низкая масса стен строения – если нагрузка на основу не велика, то чтобы сократить объёмы земляных работ и снизить стоимость фундамента, логично использовать столбчатую конструкцию;
- грунты, характеризующиеся высокой плотностью и равномерностью промерзания — обеспечивается экономия средств и материалов;
- пучинистые почвы — актуально формирование столбчатого фундамента на таких грунтах, при условии, что они глубоко промерзают, так как здесь слишком трудоёмко проводить земляные работы.
Материалы для Вас:
Преимущества столбчатых фундаментов
Столбчатые основания имеют ряд несомненных преимуществ:- быстрота монтажа – после установки конструкций, время отстаивания не превышает 7-ми дней, а после этого можно сразу возводить стены;
- минимум подготовительных операций – необходимо только провести разметку, при этом отпадает надобность в выравнивании грунта и рытье траншеи;
- низкая стоимость — затрата в 2-а раза меньше, в сравнении с монолитными конструкциями;
- отсутствие угрозы затопления – паводки и подъём грунтовых вод, не окажут разрушительного воздействия на фундамент, так как его нижний уровень находится выше уровня почвы на 30см;
- простота проведения коммуникаций.
Недостатки столбчатых фундаментов
Столбчатые фундаменты имеют некоторые недостатки:- недостаточная устойчивость к опрокидыванию – неразумно использовать в условиях подвижных почв;
- рекомендовано воздержаться от использования столбчатых оснований, при строительстве зданий со стенами, имеющими большую массу, тем более, если работы ведутся на слабонесущей почве;
- непродолжительный эксплуатационный период – 70 лет;
- невозможно или затруднено обустройство подвального помещения;
- низкая несущая способность – можно использовать только при возведении каркасно-щитовых домов, деревянных построек;
- запрещено возводить столбчатые фундаменты на местности с перепадами высот.
Услуги по монтажу фундаментов
Наша компания предлагает услуги по монтажу столбчатых фундаментов из любых материалов. Используется современное оборудование, качественные стройматериалы, закупаемые у надёжных поставщиков. Работы проводят опытные строители, имеющие высокий уровень квалификации. Предлагаются выгодные условия сотрудничества, что позволяет существенно снизить цену за услугу.Обратитесь к нам и мы проведём работы
Строители проводят тщательные расчёты, позволяющие оценить затраты на проведение работ и утвердить смету, которая не будет изменена в процессе возведения фундамента. Благодаря индивидуальному подходу к клиенту, мы можем подобрать условия, удовлетворяющие каждого. Обращаясь к нам, вы получаете следующие преимущества:- выполнение заказа точно в срок;
- гарантии качества;
- отсутствие дополнительных платежей;
- согласование всех действий с клиентом.
Наши услуги
Есть вопросы? Звоните!
+7 (499) 403-19-55
Столбчатые фундаменты — область применения, конструктивные решения
Поговорим о самых мало применяемых, не заслуженно забытых ленточных фундаментах.
Область применения
Если ваш участок под строительство дома находится на склоне или пучинистых грунтах, нужен фундамент под не капитальное строение – вычитаете необходимый ознакомительный материал.
В указанных случаях не заглубленный ленточный фундамент выдавится морозом, стены пойдут трещинами, упадут, т. е. везде, где грунт или местность как основание дома не внушает уверенности в стабильности состояния, нужно«привязать» фундамент к устойчивому нижнему слою грунта и спокойно жить. Для решения указанных проблем наши предки возводили пластичные стены,трещины в которых легко замазывались глиной.
Если возводится легкий каркасный домик, стоимость ленточного фундамента на глубину промерзания соизмерима со стоимостью самого домика, — лучше подойдет недорогой столбчатый фундамент.
Экономическая целесообразность, технологическая необходимость
Представляя собой заглубленные столбы под опоры углов и мест пересечения стен, столбчатый фундамент предоставляет не только единственную технологическую возможность обустройства фундамента, но и снижения стоимости работ. Стоимость фундамента в общей цене строительства дома – до 30 %. Столбчатый фундамент по сравнению с ленточным дешевле до 15 % и более.
Типичный пример нетрадиционного подхода: под каркасные летние домики отдыха 6 х 6 м установили сваи из половинок железнодорожных шпал, — удобно крепить опорную деревянную балку домика к шпале. Для надежности каждую шпалу проварили по 20 минут в битуме с соляркой. Стоит такой фундамент уже 18 лет, цена вопроса в сегодняшних ценах – 190 грн для одного домика, убедительно?
Пример капитального строительства. При проектировании дома 10 х 14 м в мергельных грунтах на склоне стоимость ленточного фундамента составляла 112 тыс. грн, при переходе на столбчатый — 78 тыс. грн, с гарантией устойчивости.
Способы монтажа фундаментов
Из названия понятно, что столбчатый фундамент — это столбики прочного материала, заглубленные ниже точки промерзания для надежного распределения нагрузки строения в земле. Выбор материала столбиков и технологии их установки определяет застройщик исходя из наличия и доступности материалов, финансовых возможностей. Рассмотрим подробнее проверенные временем варианты монтажа столбчатого фундамента.
Подготовительные работы
Правильно иметь проект, если нет – общие рекомендации. Места установки столбиков фундамента – по углам дома, в месте пересечения стен, т. е.там, где наибольшие нагрузки. Ошибка в нанесении оси котлована, отклонения от соосности недопустима, при ошибке лучше переделать, пойдут трещины стен. Расстояние между столбиками не более 2 м, заглубление – ниже точки промерзания (усреднённо 2 м). Важно соблюсти одинаковую глубину заложения столбиков, — контролируется аппаратными средствами по уровню. Если в нижней части колодца под столбик обнаружен неплотный грунт – илистые или торфянистые грунты, необходимо кардинально пересмотреть тип фундамента, обратиться к специалистам, проектантам, геологоразведчикам.
Каменный, бутобетонный, кирпичный – принцип монтажа общий
В подготовленный колодец закладывается кладка на растворе, выгоняется до нулевой отметки. Самый простой способ, не требующий механизмов, можно обойтись без электроэнергии.
Сборные бетонные и железобетонные блоки
Способ монтажа фундамента,при котором применяются составные жб части: фундаментный башмак, подушка, блок, колонна. Применяется в промышленном строительстве.
Монолитные железобетонные
Наиболее востребованный тип столбчатого фундамента в индивидуальном строительстве. Рассмотрим его подробнее, применительно к реалиям жизни и примерам возведения. Самый простой способ: свариваем арматуру диаметром 12-20 мм, длинной 2,2 м между собой проволокой 4-6 мм для получения цилиндра из арматуры, по 5-8 арматуры в цилиндре.
Диаметр цилиндра на 10-15 см меньше диаметра ямобура – от 400 до 600 мм, который будет бурить ямки. В нижней части стакана привариваем центрирующие полукольца по диаметру бура. Загоняем на участок ямобур с миксером-бетономешалкой. Бур бурит 2-х метровые ямы, миксер следом заливает их бетоном (лучше через шлангу, заполняя снизу – вверх, не допуская обвала грунта в бетон).
В бетон вставляем арматуру, низ центруется сам, верх фиксируем растяжками к колышкам. Теоретически можно пробурить и залить за день 40 ямок, но за два дня это реально. Если грунт слабый, укрепляем стенки рубероидом, свернутым в кольцо и зафиксированный степлером.
Этот способ подразумевает и более экзотическое исполнение при наличии материалов. Если есть возможность достать асбестовые, канализационные, стальные трубы б/у, вы получите дополнительную прочность, используя прочность стенок. Особенно хорошо работают с бетоном асбестовые и керамические трубы, вставленные в ямки, стальная б/у только не допустит обвала грунта, быстро сгниёт.
О профессионализме
Столбчатый фундамент под жилой дом довольно сложное инженерное сооружение, предполагающий обязательный инженерный расчет на сдвиг,опрокидывание, сжатие.
Приведенные цифры усредненные, хоть и проверенные временем. Ошибки при возведении фундамента очень, очень чреваты и исправить их практически невозможно без ущерба для эстетики и функциональной эксплуатации дома.
Уважаемые застройщики не экономьте на расчетах фундамента, выиграете в строительстве дома!
Фундамент столбчатый
Столбчатый фундамент — плюсы и минусы, ГОСТы и СНиПы
Столбчатый фундамент – это разновидность основания здания, в которой опорные конструкции (столбы) находятся в земле. Глубина залегания столбов определяется экспериментально, их вершины выступают над землей и связываются между собой бетонной лентой или ростверком. Это помогает равномерно распределить нагрузку ограждающих и несущих конструкций здания на грунт. Главное отличие между столбчатыми и свайными основаниями – глубина залегания столбов. Первый вариант используется на слабых и пучинистых грунтах, а также в местности с большой глубиной промерзания земли.Разновидности столбчатого фундамента
Классификация данного типа конструкции проводится в основном по типу используемого материала. Так, сегодня известны следующие столбчатые фундаменты:
- деревянные – это столбы из прочных пород дерева (с основном дуба). Перед закладкой бревно механически обрабатывают, на его поверхность наносят антисептик. Установка проходит следующим образом: согласно проектной разметки выкапывается котлован. На его дно устанавливается бетонная плита, на нее – бревна. При этом высота надземной части должна быть больше подземной. Бревна засыпаются и утрамбовываются. Сверху закрепляются ростверком;
- фундамент столбчатый каменный – выполняется на основе обожженного кирпича или битого камня. Принцип такой: в грунте выполняется яма определенного диаметра, которая и послужит формой для столбов. Далее кирпич или камни в нее укладываются и перемежевываются цементно-песчаным раствором. Эта конструкция идеально подходит для мелкозаглубленной и незаглубленной основы;
- бетонные – выполняются как в виде монолитной, так и сборных конструкций. Последние изготавливаются в заводских условиях;
- столбчатая конструкция с несъемной опалубкой – в качестве несъемной опалубки выступают полые железные или асбестоцементные столбы, которые помещаются в грунт, затем армируются и заливаются раствором.
