Теплопроводность пеноблока: Теплопроводность пеноблока: коэффициент теплопроводности пенобетона

Автор

Содержание

Теплопроводность пеноблока: коэффициент теплопроводности пенобетона

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материалаМарка (средняя плотность)Коэффициент теплопроводности Вт/м°С
На пескеНа золе
Теплоизоляционный пеноблокD 3000.080.08
D 4000.100.09
D 5000.120.12
Конструкционно-теплоизоляционный пеноблокD 5000.120.12
D 6000.140.13
D 7000.180.15
D 8000.210.18
D 9000.240.20
Конструкционный пеноблокD 10000.290.23
D 11000.340.26
D 12000.380.29
Штукатурка058
Кирпич0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:

  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.

Итог

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

Теплопроводность пеноблока разных марок, от чего зависит, расчет толщины стен

Пенобетон – это строительный блочный ячеистый материал. Именно благодаря порам, он обладает низким коэффициентом теплопроводности. Получается пористая структура в результате добавления в раствор пенообразующего компонента. От его объема зависит количество ячеек в пенобетоне. Чем их больше, тем меньше он проводит тепло. Низкий коэффициент теплопроводности достигается за счет наличия в ячейках воздуха, а он, в свою очередь, имеет самое меньшее значение теплопередачи.

Что такое теплопроводность?

Эта характеристика показывает, какое количество тепла передает материал за определенное время. Влияет на эту величину плотность пенобетона и влажность.

Теплопроводность различных марок пеноблоков сильно отличается, так как они имеют разную структуру. Изготавливается пенобетон трех видов:

  • конструкционный;
  • теплоизоляционный;
  • конструкционно-теплоизоляционный.

Конструкционные пеноблоки являются самыми плотными и содержат наименьшее количество пор с воздухом. Поэтому они имеют самый высокий коэффициент теплопроводности – 0,29-0,38 Вт/м·К. Такие пеноблоки используются для строительства фундаментов и несущих конструкций. Но так как они довольно-таки сильно проводят тепло, то требуется дополнительная отделка утепляющими материалами. Выпускаются марок Д900-Д1200.

Теплопроводность пенобетона конструкционно-теплоизоляционного типа несколько ниже. Они обладают как хорошей прочностью, так и оптимальным показателем теплопередачи – 0,15-0,29 Вт/м·К. Именно эти пеноблоки чаще всего применяются в частном домостроительстве для возведения несущих стен и перегородок. Производятся марок Д500, Д600, Д700 и Д800.

Теплоизоляционные пеноблоки имеют наилучший коэффициент теплопроводности – 0,09-0,12 Вт/м·К. Но из-за большого количества пустых ячеек, они обладают слабой прочностью, поэтому их не применяют для строительства, а только в качестве теплоизоляции уже отстроенного сооружения. Производятся марок Д300-Д500.

Чтобы не снизить коэффициент теплопроводности блоков пенобетона, для кладки используется не цементно-песчаный раствор как для обычных кирпичей, а специальный клей. Толщина шва не должна быть больше 2-3 мм. Иначе в местах швов образуются мостики холода, и через них будет уходить немалая часть тепла. Таким же образом проводится монтаж газоблоков.

Чтобы кладка была ровной, а швы одинаковыми, следует приобретать качественные пеноблоки с ровными гранями. Такой материал изготавливается известными и крупными производителями. Если проводить кладку из пеноблоков разных размеров и форм, швы не получатся одинаковой толщины. В итоге конструкция будет сильнее терять тепло.

Теплопроводность блоков пенобетона разных марок:

Марка Коэффициент теплопередачи
Д350 0,09
Д400 0,10
Д500 0,12
Д600 0,14
Д700 0,18
Д800 0,22
Д900 0,25
Д1000 0,29

Пенобетон в сравнении с газобетоном имеет несколько лучшую теплопроводность. Но это относится только к пеноблоку теплоизоляционного типа. Показатели теплообмена газоблока (0,075-0,183 Вт/м·К), конструкционного и конструкционно-теплоизоляционного блоков практически одинаковые.

Средняя теплопередача дерева – 0,15 Вт/м·К. Пенобетон уступает ему лишь немного, а некоторые теплоизоляционные пеноблоки удерживают тепло даже несколько лучше. Коэффициент теплообмена строительного кирпича находится в диапазоне 0,2-0,7 Вт/м·К, что намного хуже, чем у пенобетона.

На способность передавать тепло влияет и окружающая среда, а точнее, процент влажности и температура. Чем больше внутри газоблока и пенобетона влаги, тем сильнее они проводят тепло. Также коэффициент теплообмена увеличивается при понижении температуры.

Как рассчитать толщину стены?

Чтобы узнать, какой толщины строить стены, нужно учесть показатели теплообмена всех материалов. Так, если конструкция будет состоять из кирпича (например, 0,5 Вт/м·К), штукатурки (0,58 Вт/м·К) и пеноблоков (Д800 – 0,22 Вт/м·К), то учитываются все их коэффициенты вместе.

По строительным нормам сопротивление стен теплопередаче должно быть не меньше 3,5 м2·К/Вт. Именно от этого числа отнимаются показатели теплообмена стройматериалов, которые будут использоваться для возведения конструкции, кроме пеноблоков. Чтобы вычислить сопротивление теплопередаче кирпича, нужно его толщину 12 мм (0,12 м) разделить на коэффициент его теплопроводности: 0,12/0,5=0,24. Точно так же для штукатурного слоя в 2 см: 0,02/0,58=0,034.

Теперь эти результаты отнимают от 3,5 м2·К/Вт: 3,5-0,24-0,034=3,226. Чтобы узнать необходимую толщину стен, полученное число умножают на коэффициент теплопроводности блоков пенобетона: 3,226*0,22=0,71. Значит, толщина стены должна быть не меньше 70 см при применении пеноблоков Д800.

Пенобетон не только хорошо удерживает тепло, но и является таким же экологически чистым материалом, как и дерево. Так как для его производства используется цемент, песок, вода и натуральный пенообразующий компонент. В доме, построенном из него, всегда будет комфортный микроклимат.