Не знаете, какой выбрать столбчатый фундамент? Отзывы специалистов и нормативная литература помогут развязать данный вопрос и подобрать такой вариант, который максимально удовлетворит требования конкретной конструкции.
Преимущества и недостатки столбчатого основания дома
Как и любая строительная конструкция, так и столбчатое основание под здание имеет свои сильные и слабые стороны. Организовывая столбчатый фундамент, плюсы и минусы в обязательном порядке должны учитываться. Только в таком случае можно надеяться на возведение здания нужной конструкции.
Преимущества столбчатого фундамента:
- высокая скорость организации;
- достаточная экономия денежных средств;
- нет необходимости в привлечении дополнительной спецтехники и рабочей силы;
- устанавливается на нестабильных грунтах и земле с большой глубиной промерзания.
Столбчатый фундамент недостатки:
- нет возможности обустраивать подвальные и цокольные этажи;
- конструкция склонна к горизонтальному передвижению, а потому важно устанавливать достаточно надежный ростверк;
- не используется для тяжелых конструкций.
Нормативная документация для возведения столбчатого фундамента
Хотите организовать правильный столбчатый фундамент, размеры его, конструкция постройки и глубина ее залегания описываются в следующих нормативных документах:
Существует еще целый ряд специфической нормативной документации, который регулирует, какую структуру и размеры должны иметь столбчатые фундаменты. СНиП-2.02.01.83 предусматривает дополнительный расчет на деформацию. Столбчатый фундамент (ГОСТ24022-80) может закладываться под сельскохозяйственные постройки, под многоэтажные строения (ГОСТ 24476-80) и в каждом отдельном случае технические условия для строительства будут разными.
Вывод
Итак, столбчатый фундамент – это разновидность основы для здания, которая опирается на вертикальные структуры, расположенные глубоко под землей и связанные между собой ростверком. В зависимости от используемо материала, фундамент может быть деревянным, каменным, бетонным и с несъемной опалубкой. Следует помнить, что выбирая тот или иной столбчатый фундамент, цена вопроса напрямую зависит от используемого материала, применяемой технологии и размеров конструкции. Организовывая столбчатый фундамент, в обязательном порядке в расчетах и строительстве руководствуются нормативной документацией.
Видео по теме:
Столбчатый фундамент
Вернуться на страницу «Грунты и фундаменты»
Проектирование столбчатых фундаментов зданий и сооружений
Столбчатый фундамент – это конструктивные элементы в виде столбов, опор, подушек или их комбинаций, расставленные с определенным шагом. На столбчатый фундамент опираются колонны, фундаментные балки, ростверки или другие конструкции, которые предают нагрузки от здания или сооружения на столбчатый фундамент.
Подробно о типах:
ТИПЫ СТОЛБЧАТЫХ ФУНДАМЕНТОВ
Столбчатые фундаменты отличаются экономичностью и простотой монтажа.
Неблагоприятным условием для столбчатого фундамента является низкая несущая способность грунта под подошвой фундамента.
Мы рассмотрим следующие вопросы проектирования столбчатых фундаментов.
1. ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ — СХЕМА РАСПОЛОЖЕНИЯ СТОЛБЧАТЫХ ФУНДАМЕНТОВ
2. ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ — ЧЕРТЕЖИ СТОЛБЧАТЫХ ФУНДАМЕНТОВ
При проектировании столбчатых фундаментов могут оказаться полезными следующие типовые серии:
№ п/п | Номер | Наименование | Примечания |
1 | Серия 1.012.1-3.97 | Фундаменты сборно-монолитные под стальные колонны производственных зданий и инженерных сооружений. | Смотреть |
2 | Серия 1.412.1-6 | Фундаменты монолитные железобетонные на естественном основании под типовые железобетонные колонны одноэтажных и многоэтажных производственных зданий. | Смотреть |
3 | Серия 1.412.1-8 | Фундаменты монолитные железобетонные на свайном основании под колонны фахверка перегородок. | Смотреть |
4 | Серия 1.412.1-11 | Фундаменты сборно-монолитные на естественном основании под железобетонные колонны одноэтажных и многоэтажных производственных зданий. | Смотреть |
5 | Серия 1.812.1-2 | Фундаменты железобетонные под трехшарнирные железобетонные рамы для однопролетных сельскохозяйственных зданий. | Смотреть |
6 | Серия 1.812.1-5с | Фундаменты железобетонные сборные под колонны сельскохозяйственных производственных зданий для строительства в районах сейсмичностью 7, 8 и 9 баллов. | Смотреть |
7 | Серия 1.812.1-8.93 | Фундаменты под трехшарнирные железобетонные рамы. | Смотреть |
8 | Серия 1.412-1 | Монолитные железобетонные фундаменты под типовые колонны прямоугольного сечения одноэтажных промышленных зданий. | Смотреть |
9 | Серия 1.412.1-4 | Монолитные железобетонные фундаменты на естественном основании под железобетонные стойки фахверка. Материалы для проектирования и рабочие чертежи. | Смотреть |
Сборные железобетонные фундаменты проектируют из готовых железобетонных элементов заводского изготовления:
Сборный железобетонный фундамент.Рассмотрим следующие типы столбчатых фундаментов.
— фундаментная плита (ФП) по ГОСТ 23972-80;
— фундаментный блок (Ф) ГОСТ 23972-80;
— подколонник (ПК) или башмак под колонны (БК) серия 1.020-1/87;
— траверсы (ФТ,ТС) Серия 3.402-24;
— фундаментные балки (БФ) ГОСТ 28737-90.
Монолитный железобетонный фундамент.
Монолитный железобетонный фундамент отличается от сборного железобетонного фундамента тем, что весь массив фундамента изготавливается путем установки каркаса и заливки бетоном в условиях стройплощадки.
Бутовый фундамент
Бутовый фундамент изготавливается из бута или полнотелого красного кирпича методом послойной укладки. В результате получается бутовый массив в оболочке из раствора. Надземную часть фундамента выполняют в опалубке для обеспечения эстетического вида.
Перевязка столбчатых фундаментов.
Перевязка столбчатых фундаментов с использованием ранд-балки обеспечивает большую пространственную жесткость, т.к. горизонтальные нагрузки воспринимаются всеми фундаментами одновременно. Главной целью ранд-балки является передача нагрузки от стен на столбчатый фундамент. Ранд-балка выполняется, как правило, из железобетона в сборном или монолитном исполнении.
6.5. Столбчатые фундаменты
При незначительных нагрузках на фундамент, когда давление на грунт меньше нормального, непрерывные ленточные фундаменты под стены малоэтажных зданий целесообразно заменять столбчатыми. Столбчатые фундаменты наименее трудоемкий и наиболее дешевый тип фундаментов. Они в 1,5-4 раза дешевле ленточных. Фундаментные столбы (бутобетонные, бетонные или железобетонные, монолитные и сборные) перекрывают железобетонными фундаментными балками (сборные или монолитные), на которых возводится стена. Расстояние между осями фундаментных столбов принимают 2,5-3 м. Столбы располагают обязательно под углами здания, в местах пересечения наружных и внутренних стен. Для того чтобы устранить возможность выпирания фундаментной балки вследствие пучения расположенного под ней грунта, под ней устраивают подушку из песка или шлака толщиной не менее 0,5м.
Рис. 6.9. План столбчатых фундаментов
6.6. Свайные фундаменты
Для малоэтажных бесподвальных зданий свайные фундаменты применяются в случае залегания на поверхности слабых сильносжимаемых грунтов.
Свайный фундамент представляет собой ряд (ряды) свай, объединенных монолитным раствором.
В малоэтажных зданиях нагрузки на сваю как правило не превышают 150-200 кН. Поэтому наиболее эффективны сваи предварительно напряженные железобетонные сплошного сечения (250х250 и 300х300 мм) без поперчного армирования, пирамидальные сваи, забивные блоки и монолитные (буронабивные сваи).
Забивные сваи погружают в грунт забивкой, вибрированием или вдавливанием. Чаще всего применяют забивку сваебольными молотами. Погружение вибрированием осуществляется в насыщенные водой пески. Вдавливание сваи принимают в случаях, когда нельзя использовать динамические воздействия (вблизи существующих зданий особенно при песчаных и супесчаных грунтах, способных уплотняться от колебаний).
абв
Рис. 6.10. Сборные железобетонные сваи: а – квадратного сечения без поперечного армирования; б – пирамидальная; в – забивной блок.
Буронабивные сваи выполняются из бетона, железобетона, грунтобетона, грунтоцемента, щебня, которые укладываются в скважину диаметром 0,5-0,8 м, глубиной погружения 1,5-2,0 м. При сыпучих грунтах стенки скважины закрепляют осадной трубой.
При проектировании свайных фундаментов малоэтажных зданий как правило сваи располагают в один ряд по геометрическим осям стен. В первую очередь сваи размещают в углах здания, в местах пересечения стен. Шаг свай в ряду определяют расчетом в зависимости от нагрузки и несущей способности свай и обычно принимается от 3 до 8 диаметров сваи.