Теплопроводность пенобетона - на что влияет коэффициент

Теплопроводность – одна из важнейших характеристик пенобетона, отражающая его способность транспортировать тепловую энергию. Этот критерий определяет область и возможность применения стройматериалов, его эксплуатационные свойства. Не стоит забывать о том, что тепловодность неразрывно связана с основными параметрами, такими как плотность и прочность материала. От данного сочетания зависит, насколько будет дом теплым и прочным.  Неоспоримая ценность пенобетона состоит в низкой теплопроводности.

Что влияет на показатель теплопроводимости?

Существуют прямолинейная зависимость между плотностью и теплопроводностью пенобетона. В структуре материала имеется значительное количество пор, которые заполнены воздухом. Показатель теплопроводности воздуха – 0,026 Вт/м°С, что почти на порядок ниже, чем у обычного бетона, содержащего легкие наполнители. Именно наличие воздуха в стройматериале существенно снижает его теплопроводность.

Огромное влияние на данный показатель оказывает плотность материала (D). Пеноблоки с плотностью D300 обладают теплопроводностью 0,08 Вт/м°С, а при плотности D1200 показатель достигает 0,38 Вт/м оС. Чем выше плотность блоков, тем хуже их теплоизоляционные свойства.

Для достижения требуемого уровня теплоизоляции необходимо увеличить толщину стен либо проложить дополнительный слой утеплителя. Данные меры способствуют удорожанию строительства и требуют заливки более прочного фундамента.

Оптимальным выбором для возведения жилого дома является пенобетон D600. Используя данный материал, можно построить 2-3-этажный дом с толщиной стен 30-40 см.

Коэффициент теплопроводности

Для обозначения коэффициента теплопроводности пенобетона используют λ и единицу измерения ВТ/м*К.

Если сравнивать данный показатель с характеристиками традиционных строительных материалов ( керамический или силикатный кирпич, известняк или шлакоблок) пенобетон заметно выигрывает. Например, стена толщиной 30 см, выложенная из пеноблоков, имеет показатель 0,18 ВТ/м*К, в то время как для шлакоблока данный параметр будет достигнут только при толщине стены 108 см, из керамического кирпича – при 138 см.  

Теплопроводность пенобетона обратно пропорциональна показателям прочности и плотности.

Блоки плотность 400-500 кг/м3 используются в качестве утеплителя. Материал плотностью 1100-1200 кг/м3 способен выдерживать серьезные нагрузки и применяется в строительстве 1-2 этажных домов, но при этом хуже сохраняет тепло.  Пенобетонные блоки с плотность 600-700 кг/м3 выдерживают нагрузку плит перекрытий и обладают достаточной теплостойкостью. Именно они чаще всего используются в малоэтажном жилом строительстве.

На степень теплопроводности материала оказывает влияние размер внутренних пустот. Теплоизолирующие свойства блоков тем выше, чем больше воздушных пузырьков внутри массы материала. Не менее важна геометрическая точность производства пеноблоков, потому как от нее зависит расход специального клеящего состава. Если толщина кладочного раствора составляет 2-3 мм, то стена практически монолитная. При использовании неровных блоков производится выравнивание кладки за счет раствора, в результате чего толщина шва может достигнуть 10-12 мм. В дальнейшем это приведет к возникновению «мостиков холода» и повлечет за собой значительные теплопотери.

Теплопроводность пеноблока

Такое свойство материала как теплопроводность можно считать одним из основных, пеноблок не является исключением. Это свойство показывает, как материал проводит тепло сквозь свою толщину при большой разности температур на разных поверхностях. Рассматриваемое свойство материала сначала исследуют, а затем определяют области строительства, которых можно применять исследуемый материал.

Теплопроводность величина зависима, прежде всего она зависит от плотности пенобетонных блоков, то есть из изменением плотности величина теплопроводности меняется. При увеличении плотности теплопроводность пеноблока уменьшается и наоборот.

Сам материал имеет небольшую теплопроводность, это связано с его структурой. Известно, что пенобетон состоит из большого количества пор, в которые заключён воздух, если его взять отдельно, то он имеет минимальную теплопроводность, всего 0,026 Вт/м оС. Такая величина теплопроводности достаточно мала, даже если сравнивать с керамзитобетоном. Как показывают исследования в отдельном пеноблоке имеется достаточно большой процент воздуха, поэтому и теплопроводность его небольшая.

Теплопроводность пеноблоков влияет на их свойства. Величину теплопроводности следует понимать так – чем она выше, тем хуже теплоизоляционные качества пеноблоков.

Теперь можно рассмотреть влияние плотности материала на его теплопроводность. Плотность пеноблока маркируется буквой Д, и измеряется в пределах от Д300 до Д1200. А сейчас рассмотрим теплопроводность материала при минимальной и максимальной плотности.

Если используется материал с плотностью Д300 то теплопроводность пеноблока составит 0,08 Вт/м ºС; при изменении теплопроводности до Д1200 теплопроводность изменится до 0,38 Вт/м ºС. Из этого следует сделать выводы, что изменение плотности в 4 раза понижает теплопроводность материала почти в 5 раз.

При создании проектов зданий ведётся учёт необходимого уровня теплоизоляции стен, поэтому в некоторых случаях нужно увеличить толщину стены или устроить дополнительное утепление.

Специалисты рекомендуют использовать пенобетон средней плотности, а конкретнее Д600 – он прочный и хорошо держит тепло. Толщина стены зависит от конкретного региона с его климатическими условиями. 

Теплопроводность пеноблока, от чего зависит, сравнение с кирпичом и минватой

Из-за разности температур воздуха внутри и снаружи помещения происходит перенос энергии через пеноблок. Такое явление присуще всем телам и получило название теплопроводности. Является одним из главных свойств и характеризует способность проводить тепло. Чем она меньше, тем лучше энергосберегающие показатели ограждающих конструкций строения (дом медленнее остывает и быстрее прогревается). Пенобетон имеет наименьшую термопроводность среди современных стройматериалов. Это обусловлено наличием в его внутренней структуре пор воздуха.

Оглавление:

  1. Измерение коэффициента
  2. На что влияет теплопроводность?
  3. Сравнение блока с минватой
  4. Характеристики кирпича

Способы испытаний

Теплопроводность пенобетона измеряют на пяти плоских образцах.

Методика:

  1. создание потока тепла;
  2. измерение температур на лицевой, тыльной поверхностях, теплового потока и толщины.

Коэффициент показывает, сколько энергии пропускает 1 м2 в единицу времени, его вычисляют по формуле:

λ = δ∙(Тл-Тт)/q, где:

  • δ — толщина образца;
  • Тл — температура лицевой стороны;
  • Тт — температура тыльной плоскости;
  • q — тепловой поток на 1 м2.

Термопроводность блоков пенобетона зависит от следующих основных факторов:

  • Плотность.
  • Состав компонентов.
  • Влажность.

Вид Марка Теплопроводность Вт/(м∙°C) в сухом состоянии, изготовленного на:
песке золе
Теплоизоляционный пенобетон D300-D500 0,08-0,12 0,08-0,10
Конструкционно-теплоизоляционный D600-D800 0,14-0,24 0,13-0,20
Конструкционный D1000-D1200 0,29-0,38 0,23-0,29

Чем меньше удельный вес, тем ниже коэффициент теплопроводности из-за значительного числа воздушных пор. Марки D300, D500 имеют самые лучшие теплозащитные свойства, но не получили распространения при строительстве бескаркасных домов вследствие низкой прочности. Такого недостатка нет у D600 и D700, которые наилучшим образом сочетают достаточную несущую способность и термопроводность. Но с целью сохранения теплопередачи может потребоваться увеличение ширины ограждающих конструкций, а D800 уже необходимо дополнительно утеплять. Более плотный пенобетон, как способ снижения термообмена, используют только с тепловой защитой.

Анализ теплопроводности разных марок пеноблоков, изготовленных на песке или золе, показывает большое влияние компонентов на этот показатель. Потери тепла в пенобетоне из золы меньше. Указанный эффект связан с её большим термическим сопротивлением. С повышением влажности термопроводность растёт и рекомендуется защищать отделкой наружные поверхности.

На что влияет?

От теплопроводности зависят поперечные размеры наружных стен возводимого дома. Её значения применяются для теплотехнических расчетов. Каждый застройщик может самостоятельно провести оценку требуемой ширины блока. Дополнительно потребуется величина нормативного сопротивления термоотдачи здания для региона застройки (Rreg), её берут из таблиц СниП. Искомая толщина стены (δ) вычисляется просто: δ= Rreg∙λ. Здесь λ — коэффициент теплопроводности, взятый из заводского сертификата. Для более точного расчета необходимо учитывать термопередачу кладочных швов, а также теплообмен между наружным и внутренним воздухом и плоскостью пеноблока.

Стройматериалы по функциональному назначению бывают:

  • Конструкционные (используются при создании каркаса сооружения).
  • Для утепления.

Первые характеризуются высокой термопроводностью — это тяжёлый бетон, армированный сталью. Лучше держит тепло кирпич, из утеплителей можно отметить минеральную вату. Пенобетон в зависимости от марки применяется как для создания несущих стен, так и для изоляции.

Сравнение с минватой

Минеральная вата относится к классу материалов, используемых при термоизоляции строений. Ее сопоставление правомерно проводить с блоками теплоизоляционного вида.

Наименование Теплопроводность, Вт/(м∙°C)
D300 0,08
D500 0,10-0,12
Каменная минвата 25-180 кг/ куб.м 0,037-0,04

Преимущества минеральной ваты:

  • Теплопроводность меньше в два раза. Это позволяет сделать размеры ограждающей конструкции более оптимальными с сохранением термообмена.
  • Удельный вес ниже в 1,7-12 раз — уменьшается вес утеплителя, его нагрузка на строение.

Недостатки:

  • Не имеет несущей способности — необходимо закреплять (пенобетон обладает достаточной прочностью).
  • Имеет склонность к осадке — увеличивается теплопередача сооружения.
  • В случае намокания растёт вес и увеличивается нагрузка на перекрытия, кровлю, повышается теплообмен.

Сравнение с кирпичом

Кирпич по составу бывает двух типов:

  • Керамический (производится из глины).
  • Силикатный (из кварцевого песка).

Определяющими термопроводность кирпича факторами являются:

  1. Плотность (чем больше, тем выше теплопроводность).
  2. Форма и размеры пустот (сквозные или глухие, щелевые или конические) позволяют снизить в 1,45-1,6 раза теплопередачу керамического по сравнению с полнотелым. Для силикатного эта зависимость слабее, термообмен практически не зависит от степени пустотелости.
  3. Влажность (увеличивает теплопередачу).

Сравнительный анализ показывает: потери тепла через пенобетон будут меньше.

Наименование Плотность, кг/м3 Теплопроводность, Вт/(м∙°C)
Пеноблок D600-D900 600-900 0,14-0,24
D1000-D1200 1000-1200 0,29-0,38
Керамический полнотелый кирпич 1600-1900 0,6-0,7
Красный пустотелый (13-50 %) 1300-1400 0,3-0,5
Силикатный полнотелый 1700-1900 0,65-0,88
Силикатный пустотелый (30 %) 1450-1550 0,56-,81


 

Теплопроводность пеноблока

Многих строителей, да и простых обывателей не имеющих опыта работы с пенобетоном, терзает вопрос: чем он так хорош, что буквально за последнюю пятилетку создал серьезную конкуренцию традиционным строительным материалам? Изучив состав пеноблока, ответ на него становится очевиден: пористая структура наделяет эту разновидность легкого бетона сочетанием качеств, значимость которых трудно переоценить. Исключением не стала и теплопроводность пеноблока, демонстрирующая уровень его возможности пропускать тепло.