Оптимальный шаг свай квадратного сечения – 1,5-1,8 м. Ширину монолитного железобетона принимают обычно равной ширине стены, но не менее 300 мм, а высоту – 400-500 мм.
Рис. 6.11. План фундамента со сборными сваями
Рис. 6.12. План фундамента с буронабивными сваями
6.7. Сплошные фундаменты
При неравномерных осадках, слабом грунте оснований, когда необходимо защитить подвал от проникновения грунтовой воды при высоком ее уровне, если пол подвала подвергается снизу большому гидростатическому давлению целесообразно применять монолитные или сборные плитные фундаменты под всей площадью возводимого здания.
В первом случае когда плита располагается в уровне планировочной отметки земли, плита «Подошва» имеет утолщенные ребра по контуру под несущие стены. Во втором случае (при наличии подвала) плиту укладывают на определенном заложении и прокладывают перфорированные дренажные трубы для отвода грунтовых вод.
аб
Рис. 6.13. Монолитные сплошные фундаменты: а – в уровне планировочной отметки земли; б – с глубоким заложением.
Для устройства плиты грунт уплотняют, производится засыпка гравием, щебнем толщиной не менее 100 мм, служащая дренажным слоем. По нему укладывают гидроизоляцию в виде полиэтиленовой пленки толщиной 0,15 мм. При повышенном уровне грунтовых вод выполняют более мощную гидроизоляцию – армированную битумную пленку, заложенную между двумя слоями полиэтилена. Гидроизоляция препятствует проникновению влаги в монолитную плиту.
В настоящее время накоплен большой опыт по возведению экономичных малозаглубленных фундаментов. Наиболее рациональным способом защиты пучинистого грунта от промерзания является устройство горизонтальной теплоизоляции, укладываемой внутри под фундаментами или рядом с ними по наружному периметру стен в отапливаемых зданиях, в неотапливаемых – с двух сторон наружных фундаментов. Ширину изоляционного слоя рекомендуется принимать не более величины, равной глубине сезонного промерзания грунтов.
Рис. 6.14. Горизонтальная теплоизоляция фундаментов
аб
вг
Рис. 6.15. Мелкозаглубленные сплошные фундаменты: а – с утеплителем внутри фундамента; б – с утеплителем снаружи фундамента; в – с утеплителем снаружи фундамента; г – с утеплителем с внутренней стороны фундамента
4.3.1 Столбчатые фундаменты под стены
4.3.1. Столбчатые фундаменты под стены
Столбчатые фундаменты под стены рекомендуется устраивать при незначительных нагрузках от стены здания и в тех случаях, когда основанием служат грунты, имеющие высокие прочностные и деформационные характеристики. Фундаменты располагаются через 3—6 м один от другого, в углах здания и в местах пересечения стен, а также на других участках, где передаются значительные нагрузки.
Рис. 4.2. Столбчатый фундамент под стену 1 — надземная стена; 2 — фундаментная балка; 3 — колонна; 4 — панели ограждения; 5 — фундамент стаканного типа; 6 — подготовка
По обрезу фундаментов укладываются фундаментные балки, на которые опираются надземные конструкции.
Фундаменты выполняются из сборных элементов (рис. 4.2) в виде столбов, возводимых из кирпича, бута, цементогрунта, бетона. Возможно применение фундаментов, устраиваемых в разбуриваемых или отрываемых в массиве грунта полостях, заполняемых враспор бетоном, цементогрунтом и др.
4.3.2. Ленточные и прерывистые фундаменты под стены
Ленточные фундаменты могут быть монолитными или из сборных блоков, Монолитные устраивают из бута, бутобетона, бетона, цементогрунта в виде жесткой конструкций ступенчатой формы, когда в поперечном направлении не возникают растягивающие напряжения.
Рис. 4.3. Многощелевой ленточный фундамент 1 — поверхность грунта; 2 — распределительная плита; 3 — надземная стена; 4 — бетонные пластины; 5 — перекрытие; 6 — пол подвала
При применении железобетона фундамент выполняется в виде нижней армированной ленты и неармированной фундаментной стены (см. рис. 4.1). Многощелевые ленточные фундаменты включают два или более ряда вертикальных пластин, на которые опираются надземные стены (рис. 4.3). В плане пластины представляют собой непрерывные ленты или отдельные элементы, устраиваемые на определенном расстоянии один от другого. Монолитные фундаменты могут применяться в любых грунтовых условиях.
Сборные фундаменты состоят из ленты, собираемой из железобетонных плит, и стены, собираемой из бетонных блоков (рис. 4.4). Фундаментные железобетонные плиты изготавливаются сплошными или ребристыми. Номенклатура типовых плит по серии 1.112-5 приведена в табл. 4.17. Номенклатура предусматривает четыре группы, каждая из которых характеризуется наибольшим значением среднего давления, передаваемого на основание, при соответствующем вылете консоли фундамента.
ТАБЛИЦА 4.17. ФУНДАМЕНТНЫЕ ПЛИТЫ
Эскиз | Размеры, мм | Объем бетона, м3 | Масса, кг | ||||
Марка плиты* | b | 1 | h | плиты | петель | ||
ФЛ32.12 | 3200 | 1180 | 500 | 1,6 | 4000 | 6,5 | |
ФЛ32.8 | 780 | 1,047 | 2620 | 4,6 | |||
ФЛ28.12 | 2800 | 1180 | 1,369 | 3420 | 6,5 | ||
ФЛ28.8 | 780 | 0,896 | 2240 | 4,6 | |||
ФЛ24.12 | 2400 | 1180 | 1,138 | 2845 | 4,6 | ||
ФЛ24.8 | 780 | 0,745 | 1865 | 3,2 | |||
ФЛ20.12 | 2000 | 1180 | 0,975 | 2440 | 4,6 | ||
ФЛ20.8 | 780 | 0,638 | 1595 | 3,2 | |||
ФЛ16.24 | 1600 | 2380 | 300 | 0,987 | 2470 | 3,2 | |
ФЛ16.12 | 1180 | 0,486 | 1215 | 2,2 | |||
ФЛ16.8 | 780 | 0,320 | 800 | 1,4 | |||
ФЛ14.24 | 1400 | 2380 | 0,845 | 2110 | 2,2 | ||
ФЛ14.12 | 1180 | 0,416 | 1040 | 2,2 | |||
ФЛ14.8 | 780 | 0,274 | 685 | 1,4 | |||
ФЛ12.24 | 1200 | 2380 | 0,703 | 1760 | 2,2 | ||
ФЛ12.12 | 1180 | 0,347 | 870 | 1,4 | |||
ФЛ12.8 | 780 | 0,228 | 570 | 1,4 | |||
ФЛ10.24 | 1000 | 2380 | 0,608 | 1520 | 2,2 | ||
ФЛ10.12 | 1180 | 0,3 | 750 | 1,4 | |||
ФЛ10.8 | 780 | 0,197 | 495 | 1,4 | |||
ФЛ8.24 | 800 | 2380 | 0,567 | 1395 | 1,1 | ||
ФЛ8.12 | 1180 | 0,274 | 685 | 1,1 | |||
ФЛ6.24 | 600 | 2380 | 0,415 | 1040 | 1,1 | ||
ФЛ6.12 | 1180 | 0,205 | 515 | 0,7 |
* Марки плит в таблице указаны условно без обозначения их группы и относятся к изделиям всех групп.
Плиты первой группы соответствуют среднему расчетному сопротивлению основания (при коэффициенте надежности по нагрузке γf = 1) R = 0,15 МПа, второй — R = 0,25 МПа, третьей — R = 0,35 МПа и четвертой — R = 0,45 МПа.
Рис. 4.4. Сборный ленточный фундамент а — для здания с подвалом; б — для здания без подвала; 1 — поверхность грунта; 2 — бетонные блоки стен; 3 — фундаментные плиты
Марки плит обозначаются буквами ФЛ и числами, характеризующими ширину и длину плиты, разделенными точками. Цифра, отделенная дефисом, указывает группу по несущей способности при толщине опирающейся стены 160 мм. Например, ФЛ20.12-4 — плита шириной 2000 мм, длиной 1180 мм, для среднего давления на подошве 0,45 МПа. Расчетный момент для плит определен по грани нагружающей стены, которая принята толщиной 160 мм (для крупнопанельных зданий). При увеличении толщины нагружающей стены, например до 300, 400 мм и более, расчетные размеры консолей уменьшаются и по условиям прочности плиты могут соответствовать большим значениям средних давлений на основание. Расчетная нагрузка при определении несущей способности плит вычисляется умножением среднего давления р на усредненный коэффициент надежности по нагрузке γf = 1,15 (применительно к жилым зданиям). В случае применения плит для зданий, имеющих больший коэффициент надежности γ’f, среднее давление по условиям прочности будет меньше на величину γf/γ’f
Плиты запроектированы применительно к их расположению выше уровня подземных вод, что обусловлено предельным раскрытием трещин не более 0,3 мм. При наличии подземных вод ширина раскрытия трещин принимается менее 0,2 мм, что приводит к снижению среднего давления по подошве на величину n = 0,833 для плит с рабочей арматурой диаметром более 8 мм.
Плиты армируют одиночными сетками или плоскими арматурными блоками, собираемыми из двух сеток: верхней, имеющей маркировочный индекс К, и нижней — С. Рабочая арматура — стержневая горячекатаная периодического профиля, из стали класса А-III и проволока периодического профиля из стали класса Вр-I. Распределительная арматура — гладкая арматурная проволока из стали класса B-I.