Можно проследить закономерность зависимости коэффициента теплопроводности от величины его плотности, и соответственно от прочности, а секрет такого соотношения кроется в микропорах, составляющих основу бетонного тела. Так, блоки обладающие малой плотностью отличаются значительными размерами структурных ячеек, это обстоятельство не только увеличивает способность их к сохранению тепла, но и снижает стойкость к воздействию динамических нагрузок, а особо прочный пенобетон, хуже сохраняет тепло в здании и имеет большую плотность, влияющую на вес изделия.

Выбор плотности вспененного бетона

Конечно, в первую очередь нормируемое значение прочности и плотности пенобетонных изделий определяются проектными данными будущего здания. Если же все расчеты производятся самостоятельно, то при вычислении теплопроводности стен учитываются следующие нормативные показатели:

  1. Значения теплотехнических параметров всех изделий и материалов, используемых при возведении здания.
  2. Сопротивление передачи тепла самого сооружения.
  3. Показатель градусосуток района строительства, его значение можно узнать из СНиПа 2-3-79.

После выявления этих параметров, следует простой математический расчет, заключающийся в суммировании величин сопротивления теплопередачи всех слоев несущей стены.

Как правило, постройка дома из пеноблоков, высота которого не превышает 3-х этажей, оптимальным вариантом будет качественный блок, обладающий плотностью D800. Стены, выполненные из них, обладают достаточным пределом прочности, чтобы выдержать нагрузки бетонной или монолитной плиты перекрытия, но только при обязательном устройстве армопояса. Если же предполагается перекрытие из дерева, то дополнительное усиление не понадобится. Еще одна вариация их применения при возведении надежного и теплого здания, является возложение функций несущего материала на кирпич, а для утепления берут пенобетонные блоки малой плотности.

Преимущества перед другим материалом

Дабы убрать оставшуюся долю сомнений о качестве выбора пенобетона на роль основного материала, стоит еще раз пересмотреть сравнительные преимущества этих изделий над другими материалами.

Дерево

В сравнении с деревом, у него намного выше прочность и ниже себестоимость, к тому же он выделяется отличной огнестойкостью, что нельзя сказать даже об обработанной специальными противопожарными веществами древесине. Уровень комфортабельности и экологичность пеноблочного строения не уступают зданию, построенному из дерева, при этом их на много проще монтировать.

Кирпич

По всем параметрам, за исключением прочности, обычный кирпич уступает пенобетону, именно поэтому при возведении зданий, высотностью более 3 этажей, предпочтение отдается кирпичу, а теплоизоляционными пеноблокам устраивается утепление. Такой вариант является самым качественным и экономичным, при строительстве многоэтажных зданий.

Газоблок

Газобетон хоть и хороший стеновой материал, но все-таки в его арсенале имеются серьезные отрицательные характеристики, он наиболее чувствителен к продолжительному воздействию воды. Поэтому для устройства гидроизоляции применяются дорогостоящие материалы, а для зданий с очень высоким уровнем влажности таких как бани, котельные, бассейны — газоблок категорически не рекомендуется, также у стен, возведенных из такого материала, присутствуют «мостики холода». Плюс ко всему, пеноблоки не такие вредные для окружающей среды, нежели газобетон.

Шлакоблок

Несмотря на то, что шлакоблок намного дешевле пеноблока, применять их в строительстве менее целесообразно, нежели ячеистые вспененные блоки. Во – первых, пенобетонные изделия имеют больший пространственный объем и меньшую плотность, следовательно блоки изготовленные из пенобетонной смеси в разы легче и экономичнее в плане расходов на кладочный раствор. Поэтому укладывать и перевозить их на много легче и быстрее, нежели шлакоблоки, во-вторых, ячеистые изделия имеют лучший показатель теплопроводности, чем шлакоблок, а вот прочность практически одинакова у обеих разновидностей.

Вывод

Отдавая предпочтение пеноблоку, хорошо изучите его качественные показатели для каждой плотности, и уже исходя из этих значений и из показателей погодных условий вычисляйте толщину стен и уровень теплопроводности здания. Неправильные расчеты могут привести к промерзанию строения, что выразится в больших затратах на отоплении здания.

Удачной стройки!

Теплопроводность кирпича и пеноблока

Теплопроводность блоков из пенобетона

Одной из наиболее важных характеристик любого строительного материала является его теплопроводность. Данный показатель говорит о способности отдавать тепло. Чем выше значение коэффициента теплопроводности, тем быстрее будет уходить тепло из дома или любой другой постройки зимой и тем быстрее будет нагреваться здание летом.

При изготовлении пеноблока в смесь из воды, песка и цемента добавляется специальный пенообразователь. Благодаря этому блоки из пенобетона имеют пористую структуру. На следующем фото вы можете увидеть, как выгладит блок внутри. В распределенных равномерно по всему объему порах находится воздух, который имеет достаточно низкий показатель теплопроводности. Именно этим и объясняется способность пенобетона удерживать тепло.

Если сравнивать данный показатель у нескольких строительных материалов, ячеистый бетон значительно превосходит обычный бетон, кирпич, и лишь немного уступает дереву. Низкий коэффициент теплопроводности пеноблока, его сравнительно невысокая стоимость, прочность и долговечность вывели его на одну из лидирующих позиций по использованию в строительстве.

  • ·Конструкционно-теплоизоляционные. Они имеют среднюю плотность и чаще всего применяются для кладки стен и перегородок. В группу входят следующие марки: Д600, Д700, Д800, Д1000. Данная группа является наиболее востребованной на рынке строительных материалов, так как сочетает в себе достаточно высокую прочность и способность удерживать тепло.
  • ·Теплоизоляционные. Данный вид наименее прочен и используется только для утепления здания. К группе относят блоки с маркировкой Д400, Д500.

Ниже находится таблица, в которой все марки пенобетона распределены по группам предназначения и указан класс прочности и аналогичная маркировка бетона.