При значительных нагрузках допускается применение ребристых железобетонных блоков (табл. 4.18), рассчитанных на среднее давление по подошве 0,3 МПа при толщине опираемой на них стены 40 см. Сечение арматуры плитной части определяется из условия восприятия изгибающего момента, а арматуры ребер — поперечной силы. Армирование плитной части осуществляется плоскими сетками, а ребер жесткости — пространственными каркасами. Рабочая арматура — из стали класса А-III диаметром 10—25 мм. по условиям трещинообразования блоки рассчитаны на применение выше уровня подземных вод. В табл. 4.19 и 4.20 приведена номенклатура облегченных железобетонных плит с угловыми вырезами, которые могут заменять типовые плиты с аналогичными внешними размерами. Армирование плит осуществляется двумя сетками, имеющими разные размеры в плане.
Рис. 4.5. Прерывистый фундамент
1 — поверхность грунта; 2 — бетонные блоки; 3 — фундаментные плиты; 4 — промежутки между плитами, заполненные грунтом
Плиты рассчитаны на среднее давление по подошве фундамента, равное 0,15; 0,2; 0,25; 0,35 и 0,40 МПа. Плиты разработаны для стен толщиной 18, 30 и 50 см.
При несовпадении расчетной ширины фундамента с шириной железобетонной плиты следует применять прерывистые фундаменты, устраиваемые из железобетонных плит, укладываемых на расстоянии друг от друга (рис. 4.5).
Фундаментные стены выполняются из сплошных ФБС или пустотелых ФБП блоков.
ТАБЛИЦА 4.18. РЕБРИСТЫЕ ЖЕЛЕЗОБЕТОННЫЕ БЛОКИ
Эскиз | Марка блока | Размеры, мм | Марка бетона | Объем бетона, м3 | Масса блока, т | Масса стали, кг | Вылет консоли (не более), мм | ||
b | l | h | |||||||
Ф40-24 | 4000 | 2400 | 600 | 300 | 3,04 | 7,96 | 704 | 1800 | |
Ф40-16 | 4000 | 1600 | 600 | 300 | 2,34 | 5,85 | 429 | 1800 |
ТАБЛИЦА 4.19. ПЛИТЫ С УГЛОВЫМИ ВЫРЕЗАМИ
Эскиз | Марка плиты | Размеры, мм | Марка бетона | Объем бетона, м3 | Масса плиты, т | Масса стали, кг | Расход стали на 1 м3 бетона, кг | |||||
b | l | h | A-I | A-III | B-I | итого | ||||||
Ф20.24-25в | 2380 | 2000 | 500 | 300 | 1,80 | 4,50 | 8,60 | 21,19 | 2,91 | 32,70 | 18,17 | |
Ф20.24-35в | 27,77 | 39,28 | 21,82 | |||||||||
Ф20.24-45в | 35,64 | 47,15 | 26,19 | |||||||||
Ф24.24-25в | 2380 | 2400 | 503 | 300 | 2,11 | 5,28 | 8,60 | 35,90 | 3,50 | 48,00 | 22,75 | |
Ф24.24-35в | 48,48 | 3,50 | 60,58 | 28,71 | ||||||||
Ф24.24-45в | 65,93 | 4,27 | 78,80 | 37,34 | ||||||||
Ф28.24-25В | 2380 | 2800 | 500 | 300 | 2,53 | 6,32 | 11,28 | 56,70 | 4,08 | 72,06 | 28,48 | |
Ф28.24-35в | 82,34 | 97,70 | 38,62 | |||||||||
Ф28.24-45в | 109,95 | 125,31 | 49,53 | |||||||||
Ф32.24-25в | 2380 | 3200 | 500 | 300 | 2,91 | 7,27 | 11,28 | 98,31 | 5,70 | 125,29 | 36,18 | |
Ф32.24-35в | 125,91 | 4,66 | 141,85 | 48,74 |
ТАБЛИЦА 4.20. РАЗМЕРЫ ПЛИТ С УГЛОВЫМИ ВЫРЕЗАМИ
Эскиз | Марка плиты | Размеры, мм | |||||
l | b | h | с | k | а | ||
Ф20.24-25в Ф20.24-35в Ф20.24-45в | 2380 | 2000 | 500 | 500 | 200 | 1800 | |
Ф24.24-25в Ф24.24-35в Ф24.24-45в | 2380 | 2400 | 500 | 700 | 200 | 1800 | |
Ф28.24-25в Ф28.24-35в Ф28.24-45в | 2380 | 2800 | 500 | 700 | 200 | 1800 | |
Ф32.24-25в Ф32.24-35в | 2380 | 3200 | 500 | 700 | 200 | 1800 |
Для укладки перемычек и пропуска коммуникаций под потолками подвалов и технических подпольев применяются сплошные блоки с вырезом ФБВ. Внешние размеры блоков приведены в табл. 4.21. Блоки изготовляются из тяжелого бетона, керамзитобетона и плотного силикатного бетона.
При малосжимаемых грунтах, а также при малой изменчивости сжимаемости основания толщина фундаментных стен, в том числе и подвалов, принимается равной (или меньшей) толщине надземных стен, но не менее 30 см. Надземные стены не должны выступать над фундаментными более чем на 15 см.
Для обеспечения пространственной жесткости сборного фундамента предусматривается связь между продольными и поперечными стенами путем перевязки их фундаментными стеновыми блоками (рис. 4.6, а) или закладки в горизонтальные швы сеток из арматуры диаметром 8—10 мм (рис. 4.6, б).
ТАБЛИЦА 4.21. РАЗМЕРЫ СТЕНОВЫХ БЛОКОВ
Блок | Основные размеры, мм | ||
длина | ширина | высота | |
ФБС | 2380 | 300 400 500 600 | 580 |
1180 | 400 500 600 | 580 | |
400 500 600 | 280 | ||
880 | 300 400 500 600 | 580 | |
ФБВ | 680 | 400 500 600 | 580 |
ФБП | 2380 | 400 500 600 | 580 |
Рис. 4.6. Перевязка наружных и внутренних стен
а — блоками; б — арматурными сетками; 1 — поверхность грунта; 2 — арматурная сетка; 3 — надземная стена; 4 — бетонные блоки; 5 — ввод трубопровода; 6 — фундаментные плиты; 7 — монолитный бетон
В случае примыкания кирпичных стен к фундаментным стеновым блокам сетки следует укладывать в каждом ряду блоков (рис. 4.7, а). Фундаментные стеновые блоки закладываются с перевязкой вертикальных швов, глубина которой и принимается:
- – при малосжимаемых грунтах (Е < 10 МПа) — не менее 0,4 высоты фундаментного стенового блока;
- – при сильносжимаемых, просадочных засоленных, насыпных и набухающих грунтах — не менее высоты фундаментного стенового блока.
Рис. 4.7. Примыкание кирпичной стены к стене из бетонных блоков (а) и устройство вводов (б)
1 — поверхность грунта; 2 — кирпичная стена; 3 — арматурные сетки; 4 — фундаментные плиты; 5 — бетонные блоки
Для уменьшения числа типоразмеров фундаментных стеновых блоков, а также для устройства вводов (рис. 4.7, б) оставляют проемы длиной не более 0,6 м, которые при необходимости заполняются кирпичом или бетоном. При этом лежащий выше блок должен перекрывать проемы. В углах здания проемы не допускаются. В прерывистых фундаментах вертикальный шов между нижними фундаментными стеновыми блоками следует располагать в пределах фундаментных плит. Допускается располагать этот шов в промежутках между плитами при условии, что величина консоли фундаментного стенового блока не превышает 0,2 его длины.
Переход одного участка фундамента к другому осуществляется уступами, отношение высоты к длине которых принимается не менее 1 : 2 при связных грунтах и 1 : 3 при песчаных грунтах. В сборных фундаментах высота уступа принимается равной высоте фундаментного стенового блока или железобетонной плиты, которые при необходимости укладываются на слой тощего бетона (см. рис. 4.6, а).
При возведении сборных фундаментов на сильносжимаемых, просадочных и других структурно неустойчивых грунтах, а также при неравномерном напластовании слоев предусматриваются армированные швы или пояса поверх фундаментных плит или последнего ряда стеновых блоков по всему периметру здания с соблюдением следующих требований:
- – армированный шов должен быть толщиной 3—5 см; для его устройства применяется цементный раствор не ниже марки раствора основной кладки и не ниже М50;
- – армированный пояс следует выполнять из монолитного бетона или из сборных элементов;
- – высота пояса 10—15 см, бетон класса не ниже В7,5;
- – шов и пояс полагается армировать стержнями диаметром не менее 10 мм.
При устройстве швов применяют плоские сетки, а поясов — пространственные каркасы (ширина шва и пояса должна быть не менее 0,8 толщины стены) и располагают в одном уровне. При невозможности выполнения их на одном уровне допускается их располагать на разных отметках, но при этом они должны перекрывать друг друга на длину не менее 50 диаметров рабочей арматуры и не менее двух расстояний между ними по вертикали. При устройстве над подвалом монолитного перекрытия, имеющего глубину заделки не менее 0,8 толщины фундаментной стены, армированный пояс не требуется.
От поверхностных и подземных вод стены защищают путем устройства отмосток и укладки горизонтальной гидроизоляции на уровне не ниже 5 см от поверхности отмостки и не выше 30 см от подготовки пола подвала. Внешняя поверхность подвальных стен защищается обмазочной изоляцией в один или в два слоя.
Классификация фундаментов в зависимости от конструкции
Общая информация
В зависимости от формы и способа опоры на грунт фундаменты бывают:
- столбчатые;
- ленточные;
- плитные;
- свайные;
- совмещенные.
Столбчатые фундаменты
Столбчатые фундаменты представляет собой отдельные столбы из бетона, железобетона, кирпича, камня и т.п. Их устанавливают по периметру здания на определённом расстоянии друг от друга. Как правило, столбчатые фундаменты возводят для зданий каркасного типа. При применении такого типа фундамента использовать подвальное помещение практически невозможно.
Ленточные фундаменты
Ленточные фундаменты относятся к наиболее распространённым типам фундаментов. Это фундаменты, выполненные в виде непрерывной или прерывистой ленты под несущими стенами. Ленточный фундамент, в отличие от столбчатого, выполняет роль и несущих и ограждающих конструкций для помещений подвала. Ленточные фундаменты применяются как для промышленного, так и гражданского строений, часто используются в КМС. Выполняются как из монолитного, так и сборного железобетона.
Плитные фундаменты
Плитные фундаменты представляют собой сплошную армированную железобетонную плиту, на которую опираются несущие конструкции здания или сооружения. В отличие от столбчатых и ленточных фундаментов плитный имеет жёсткое армирование по всей несущей плоскости, что позволяет воспринимать любые возможные перемещения грунтового основания. Поэтому, зачастую плитные фундаменты устраивают на слабых грунтах, которые могут проседать. Также плитные фундаменты устраиваются под высотными зданиями, так как они способны воспринимать значительные нагрузки. В данной конструктивной схеме плита и стены являются несущими и ограждающими конструкциями.
Свайные фундаменты
Свайные фундаменты состоят из свай — стержней, выполняемых из различных материалов, и ростверка — железобетонной плиты, распределяющей усилия от ограждающих конструкций на отдельные сваи. Сваи различаются по материалу, конструкции, способу погружения, по характеру работы и т.д. Железобетонные сваи наиболее распространённые, их делают из высокопрочного, водонепроницаемого, химически стойкого бетона. Связано это с повышенными требованиями к свае и сложными условиями ее работы. Свайные фундаменты применяются при строительстве высотных жилых и общественных зданий, а также во всех случаях, когда несущей способности плитного фундамента недостаточно.
Была ли статья полезна?
Типы фундаментов: столбчатый, ленточный, свайный фундамент | Бетон
Фундамент столбчатый
Фундамент на столбах — самый распространенный и дешевый тип фундамента. Особенно эффективно использование столбчатых фундаментов на пучинистых грунтах глубокого промерзания. У них есть ряд особенностей, которые в некоторых случаях мешают их успешному использованию. Горизонтально подвижный грунт отличается отсутствием сопротивления опрокидыванию, поэтому во избежание бокового сдвига требуется установить жесткий железобетонный плот-фундамент.Limited используются на мягких грунтах при строительстве зданий с толстыми стенами. Также при столбчатом фундаменте возникают трудности со строительством цоколя, что является сложным и трудоемким. Устройство пристенного фундамента применяется для дома с легкими стенами. Этот вид фундамента по затратам материалов и затрат вдвое экономичнее ленточных фундаментов. Столбы встраиваются в углы на пересечении стен, под опорами, под опорами и в других местах, где сосредоточена нагрузка.Сверху уложены столбы обвязкой балок.
Ленточный фундамент
Поясами называются основания, которые возводятся прямо под несколькими отчетливыми столбами или стенами дома. Они выполнены в виде подземных стен, состоят из железобетонных поперечных балок. Такие фундаменты для возведения домов с толстыми стенами. Он проложен под основными стенами. Устройство ленточного фундамента под домом теплые погреба, подвал, подвал или гараж делают этот тип фундамента необходимым.Ленточные фундаменты отличаются большим объемом земляных работ, большим расходом используемых материалов, сложностью строительства и значительным весом. Но, несмотря на это, эти фундаменты считаются самыми распространенными из-за относительно простой технологии. Фундаменты бывают ленточные, монолитные и модульные. На дне котлована для устройства монолитного фундамента сделана деревянная опалубка, установлены изоляционные листы, арматура, а в пространстве между стенами залита бетонная опалубка.При обогреве дома с целью снижения тепловых потерь в такие фундаменты закладывается утеплитель. Национальные фундаменты делают из железобетона или крупных бетонных блоков.
Плитный фундамент
Плитный фундамент построен под квадратное здание. Это сетка или сплошная плита, которая изготавливается из железобетонных или сборных поперечных балок с жесткой герметизацией стыков. Построен плитный фундамент из железобетонного фундамента для придания жесткости. Это становится необходимым при строительстве на сжимаемом грунте, например, насыпью или на плаву.Устройство плитного фундамента отличается большим расходом материалов и целесообразно только при возведении компактных и небольших зданий или других сооружений, не требующих возведения высокого цоколя, а печь можно использовать как перекрытие. Это может быть гараж, сауна и другие подобные сооружения. Для зданий более высокого класса используется в виде фундамента из усиленных поперечин или оребрения.
Фундамент свайныйЭти фундаменты состоят из свай, покрытых верхней балкой, бетоном или бетонной плитой. Устройство свайного фундамента — это очень дорогое и трудоемкое в процессе реализации, поэтому при индивидуальном строительстве они используются очень редко. Устанавливается в тех случаях, когда требуется передать пониженную нагрузку на грунт. Нагрузка здания в этом случае переносится на твердый грунт, расположенный на глубине. В зависимости от материала различают сваи деревянные, бетонные, железобетонные, стальные и комбинированные. По способу погружения в грунт и изготовления сборных свай различают и распечатывают.В зависимости от поведения свай в грунте есть сваи-стойки, которые имеют достаточно крепкие подземные и подвесные сваи. Их использовали при слишком большой глубине надежного грунта. Наиболее экономичными считаются деревянные сваи, но во влажной почве быстро загнивают. Бетонные сваи более дорогие, но прочные и выдерживают большие нагрузки.
Подушки песочные
Устройство фундамента на песчаных подушках желательно использовать для экономии строительных материалов, для частичной или полной замены непригодных грунтов у основания, для поднятия уровня пола неглубоких грунтовых вод.Для их строительства ямы засыпают пластами песка, которые тщательно промывают и поливают. В пучиноопасных грунтах при промерзании не рекомендуется устанавливать устройство без дренажа такого фундамента. В противном случае возможно заиливание подушки, что приведет к потере первоначальных свойств.
Срок службы фундаментов разного типа
При установке фундамента важно запланированное время использования, то есть конструкция, из которой он построен.Для разных фундаментов срок службы разный. Например, бетонная лента может простоять сто пятьдесят лет, а фундамент на бетонных опорах — около пятидесяти лет. Меньше всего срока службы деревянных свай — десять лет.
Виды материалов, из которых выполнен фундамент
В зависимости от материалов, используемых для устройства фундамента, они бывают из щебня, бутового бетона, бетона и кирпича.
Бутово фундаментов возведения большого каменного карьера, который выбирается по размеру и форме.Кладка производится в цементном растворе, при этом камни укладываются плотно между собой. Толщина бутового фундамента зависит от проектных соображений. Это массивный и трудоемкий из всех типов фундаментов, поэтому при строительстве жилых домов его использование не оправдано. Бутовские фундаменты рекомендуется только на участках, где есть каменный карьер в необходимом количестве, и является местным материалом. К положительным качествам бутового фундамента можно отнести максимально возможную долговечность и прочность.Также он довольно устойчив к грунтовым водам и морозам.
фундамент щебеночно-бетонный состоит из заполнителя и раствора. В качестве наполнителя можно использовать бутовый камень, гравий или крупный щебень. Вы можете использовать боевой кирпич и железную руду.
Бетонный фундамент называют заливным. Он выполнен из бетона без камней, заполнен щебнем или гравием. Бетон заливается в форму с небольшим утрамбовыванием. Для этого могут использоваться вибраторы.По прочности и долговечности аналогичен бутербетонному фундаменту. Недостатком бетонных фундаментов является повышенный расход цемента и немалая стоимость.
Кирпичный фундамент — кладка из обыкновенного жженого кирпича, укладываемого на цементный раствор. Устройство кирпичного фундамента считается нецелесообразным, поскольку это достаточно дорогой и недолговечный материал из-за плохой водостойкости. Рекомендуется использовать только в сухих почвах и наличии необходимого количества дешевого кирпича.
(PDF) Проектирование фундаментов, армированных колоннами
Проектирование армированных грунтов колоннами
Мунир Буассида,
Университет Туниса Эль-Манар, Группа инженерно-геологических исследований.
Национальная инженерная школа Туниса, Тунис, Тунис
РЕЗЮМЕ
Проектирование фундаментов на укрепленном грунте с помощью колонн обычно включает две проверки: во-первых, несущую способность
и, во-вторых, расчетную. В этом материале подробно описывается комплексная методология определения оптимизированного коэффициента
улучшенной площади, чтобы избежать завышенных количеств столбцов материала.В основе предлагаемой методики
лежит оценка, во-первых, минимального коэффициента площади улучшения (IAR), соответствующего допустимой несущей способности армированного грунта
; тогда максимальный IAR выводится из проверки допустимого урегулирования. Проанализирован проект резервуара
, чтобы показать, что использование новой методологии проектирования, которая была включена в недавно разработанное программное обеспечение для
, проектирование армированного грунта колоннами, позволяет избежать завышенного армирования.
РЕЗЮМЕ
Le Dimensnement d’une fondation sur sol renforcé par colnes inclut, en premier replace, la vérification de la capacity
portante, et, en second replace, la vérification du tassement. Этот взнос был предоставлен новым методом
для определения оптимальных постоянных условий для оценки количества составляющих
колонн. Une valeur minimale du taux d’incorporation is идентифицируется как допущенный к проверке портовой емкости
; Допускается suivie de l’estimation d’une valeur maximale du taux d’incorporation découlant de la vérification du
tassement.Проект резервуара был раскрыт для наблюдения за созданием нового творчества
Методология измерения, которая была встроена в логический канал для получения выгоды от обеспечения защиты.