Зависимость сопротивления теплопередаче от плотности бетона

Для обозначения способности материала проводить тепло применяется коэффициент теплопроводности. Данная величина является относительной и указывает на количество тепла, способное пройти в течение 1 часа через материал, который имеет толщину 1 метр, площадь 1 кв. м при разнице температуры по обеим сторонам в 1° С.

Теплопроводность пеноблока напрямую зависит от его плотности. Чем выше плотность раствора, тем меньше в нем количество наполненных воздухом пор и их диаметр.

У конструкционных видов пенобетона способность проводить тепло самая высокая и составляет от 0,38 до 0,26. Конструкционно-теплоизоляционные марки имеют следующие коэффициенты: у Д1000 данный показатель находится в пределах 0,23-0,29, у Д800 – 0,18-0,22, Д700 имеет коэффициент в пределах 0,16-0,18, а теплопроводность пеноблока Д600 составляет 0,13-0,14. Теплоизоляционные марки блоков имеют следующие характеристики: теплопроводность пеноблока Д500 находится в пределах 0,10-0,12, Д400 – 0,09-0,10, а Д300 — 0,8.

Сравнение теплопроводности пеноблока разных марок и видов приведено в таблице, размещенной ниже.

Разница величины коээфициента у одной и той же марки пенобетона может зависеть от того, какие составляющие применялись для замешивания бетона. Так, например, если в составе блоков Д500 будет песок, значение коэффициента будет равно 0,12, если же в смесь была добавлена зола, показатель уменьшится до 0,10. Чем выше марка вспененной бетонной смеси, тем разница в коэффициентах будет выше. Если для Д600 отличие будет составлять всего 0,2, то у Д1200 разница может доходить до 0,9. Поэтому при покупке данного строительного материала следует обращать внимание не только на маркировку, но и на состав смеси.

Таблица теплопроводности пеноблоков с сравнением показателей в зависимости от составляющих, которые были использованы для замешивания раствора, приведена ниже.

Расчет теплопроводности стен из пенобетона

Чтобы дом имел необходимые характеристики теплопроводности, пеноблоки разной плотности следует укладывать на различную толщину. Рассчитать оптимальную толщину стены можно следующим образом.

Следует определиться с тем, при помощи чего будет проводиться возведение стен. Чаще всего применяется два варианта: кирпич-блок-штукатурка и оштукатуренный с двух сторон блок.

Чтобы провести расчеты следует знать коэффициенты теплопередачи материалов, которые будут входить в состав стены (кирпич – 0,56, штукатурка — 0,58, блоки определяем по таблице) и коэффициент сопротивления стен теплопередаче (как правило, среднее значение равно 3,5). Из общего значения 3,5 необходимо вычесть значение сопротивления теплопередаче 20 мм штукатурки (0,02:0,58 = 0,03) и 120 мм кирпича (0,12: 0,56 = 0,21) для первого варианта или 40 мм штукатурки (0,04:0,58 = 0,06) для второго варианта исполнения.

В первом случае, при использовании кирпича, бетонная стена должна обеспечить сопротивление теплопередаче на уровне 3,26. При использовании марки Д600 толщина ее будет составлять 456 мм (3,26*0,14 = 456), в случае использования Д800 следует выложить стену толщиной не менее 684 мм (3,26*0,21 = 684). По этой же формуле можно рассчитывать стены с использованием любой марки ячеистого бетона.

Для варианта стены, оштукатуренной с двух сторон, из значения 3,5 отнимаем 0,06 (40 мм штукатурки) и далее проводим расчеты для нужной марки бетона согласно таблице, в которой проведено сравнение показателей теплопроводности.

Не будет большим преувеличением утверждение, что в современных условиях использование пенобетона считается преобладающим в индивидуальном строительстве. И востребованность этого относительно нового для отечественного рынка строительного материала обусловлена не только фактором стоимости. Его технические характеристики по многим параметрам оказались намного лучше традиционного кирпича и классического бетона/железобетона.

Правда, если говорить исключительно о цене, то доступность данного стройматериала стала возможной благодаря появлению новых технологий его изготовления. В действительности он известен более столетия, но до недавнего времени пенобетон был непопулярен именно по причине недоступной стоимости.

Сфера применения

На западе пенобетон активно используется на протяжении нескольких десятилетий, у нас же он появился сравнительно недавно, но уже успел приобрести отличную репутацию как достойная альтернатива классическим стройматериалам. Единственным значимым недостатком можно считать меньшую прочность, поэтому в многоэтажном строительстве бетон и кирпич остаются вне конкуренции.

Рекомендуется применять пенобетон при строительстве дома не выше двух этажей

Применение комбинации «бетонный каркас + пеноблоки» предоставляет возможность возводить здания высотой более двух этажей, но такой вариант встречается редко. Основная же сфера использования пенобетона – малоэтажное строительство: дома, гаражи, подсобные помещения, здания коммерческого и промышленного назначения.

Технология изготовления пенобетона

Представляя собой ячеистую разновидность классического бетона, этот стройматериал изготавливается из следующих компонентов:

  • цемента;
  • воды;
  • песка;
  • синтетического пенообразователя;
  • добавок, улучшающих эксплуатационные свойства материала.

В настоящее время используется три технологии изготовления пенобетона.

Классический метод предполагает подачу пены в цементный раствор с помощью специального устройства – пеногенератора. Полученная смесь тщательно перемешивается, затем для затвердевания помещается в специальную камеру, обеспечивающую заданную температуру. На выходе получается ячеистый бетон, который считается наиболее качественным, надежным, долговечным.

Для создания пенобетона в домашних условиях, вам придется сильно потратится на необходимое оборудование, а так же это займет не мало времени

При использовании метода сухой минерализации пена добавляется в сухую смесь, и только после тщательного размешивания вводится вода в нужных пропорциях. Обычно такой способ применяется при непрерывном производстве. Ячеистый бетон, полученный таким способом, отличается большей прочностью, но характеристики теплопроводности уступают.