1 ВВЕДЕНИЕ
Хорошо известно, что усиление слабых грунтов колоннами
направлено на увеличение несущей способности, уменьшение осадки на
, ускорение консолидации
мягких грунтов за счет осушенного столба материала и
предотвращение риска разжижения, особенно
насыщенных рыхлых песков.Стоимость схем
фундамента из армированного грунта (RS) с использованием каменных колонн,
уплотняющих свай или метода глубокого перемешивания, по существу, составляет
, контролируемых объемной долей внедренного материала
, что относится к коэффициенту площади улучшения (IAR). Коэффициент площади улучшения
(IAR) определяется как общее поперечное сечение колонн
, деленное на площадь нагруженного фундамента
.
Слабые грунты часто имеют очень низкие характеристики прочности и жесткости.
.В эту категорию грунтов в основном входят
высокосжимаемых грунтов с недренированной прочностью на сдвиг менее
более 30 кПа, модулем Юнга менее 2 МПа и
рыхлых песков с углом трения менее 30 ° (т.е. SPT <
10) .
В зависимости от принятой техники армирования колонн
IAR варьируется от:
— от 0,15 до 0,35 для каменных колонн; Прочность материала колонны
в основном характеризуется большим углом трения
(т.е.е. больше 40 °).
— от 0,2 до 0,7 для глубокого перемешивания; Прочность материала колонны
в основном характеризуется повышенной когезией
(в двадцать раз и более, чем у исходного грунта).
— от 0,05 до 0,15 для виброуплотнения, с добавлением материала
или без него; Прочность материала колонны составляет
, характеризуется умеренным сцеплением и повышенным углом трения
.
Проектирование фундаментов на усиленном грунте по
колоннам обычно включает проверки, во-первых, несущей способности
и, во-вторых, осадки.Конструкция
также может включать ускорение консолидации, когда колонны
ведут себя как вертикальные стоки, и потенциал разжижения в случае
рыхлых насыщенных песков.
Существующие методы часто нацелены на однократную проверку
несущей способности или осадки путем принятия модели ячейки
. Кроме того, существующие методы были сформулированы для
уникального типа техники установки колонн, то есть каменных
колонн (Priebe, 1995), (французский стандарт, 2005) или глубокого перемешивания
(Broms, 2000) и т. Д.
В этих публикациях IAR рассматривался только как
для заданных данных, поэтому оптимизация количества материала колонки
не обсуждалась. Обратите внимание, что IAR
не учитывается французским стандартом для оценки несущей способности RS
по модели изолированной колонны.
Далее, независимо от метода установки колонны или
моделирования RS, ни один из предыдущих методов расчета
не учитывал как несущую способность, так и проверки осадки
.
Чтобы предложить комплексную процедуру проектирования
, в этой статье представлена новая методология, которая включает в себя проверки несущей способности и
осадки. Более того, предлагаемая методология
учитывает результаты недавних исследований, которые были получены в рамках четко сформулированных рамок
.
Эта методология проектирования подробно описана для усиленных грунтов
концевыми несущими и плавающими колоннами.Составляющие
армированного грунта, то есть исходный грунт также
, называемый слабым грунтом и армирующими колоннами, идентично
моделируется как трехмерная среда. Армирующие колонны
расположены в произвольном порядке под
От теории к практике. Основная лекция. Продолжение
ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ НА КОЛОННЫХ УСИЛЕННЫХ ПОЧВАХ: ОТ ТЕОРИИ К ПРАКТИКЕ
40
использование моделирования группы столбцов, добавление к моделям изолированных столбцов и элементарных ячеек, которые ранее рассматривались несколькими авторами (Greenwood, 1970). ; Brauns 1979 и др.).
Первоначально были исследованы прямые подходы, т.е. нижняя и верхняя границы YDT:
* Основываясь на модели изолированной колонки, Bouassida & Hadhri (1995) выделили минимальные требования к материалу колонки
, чтобы обеспечить увеличение несущая способность за счет арматуры
. Эта модель также была рассмотрена для двух связных фрикционных материалов, загруженных в
различных конфигурациях (площадь нагрузки по сравнению с поперечным сечением колонны).Это исследование (Bouassida
и Jellali, 2002) привело к полному аналитическому решению верхней границы коэффициента несущей способности
(BCF) и затем по сравнению с существующим решением (Madhav & Vitkar, 1978). Совсем недавно для модели изолированной колонны
было предложено, чтобы калибровка модели из эластопласта после
регистрировала результаты испытаний на полную нагрузку. Такой инструмент, созданный в результате исследований на месте, все же
остается предпочтительным, поскольку не представлено решение для верхней границы раствора чисто когезивной среды
, армированной каменными колоннами (Frikha et al, 2008).
* Основываясь на модели единичной (составной) ячейки, Bouassida et al (1995) сформулировали точное аналитическое решение
для чисто связного грунта, армированного материалом когезионно-фрикционной колонны.
Эта модель была успешно проверена для восстановленной тунисской мягкой глины, армированной песком
колонн (Bouassida, 1996a). Основываясь на результатах консолидированных трехосных испытаний без дренажа, прочность на сжатие
(Q / S)
exp
модели замкнутой композитной ячейки (в кПа) как функция удерживающего давления
p (для улучшения коэффициента площади из η = 1/25 и η = 4/25) можно записать как:
1/25, exp
(Q / S) 1.195p 14,06 = + (3)
4/25, exp
(Q / S) 1,554p 15,4 = + (4)
.
Коэффициенты линейной корреляции уравнений (3) и (4) составляют соответственно 0,999 и 0,998.
Прогнозируемые аналитические решения (Q / S)
th
, рассчитанные на основе механических характеристик
тунисской мягкой глины и армирующего песка, могут быть представлены как:
1/25, th
(Q / S) 1.144p 20,8 = + (5)
4/25, th
(Q / S) 1,576p 23,2 = + (6)
* На основе модели элементарной ячейки Bouassida et al (1995) сообщили о первой нижней границе BCF из чисто связного грунта
, усиленного группой колонн, состоящих из связного фрикционного материала
(как каменные колонны). Он последовал предложению оптимизированного расстояния между колонками,
в зависимости от угла трения материала колонны, чтобы обеспечить лучшую нижнюю границу BCF
(Bouassida, 1996b).В случае чисто связного мягкого грунта, армированного чисто связным материалом колонн
(что может быть достигнуто методом глубокого перемешивания), было получено ограничение коэффициента BCF
(Bouassida, 1996b), которое было тщательно оценено после масштабного испытания. модели
(Bouassida & Porbaha, 2004). Недавно Kasama et al (2006), выполнив расчет численного предела
для анализа, предоставили ту же величину верхней границы BCF, относящейся к этому случаю армирования
, для диапазона отношения когезии между связями материала колонн и
начального почва от 15 до 37.Эти результаты сравнивались с прогнозами, сформулированными Бромсом
(1982), последний в основном оказался консервативным в текущем диапазоне коэффициента сплоченности: более
20.
Типы фундаментов для стальных зданий
Правильно спроектированный фундамент особенно важен для любого металлического здания. Он обеспечивает долговечность и предотвращает большинство форм ухудшения строения в будущем, таких как протечка или затопление, смещение или наклон стен, а также структурные повреждения.
Для стального здания проект фундамента определяет остальную часть процесса планирования и строительства и поэтому приводится в действие задолго до того, как фактическое здание становится доступным.
Существует несколько факторов, влияющих на конструкцию фундамента, которые важно учитывать, прежде чем переходить к процессу планирования.
Земля
Перед началом строительства земля должна быть профессионально обследована и размечена для выравнивания.Строителям необходимо знать границы участка. Измерение земли сильно повлияет на то, как должен быть спроектирован фундамент, а также на качество почвы.
Профилирование формирует почву в соответствии с высотой и формой земли, отмеченной геодезическими кольями.
Плохая почва может привести к смещению и опусканию стальных зданий независимо от конструкции фундамента. Хотя фундамент можно спроектировать вокруг бедной почвы, гораздо дешевле выкапывать существующую грязь и заменять ее более качественной почвой.
Нагрузка
Стальные здания, как правило, имеют более высокую горизонтальную нагрузку, а это означает, что на них больше влияют боковые силы, такие как сильный ветер и землетрясения. Подобные силы могут привести к опрокидыванию зданий или их соскальзыванию с фундамента. Фундамент может помочь распределить или противостоять высокой реакции горизонтальных колонн стальных зданий с использованием стальных анкерных стержней, соединенных с анкерными болтами, или с увеличенным размером фундамента, хотя последнее может привести к более высоким затратам.
Ветровой подъемник
Столбчатый подъем возникает, когда сильный ветер создает всасывающий эффект, который поднимает здание от его фундамента. Стальное здание подвержено высокому риску столбчатого поднятия, предотвращение которого начинается с фундамента. Более тяжелые фундаменты, фундамент с верхним слоем почвы на нем или более глубокие опоры в фундаменте — все это варианты снижения подъема стального здания.
Дополнительные сведения включают:
- Линии локального промерзания
- Вес оборудования или транспортных средств, которые будут размещены в здании
- Расположение анкерных болтов для крепления колонн стального каркаса
- Габаритные размеры и вес
Как видите, тип фундамента определяется землей, нагрузкой и ветровой подъемной силой, оцениваемой для здания.В конечном итоге цель фундамента — закрепить колонны здания, придав ему устойчивость и прочность. Соответственно, следует выбирать тип фундамента с учетом этих факторов.
Кто проектирует металлические фундаменты зданий?
Обычно вы нанимаете инженера по бетону для проектирования фундамента. Местный инженер лучше всего знаком с типами почвы в этом районе и с тем, как местная среда будет взаимодействовать с бетоном и сталью.
Инженеру-бетонщику потребуется копия планов здания, включая планы анкерных болтов.Ваш производитель металлических конструкций может предоставить планы и любую необходимую техническую информацию. Приведены спецификации анкерных болтов, но они приобретаются на месте, а не со строительным комплектом.
Фундамент может быть завершен и отвержден до того, как строительный комплект прибудет на место, и монтаж может начаться немедленно.
Типы фундаментов металлических построек
Плавучий фундамент Плавающий фундамент (также известный как плавающая плита или просто плита) — популярный вариант для большинства коммерческих и промышленных зданий.Представляет собой бетонную плиту с неразрезной балкой. Его заливают и выкладывают под колонну или укрепляют вдоль дна и выдерживают вертикальный вес колонн.По завершении конструкции плита становится полом.
Плавучий фундамент построить проще, быстрее и доступнее, поскольку он не требует много копания, а также не требует опор или опор. Этот тип фундамента также лучше подходит для влажных и прибрежных участков с более мягкими почвами, поскольку он предотвращает проседание и неровности со временем.
Одна вещь, которую следует помнить о плавающем фундаменте, заключается в том, что канализационные трубы и часто большая часть электропроводки должны быть встроены в плиту заранее.
Опора, опора и поперечная балка Этот тип фундамента часто используется для строительства сельскохозяйственных зданий из стали, манежей для верховой езды и открытых павильонов. Фундамент стоит на опорах, которые опираются на квадратные или прямоугольные опоры со стеной из горизонтальных балок. В некоторых случаях вместо фундамента можно использовать просверленные опоры.Каждая опора выдерживает вес колонны, а пол можно оставить в виде грязи или гравия.Опоры и опоры несут большую часть вертикальной нагрузки стального здания. Глубоко просверленные опоры лучше работают с сухой почвой, а глубина также помогает предотвратить поднятие ветра на здание. Между тем, поперечная балка работает против пассивного давления на почву и, следовательно, противостоит реакциям горизонтальной колонны. Под землей опоры можно связать вместе, чтобы исключить смещение.
Хотя опоры, опоры и опорные балки дороже, они также более надежны и универсальны в качестве фундамента.
Стена по периметру Этот фундамент, также известный как опора по периметру, заливается вокруг внешней части конструкции, поддерживая внешние стены стального каркаса. Иногда стены по периметру используют в сочетании с опорами или бетонными плитами. Переносной фундамент Переносной фундамент пригодится для построек, которые необходимо периодически перевозить. Этот тип фундамента обычно представляет собой промышленную плиту, которая крепится к бетонному периметру с помощью анкерных болтов.Хотя переносные фундаменты менее надежны, они более гибкие для различных ландшафтов. Переносные фундаменты также устраняют потенциальный риск потери высоты здания. В целом, этот вариант предлагает самый простой, самый быстрый и дешевый процесс строительства, выполняя при этом свою функцию, позволяющую перемещать стальное здание с места на место.Выбор лучшего фундамента для стального здания
Почва, преобладающие ветры и нагрузка на здание — все это определяющие факторы для типа фундамента, необходимого для стального здания.
Самый популярный вариант — плавающий фундамент, потому что он дешевле и быстрее устанавливается, чем другие фундаменты. В сельскохозяйственных зданиях часто используются опоры, опоры и поперечные балки. Если ваше здание необходимо переносить с места на место, лучший вариант — переносной фундамент.
В местных или национальных строительных нормах и правилах строительства металлических фундаментов мало или вообще нет никаких спецификаций. Помощь хорошего инженера по бетону имеет решающее значение для создания подходящего фундамента для вашего металлического здания.
Какие типы фундаментов используются для стальных зданий?
Все мы слышали поговорку: «Невозможно построить большое здание без прочного фундамента».
В некоторых случаях это высказывание является метафорой жизни.
В других случаях, например, когда вы строите металлическое здание, высказывание очень буквально.
Правильно спроектированный фундамент необходим для любого здания, особенно металлического.
Прочный фундамент обеспечивает долговечность и помогает предотвратить большинство форм разрушения здания в будущем.
Протекание, затопление, смещение или наклон стен, а также некоторые структурные повреждения можно предотвратить, если у вашего здания будет прочный фундамент.
Для стальных зданий дизайн фундамента будет определять остальную часть процесса планирования и строительства, что делает его одним из первых шагов, которые запускаются в действие, когда вы начинаете проектировать свой металлический строительный комплект.
В приведенной ниже статье мы шаг за шагом обсудим то, что вы должны учитывать при планировании фундамента, а также обсудим некоторые варианты фундамента, доступные для вашего металлического здания.
Давайте копаться!
Содержание
Земля
Прежде чем что-либо произойдет, земля, на которой вы планируете построить металлическое здание, должна быть профессионально обследована и помечена для выравнивания.
Строителям необходимо знать границы участка, чтобы они знали, сколько места им нужно для работы.
Размеры вашей земли, а также качество почвы будут иметь большое влияние на то, как должен быть спроектирован фундамент.
При выравнивании земли почва будет формироваться в соответствии с высотой и формой земли в соответствии с отметками геодезиста.
Если почва на вашем участке земли низкого качества, это может привести к проседанию и смещению стальных зданий, независимо от того, как спроектирован фундамент.
Фундаменты могут быть спроектированы вокруг плохой почвы, но гораздо дешевле и опаснее выкопать существующую грязь и заменить ее высококачественной почвой.
-назад к содержанию
Нагрузка
Большинство стальных зданий имеют более высокую горизонтальную нагрузку, а это означает, что на них больше воздействуют боковые силы, такие как сильный ветер и землетрясения.
Подобные силы могут привести к опрокидыванию зданий или их соскальзыванию с фундамента.
Правильный фундамент может помочь распределить или противостоять высокой реакции горизонтальных колонн стальных зданий с использованием стальных анкерных стержней, которые соединяются с анкерными болтами.
Фундамент с увеличенным размером основания также может помочь противостоять высокой реакции горизонтальной колонны, но увеличение размера основания часто приводит к более высоким затратам.
-назад к содержанию
Ветер
Изолированное металлическое здание может помочь вам не чувствовать воздействия ветра, но ветер по-прежнему может создавать проблемы для вашего металлического здания.
Сильный ветер может создать всасывающий эффект, который может поднять здание с фундамента. Это называется столбчатым поднятием.
Стальные здания подвержены повышенному риску столбчатого поднятия, и профилактика начинается с фундамента.
Тяжелые фундаменты, фундаменты с верхним слоем почвы или более глубокие фундаменты — все это варианты снижения подъема стального здания.
-назад к содержанию
Другие соображения
При выборе фундамента следует учитывать также следующие факторы:
- Местные морозы
- Вес оборудования или транспортных средств для транспортировки и установки здания
- Расположение анкерных болтов для крепления колонн стального каркаса
- Размеры и вес здания
Тип фундамента, который вы должны выбрать, в основном зависит от земли, нагрузки и силы ветра, оцененной для здания.
В конечном счете, цель фундамента — служить анкером для колонн здания, придавая ему устойчивость и прочность.
Вам необходимо выбрать фундамент соответственно, учитывая эти факторы.
-назад к содержанию
Кто проектирует фундамент для моего металлического здания?
В большинстве случаев вы нанимаете инженера по бетону для проектирования фундамента вашего металлического здания.
Местный инженер лучше всего знаком с типами почвы в этом районе и с тем, как местная среда будет взаимодействовать с бетоном и сталью.
Вашему инженеру-бетонщику потребуется копия планов здания, включая планы анкерных болтов.
Производитель вашего металлического здания может предоставить эти планы и любую дополнительную техническую информацию, которая потребуется.
Приведены технические характеристики анкерных болтов, но они приобретаются на месте, а не со строительным комплектом.
Фундамент будет завершен и отвержден до того, как строительный комплект прибудет на строительную площадку, так что строительство может начаться немедленно, когда это произойдет.
-назад к содержанию
Типы фундаментов
Плавающий фундамент
Плавающий фундамент, также известный как плавающая плита или просто плита, является популярным вариантом для большинства коммерческих и промышленных зданий.
Это простая бетонная плита с неразрезной балкой.
Заливается и раскладывается под колонной или укрепляется вдоль дна и выдерживает вертикальный вес колонн.
После завершения конструкции плита будет вашим полом.
Плавучие конструкции строить проще, быстрее и доступнее, чем другие варианты, при этом не требуется много копать, и для них не требуются опоры или опоры.
Плавучие фундаменты также лучше подходят для влажных и прибрежных территорий с более мягкими почвами, поскольку они предотвращают проседание и неровности со временем.
Имейте в виду, что с плавающим фундаментом канализационные трубы и большая часть электропроводки должны быть встроены в плиту заранее.
-назад к содержанию
Пирс, опора и поперечная балка
Этот тип фундамента идеально подходит для сельскохозяйственных металлических построек, площадок для катания на лошадях и открытых павильонов.
Фундамент стоит на опорах, которые опираются на квадратные или прямоугольные опоры со стеной из горизонтальных балок.
В некоторых случаях вместо фундамента можно использовать просверленные опоры.