Метод баротехнологии характерен тем, что пенообразователь сначала смешивается с водой, и только потом в полученную смесь добавляют остальные компоненты. Чтобы получить пеноблоки приемлемого качества, используют барокамеры, которые обеспечивают процесс смешивания при избыточном давлении. Процесс затвердения не требует нагрева, но в целом длится намного дольше, при этом не исключена усадка и даже растрескивание материала.

Независимо от используемого метода изготовления каждый отдельный блок характеризуется замкнутой структурой воздушных пор, что и обеспечивает его прекрасные теплоизоляционные свойства.

Основные характеристики ячеистого бетона

В зависимости от плотности различают следующие марки пенобетона:

  • Теплоизоляционный ячеистый бетон представлен марками D300-D500. Невысокая плотность (порядка 300-500 кг/кубический метр) обеспечивает блоки стандартных размеров небольшой массой (12-19 кг) и низкой теплопроводностью. Поскольку прочность таких пеноблоков невысока, они используются исключительно для формирования теплоизоляционного слоя;

Таблица сравнения пенобетона с остальными материалами

  • Конструкционно-теплоизоляционный пенобетон (марки D600-800), обладая соответствующей плотностью и весом блока в пределах 25-35 кг, характеризуется оптимальным соотношением прочности-теплопроводности, поэтому именно эта марка – преобладающая при ведении малоэтажного строительства;
  • Конструкционный ячеистый бетон – это блоки марок D900-1200, характеризующиеся весом 40-47 кг и плотностью 900-1200 кг/кубометр. Они в меру прочны и устойчивы к сжатию, поэтому (с определенными ограничениями) могут применяться при многоэтажном строительстве, требуя дополнительного слоя утепления;
  • Конструкционно-поризованные пеноблоки (марки D1300-1600) отличаются высокой прочностью, позволяющей возводить объекты неограниченной этажности, но в промышленных масштабах они не изготовляется.

Теплопроводность

Второй по значимости характеристикой стройматериала является его способность проводить тепло. При этом теплопроводность пенобетона связана обратно пропорциональной зависимостью с его прочностными показателями.

Воздух – эффективнейший природный теплоизоляционный материал. Присутствие в структуре пенобетонного блока большого количества заполненных воздухом пор позволило снизить его теплопроводность до уровня 0.08 Вт/м°С, что на порядок ниже, чем у бетона или кирпича.

Ключевым фактором при выборе материала есть – теплопроводность

Для рядового пользователя этот цифровой показатель мало о чем говорит, поэтому приведем сравнительные характеристики пенобетона, керамического кирпича и шлакоблоков: чтобы получить стену, имеющую теплопроводность порядка 0.18 Вт/м°С, необходим слой пенобетона марки D700 толщиной 300 мм. Для шлакоблоков толщина стены составит уже 1080 мм, для красного кирпича – 1400 мм.

Прочность на сжатие

Прочностные характеристики оказывают непосредственное влияние на сферу применения ячеистого бетона. Если теплоизоляционные марки пенобетона, обладая невысокой прочностью на сжатие и низкой теплопроводностью, используются только в качестве теплоизоляционного слоя, то конструкционно-теплоизоляционные блоки отличаются достаточной прочностью, чтобы выдерживать плиты и балки перекрытия малоэтажных строений, а конструкционные можно использовать при возведении многоэтажных зданий.

Сравнительная таблица различных марок пенобетона

Прочность на сжатие марок пеноблоков (кг/кв. см):

  • D400 – 9;
  • D500 – 13;
  • D600 – 16;
  • D700 – 24;
  • D800 – 27;
  • D900 – 35;
  • D1000 – 50;
  • D1100 – 64;
  • D1200 – 90.

Не менее важным свойством ячеистого бетона считается наличие внутренних пустот и точность соблюдения геометрических размеров блоков. От последнего параметра зависит расход кладочного раствора: при использовании неровных блоков толщину шва приходится увеличивать с 3 до 10 мм, что приводит к появлению «мостиков холода» и снижению энергоэффективности конструкции.

Достоинства и недостатки пенобетона

Как и любой другой строительный материал, ячеистый бетон нельзя назвать универсальным. Тем не менее, перечень его достоинств выглядит внушительно:

  • Долговечность. Срок службы здания, стены которого выстроены из блоков ячеистого бетона, составляет минимум 35 лет.

  • Теплоизоляционные свойства. Теплопроводность пеноблоков – порядка 0.08-0.20 Вт/м°С предоставляет возможность снизить теплопотери на 30% по сравнению с кирпичным зданием. При этом в жаркое время года такая стена не будет нагреваться, формируя внутри помещения микроклимат, сравнимый по комфортности с деревянным строением.
  • Экологичность, звукоизоляционные характеристики. Поскольку пеноблоки производятся из материалов естественного происхождения, они не гниют, не подвергаются воздействию грибков и плесени, уступая по экологичности только дереву. Звукоизоляционные свойства пенобетона также на высоте, позволяя обеспечить надежную защиту от любых внешних фоновых источников шума.
  • Простота монтажа. Габариты блоков и их малый вес существенно упрощают возведение зданий, снижая временные потери и трудозатраты. Пеноблоки легко поддаются механической обработке, что обеспечивает формирование конструкций любой формы.
  • Экономичность. Отличаясь малым весом и большими размерами, пеноблоки дешевле транспортировать, они требуют использования гораздо меньшего количества кладочного раствора.
  • Эстетичность. Пенобетон – прекрасный стройматериал для формирования разнообразных архитектурных элементов: арок, колонн, порталов. Благодаря большим размерам не требуется приложения больших усилий, чтобы добиться идеальной ровности стен, чего не скажешь о кирпичной кладке.

Единственным недостатком вспененного ячеистого бетона можно назвать его относительно невысокую прочность, что при малоэтажном строительстве не далеко не решающий фактор.

Теплопроводность блоков из пенобетона

Из-за разности температур воздуха внутри и снаружи помещения происходит перенос энергии через пеноблок. Такое явление присуще всем телам и получило название теплопроводности. Является одним из главных свойств и характеризует способность проводить тепло. Чем она меньше, тем лучше энергосберегающие показатели ограждающих конструкций строения (дом медленнее остывает и быстрее прогревается). Пенобетон имеет наименьшую термопроводность среди современных стройматериалов. Это обусловлено наличием в его внутренней структуре пор воздуха.