Каждая опора выдерживает вес колонны, а пол можно оставить в виде грязи или гравия.
Опоры и опоры будут нести большую часть вертикальной нагрузки стального здания.
Просверленные опоры лучше подходят для сухой почвы, а глубина также предотвратит поднятие ветром на здание.
Балка уклона работает против пассивного давления на почву и, следовательно, противостоит реакциям горизонтальной колонны.
Опоры можно связать вместе под землей, чтобы исключить смещение.
Этот тип фундамента дороже, но он более надежен и универсален.
-назад к содержанию
Стена по периметру
Стены по периметру или опоры по периметру — это фундамент, залитый вокруг внешней части конструкции, поддерживающий внешние стены стального каркаса.
Стены по периметру часто используются в сочетании с опорами или бетонными плитами.
-назад к содержанию
Переносной фундамент
Как вы уже догадались; переносные фундаменты переносные.
Они полезны для зданий, которые необходимо периодически перевозить по многим причинам.
Переносные фундаменты обычно состоят из промышленной плиты, которая соединяется с бетонным периметром анкерными болтами.
Хотя переносные фундаменты менее надежны, они более гибки в различных ландшафтах.
Переносной фундамент также устранит риск потери высоты здания.
В целом, этот вариант является самым простым, быстрым и дешевым процессом строительства, при этом он выполняет свою функцию, позволяя перемещать стальное здание с места на место.
-назад к содержанию
Может ли мое металлическое здание иметь подвал?
Как и в обычных зданиях, под стальными зданиями могут быть подвалы.
У любого типа здания будут аналогичные концепции конструкции в отношении подвала, нижних колонтитулов и фундамента.
Нагрузка от металлического здания будет передаваться на внешние стены и углы, и подвал должен быть достаточно прочным, чтобы выдержать эту нагрузку.
-назад к содержанию
Выберите лучший фундамент для металлического дома
Почва, преобладающие ветры и нагрузка на здание — все это играет важную роль в принятии решения, какой тип фундамента вы должны использовать для своего металлического здания.
Самый популярный вариант — плавающий фундамент, потому что он дешевле и устанавливается намного быстрее, чем другие варианты.
Сельскохозяйственные постройки лучше всего подходят для опор, опор и фундаментов из горизонтальных балок.
Если ваше здание нужно время от времени перемещать, лучше использовать переносной фундамент.
И, если хотите, под металлическим зданием может быть даже подвал.
Существует несколько спецификаций для металлических фундаментов зданий, которые можно найти в местных или национальных строительных нормах и правилах.
Помощь отличного инженера по бетону имеет решающее значение, когда дело доходит до строительства подходящего фундамента для вашего металлического здания.
Если вам понравилась эта статья, прочтите ее:
Оригинальная статья Источник
Фрикционные сваи — Designing Buildings Wiki
Фундаменты служат опорой для конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки для их поддержки. В очень широком смысле, фундаменты можно разделить на мелкие и глубокие.
Свайные фундаменты — это тип глубокого фундамента, образованный длинными, тонкими, столбчатыми элементами, которые обычно изготавливаются из стали или железобетона, а иногда и из дерева.Фундамент называют «свайным», если его глубина более чем в три раза превышает его ширину.
Свайные фундаменты в основном используются для передачи нагрузок от надстроек через слабые сжимаемые пласты или воду на более прочный, более компактный, менее сжимаемый и жесткий грунт или скальную породу на глубине. Обычно они используются для больших конструкций и в ситуациях, когда почва может подвергаться чрезмерной осадке.
Фрикционные (или плавающие) сваи развивают большую часть несущей способности сваи за счет касательных напряжений по бокам сваи и подходят там, где более твердые слои слишком глубоки, чтобы добраться до них было невозможно.Свая передает нагрузку на окружающий грунт за счет сцепления или трения между поверхностью сваи и почвой, что, в сущности, снижает уровень давления. Другими словами, вся поверхность сваи (цилиндрической формы) работает на передачу сил на грунт.
Чтобы лучше понять, рассмотрим гвоздь, вбитый в кусок дерева. Чем дальше он забивается, тем надежнее и плотнее крепится гвоздь в брус. Чем больше глубина заделки в грунт, тем большую нагрузку может выдержать свая — несущая способность сваи прямо пропорциональна ее длине.
Фрикционные сваи отличаются от концевых свай, которые развивают большую часть своей несущей способности на носке сваи, опираясь на твердый слой породы или очень плотный грунт и гравий.
Подробнее см .: Концевые несущие сваи.
[править] Статьи по теме «Проектирование зданий» Wiki
Уникальная организация данных — CarbonData
ВВЕДЕНИЕ
Apache CarbonData хранит данные в столбцовом формате, при этом каждый блок данных сортируется независимо друг от друга, чтобы обеспечить более быструю фильтрацию и лучшее сжатие.
ОПИСАНИЕ
Хотя CarbonData хранит данные в формате столбцов, он отличается от традиционных форматов столбцов, поскольку столбцы в каждой группе строк (блок данных) сортируются независимо от других столбцов. Хотя эта схема требует, чтобы CarbonData сохраняла сопоставление номеров строк с каждым значением столбца, это позволяет использовать двоичный поиск для более быстрой фильтрации, и, поскольку значения сортируются, одинаковые / похожие значения объединяются, что дает лучшее сжатие и снижает накладные расходы на хранилище. требуется отображением номеров строк для смещений.
КРАТКОЕ ВВЕДЕНИЕ О ХРАНЕНИИ столбцов
В столбцовой базе данных все значения столбца 1 физически объединены, за ними следуют все значения столбца 2 и т. Д. Данные хранятся в порядке записи, поэтому сотая запись для столбца 1 и сотая запись для столбца 2 принадлежат одной и той же входной записи. Это позволяет получать доступ к отдельным элементам данных, например к имени клиента, в столбцах как группе, а не по отдельности построчно.
Вот пример простой таблицы базы данных с 4 столбцами и 3 строками.
Таблица 1: Таблица базы данных с 4 столбцами и 3 строками
ID | Последний | Первый | Бонус |
---|---|---|---|
1 | Doe | John | 8000 | Джейн | 4000 |
3 | Бек | Сэм | 1000 |
Рядное хранилище: 1, Доу, Джон, 8000; 2, Смит, Джейн, 4000; 3, Бек , Сэм, 1000;
Хранилище, ориентированное на столбцы: 1,2,3; Доу, Смит, Бек; Джон, Джейн, Сэм; 8000,4000,1000;
Одним из основных преимуществ столбцовой базы данных является то, что данные могут быть сильно сжаты.Сжатие позволяет выполнять операции по столбцам, такие как MIN, MAX, SUM, COUNT и AVG, очень быстро. Еще одно преимущество заключается в том, что, поскольку хранилище на основе столбцов является самоиндексируемым, оно использует меньше дискового пространства, чем система управления реляционными базами данных (СУБД), содержащая те же данные.
ФОРМАТ ФАЙЛА CARBONDATA
Файл Apache CarbonData содержит группы данных, называемых блоклетами, вместе со всей необходимой информацией, такой как схема, смещения, индексы и т. Д., В нижнем колонтитуле файла.
Нижний колонтитул файла можно прочитать один раз для создания индексов в памяти, которые затем можно использовать для оптимизации сканирования и обработки всех последующих запросов.
Каждый блок в файле далее делится на блоки данных, называемые блоками данных. Каждый блок данных организован либо в формате столбцов, либо в формате строк и хранит данные либо в одном столбце, либо в наборе столбцов. Все блоклеты в одном файле содержат одинаковое количество и тип блоков данных.
Рисунок 1: Файл CarbonData
Рисунок 2: Подробное описание формата файла CarbonData
I) Заголовок файла: содержит информацию о
II) Блок: набор строк в столбцовом формате
Баланс между эффективным сканированием и сжатием
Данные сортируются по MDK (многомерные ключи)
Размер блоклета по умолчанию: 64 МБ (но размер настраивается)
Минимальный размер для фильтрации предикатов
Большой размер для эффективного чтения и сжатия
Рисунок 3: Графическое представление столбцового кодирования
Далее блоклет содержит группы страниц столбцов для каждого столбца, также известные как блоки столбцов.
Фрагмент столбца — это данные для одного столбца в блоклете.
Данные столбца могут быть сохранены в виде отсортированного индекса
Гарантируется, что они будут непрерывными в файле
Разрешить несколько столбцов в группе столбцов
сохраняться как блок с одним столбцом в строке- на основе формата
подходит для набора столбцов, часто выбираемых вместе
экономия затрат на сшивание для восстановления строки
Каждый блок данных содержит несколько групп данных, называемых страницами.
Страница содержит данные одного столбца, а количество строк фиксировано до размера 32000. Есть три типа страниц.
Страница данных: содержит закодированные данные столбца / группы столбцов.
Страница идентификатора строки (необязательно): содержит сопоставления идентификаторов строк, используемые, когда страница данных сохраняется как инвертированный индекс.
Рисунок 4: Представление столбцов сортировки в блоках столбцов
Инвертированный индекс показывает фактическое положение значения столбца в столбце (т.е.д, номер строки).
Пример: значение «1» в «столбце 2» присутствует в строках 1–8, поэтому остальные строки не нужно рассматривать и, следовательно, обеспечивает быструю фильтрацию.
Также инвертированный индекс хранит значения в отсортированном порядке, и, следовательно, использование двоичного поиска эффективно улучшит время поиска для значения фильтра.
Это также поможет восстановить строку, так как данные хранятся по столбцам, и значения могут перемешиваться во время сортировки и сохранения по столбцам.