Теплопроводность пенобетона измеряют на пяти плоских образцах.

Коэффициент показывает, сколько энергии пропускает 1 м2 в единицу времени, его вычисляют по формуле:

  • δ толщина образца,
  • Тл температура лицевой стороны,
  • Тт температура тыльной плоскости,
  • q тепловой поток на 1 м2.

Термопроводность блоков пенобетона зависит от следующих основных факторов:

Вид Марка Теплопроводность Вт/(м∙°C) в сухом состоянии, изготовленного на:
песке золе
Теплоизоляционный пенобетон D300-D500 0,08-0,12 0,08-0,10
Конструкционно-теплоизоляционный D600-D800 0,14-0,24 0,13-0,20
Конструкционный D1000-D1200 0,29-0,38 0,23-0,29

Чем меньше удельный вес, тем ниже коэффициент теплопроводности из-за значительного числа воздушных пор. Марки D300, D500 имеют самые лучшие теплозащитные свойства, но не получили распространения при строительстве бескаркасных домов вследствие низкой прочности. Такого недостатка нет у D600 и D700, которые наилучшим образом сочетают достаточную несущую способность и термопроводность. Но с целью сохранения теплопередачи может потребоваться увеличение ширины ограждающих конструкций, а D800 уже необходимо дополнительно утеплять. Более плотный пенобетон, как способ снижения термообмена, используют только с тепловой защитой.

Анализ теплопроводности разных марок пеноблоков, изготовленных на песке или золе, показывает большое влияние компонентов на этот показатель. Потери тепла в пенобетоне из золы меньше. Указанный эффект связан с её большим термическим сопротивлением. С повышением влажности термопроводность растёт и рекомендуется защищать отделкой наружные поверхности.

На что влияет?

От теплопроводности зависят поперечные размеры наружных стен возводимого дома. Её значения применяются для теплотехнических расчетов. Каждый застройщик может самостоятельно провести оценку требуемой ширины блока. Дополнительно потребуется величина нормативного сопротивления термоотдачи здания для региона застройки (Rreg), её берут из таблиц СниП. Искомая толщина стены (δ) вычисляется просто: δ= Rreg∙λ. Здесь λ коэффициент теплопроводности, взятый из заводского сертификата. Для более точного расчета необходимо учитывать термопередачу кладочных швов, а также теплообмен между наружным и внутренним воздухом и плоскостью пеноблока.

Стройматериалы по функциональному назначению бывают:

  • Конструкционные (используются при создании каркаса сооружения).
  • Для утепления.

Первые характеризуются высокой термопроводностью это тяжёлый бетон, армированный сталью. Лучше держит тепло кирпич, из утеплителей можно отметить минеральную вату. Пенобетон в зависимости от марки применяется как для создания несущих стен, так и для изоляции.

Сравнение с минватой

Минеральная вата относится к классу материалов, используемых при термоизоляции строений. Ее сопоставление правомерно проводить с блоками теплоизоляционного вида.

Наименование Теплопроводность, Вт/(м∙°C)
D300 0,08
D500 0,10-0,12
Каменная минвата 25-180 кг/ куб.м 0,037-0,04

Преимущества минеральной ваты:

  • Теплопроводность меньше в два раза. Это позволяет сделать размеры ограждающей конструкции более оптимальными с сохранением термообмена.
  • Удельный вес ниже в 1,7-12 раз уменьшается вес утеплителя, его нагрузка на строение.
  • Не имеет несущей способности необходимо закреплять (пенобетон обладает достаточной прочностью).
  • Имеет склонность к осадке увеличивается теплопередача сооружения.
  • В случае намокания растёт вес и увеличивается нагрузка на перекрытия, кровлю, повышается теплообмен.

Сравнение с кирпичом

Кирпич по составу бывает двух типов:

  • Керамический (производится из глины).
  • Силикатный (из кварцевого песка).

Определяющими термопроводность кирпича факторами являются:

Сравнительный анализ показывает: потери тепла через пенобетон будут меньше.

Теплопроводность разных видов пеноблока

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материала Марка (средняя плотность) Коэффициент теплопроводности Вт/м°С
На песке На золе
Теплоизоляционный пеноблок D 300 0.08 0.08
D 400 0.10 0.09
D 500 0.12 0.12
Конструкционно-теплоизоляционный пеноблок D 500 0.12 0.12
D 600 0.14 0.13
D 700 0.18 0.15
D 800 0.21 0.18
D 900 0.24 0.20
Конструкционный пеноблок D 1000 0.29 0.23
D 1100 0.34 0.26
D 1200 0.38 0.29
Штукатурка 058
Кирпич 0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:

  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

Теплопроводность - ERG Aerospace

Общая теплопроводность Ctotal пенопласта с открытыми ячейками фактически состоит из четырех компонентов, как указано ниже:

Ctotal = Csolid связок + Cgas + Cgas конвекция + Cradiant
Где
Csolid связок = проводимость трехмерного массива твердых связок или распорок, образующих структуру пены. Этот термин также часто называют «объемной теплопроводностью» пены. В большинстве применений, особенно для металлических пен, используемых в качестве теплообменников, это самый большой в количественном отношении и наиболее термически доминирующий из четырех компонентов и имеет следующую упрощенную форму уравнения:

Csolid связок = Csolid × относительная плотность ×.33

Где
Csolid связок = прямая теплопроводность или объемная проводимость массива связок
Csolid = проводимость твердого материала подкосов
Relative Density =% относительной плотности в десятичной форме, т.е. 10% = 0,1
0,33 = коэффициент, представляющий геометрическая структура пены или фактор «извилистости».

Следует отметить, что коэффициент 0,33 получен как из испытаний на проводимость, так и из концептуального анализа, в котором пену можно сравнить с трехмерной ортогональной решеткой штифтовых ребер.В этом случае очевидно, что одна треть штифтов или их массы ориентирована в каждом из ортогональных направлений x, y и z.

Следует также отметить, что это уравнение несколько упрощено, но является достаточно точным, немного консервативным и его легче понять с концептуальной точки зрения, чем некоторые эмпирические уравнения, разработанные на основе различных тестов.

Cgas = объемная проводимость любого газа, содержащегося в пене с открытыми порами. Обычно он вносит небольшой вклад в металлические пены, но может вносить значительный вклад в углеродные или керамические пены, которые по своей природе имеют низкую проводимость связочного материала.См. Диаграмму проводимости угольной пены (RVC), чтобы увидеть типичный пример этого эффекта.

Cгазовая конвекция = проводимость любого газа, содержащегося внутри ячеек и который может циркулировать внутри пены или внутри отдельных ячеек пены. Опять же, это также небольшой вклад для металлических пен, но может стать значительным при работе с углеродными или керамическими пенами, используемыми в качестве изоляции. В таких случаях пеноматериалы с малым размером пор 80–100 PPI используются для подавления этого эффекта, просто увеличивая удельную поверхность пенопласта и падение давления газового потока до точки, при которой конвективный поток эффективно предотвращается.

Cradiant = инфракрасное электромагнитное излучение, которое проходит через открытые отверстия пены. Этот элемент проводимости важен только при очень высоких температурах и обычно не играет роли, если пена не используется в качестве высокотемпературной изоляции. В таких случаях обычно используется пена с наименьшим размером пор, чтобы уменьшить коэффициент обзора и увеличить оптическую непрозрачность пены.

Какова теплопроводность полиуретана?

Теплопроводность - это физическое свойство, которое проявляется в любом материале, включая полиуретан, и оно измеряет способность теплопроводности через него, или, другими словами, перенос тепловой энергии через тело.Это движение энергии создается разностью температур , поскольку, согласно второму закону термодинамики, тепло всегда течет в направлении самой низкой температуры.

Когда изолирует здание , важно знать теплопроводность используемых материалов, поскольку от этого будет зависеть их энергоэффективность и тепловой комфорт . Например, металлы имеют более высокую теплопроводность, чем дерево, но изоляционные материалы, такие как стекловолокно или полиуретан, имеют более низкую теплопроводность.

Значение теплопроводности в утеплении зданий

Поведение теплоизоляции является ключом к достижению целей Европейского Союза по энергосбережению на 2020 год. . Как в одноэтажных, так и в многоэтажных зданиях материалы, из которых изготовлено ограждение, определяют потребление энергии. Следовательно, если мы хотим, чтобы улучшило энергоэффективность зданий , одним из физических свойств, которые будут определять, является ли материал хорошей теплоизоляцией или нет, является теплопроводность.

Если вы сравните теплопроводность основных материалов, используемых в строительстве , вы можете проверить, как, в зависимости от выбора материалов, уровень теплопроводности будет напрямую влиять на теплоизоляцию дома . Например, традиционные материалы, такие как кирпич, древесная стружка или бетон, имеют более высокий уровень теплопроводности, чем изоляционные материалы, такие как полиуретан или полистирол.

Материал

Теплопроводность

Кирпич

0.49-0.87 км / Вт

Бетонный блок

0-35-0.79 км / Вт

Пенополистирол

0,031-0,050 км / Вт

Экструдированный полистирол

0,029-0,033 км / Вт

Полиуретановые системы

0,022-0,028 км / Вт

Минеральная вата

0.031-0.045 км / Вт

Вспученный перлит

0,040-0,060 км / Вт

Древесная щепа

0,038-0,107 км / Вт

Теплопроводность полиуретана

Полиуретановые системы являются одними из материалов на рынке, которые обеспечивают лучшую теплоизоляцию при минимальной толщине . Эта характеристика возможна благодаря низкой теплопроводности полиуретана, так как хотя различия в уровнях теплопроводности между полистиролом (экструдированным и вспененным), минеральной ватой и полиуретановыми системами составляют лишь несколько десятых доли бумаги при применении в работе, такие десятичные знаки могут означать разницу в толщине на 3-4 см, чем для достижения такой же энергетической эффективности конверта.

Кроме того, полиуретановые системы (литьевые, напыленные или пластинчатые) являются оптимальным решением для теплоизоляции зданий. Помимо низкой теплопроводности, они также обеспечивают хорошее уплотнение оболочки, предотвращая проникновение воздуха и токов, возникающих в ее пустых пространствах. Это важно, потому что, если бы эти токи не были уменьшены, теплопроводность полиуретана перестала бы быть такой эффективной.

Эффективная теплопроводность пенополиуретана с открытыми порами на основе теории фракталов

На основе теории фракталов проиллюстрирована геометрическая структура внутри пенополиуретана с открытыми порами, который широко используется в качестве адиабатического материала.Создана упрощенная клеточная фрактальная модель. В модели описывается метод расчета эквивалентной теплопроводности пористой пены и вычисляется фрактальная размерность. Выводятся математические формулы для фрактальной эквивалентной теплопроводности в сочетании с газом и твердой фазой, для эквивалентной теплопроводности теплового излучения и для полной теплопроводности. Однако полный эффективный тепловой поток складывается из теплопроводности твердой фазы и газа в порах, излучения и конвекции между газом и твердой фазой.Получено фрактальное математическое уравнение эффективной теплопроводности с учетом фрактальной размерности и вакансионной пористости в теле ячейки. Результаты расчетов хорошо согласуются с экспериментальными данными, разница составляет менее 5%. Обобщены основные влияющие факторы. Исследовательская работа полезна для улучшения адиабатических характеристик пеноматериалов и разработки новых материалов.

1. Введение

Благодаря выдающимся адиабатическим характеристикам пенополиуретан с открытыми ячейками, малой плотностью и низкой теплопроводностью (0.018 ~ 0,032200 Вт / (м · К)), применяется в различных областях, таких как строительство, холодильные камеры для пищевых продуктов и перевозки грузов в холодильнике, для сохранения тепла. Неправильная геометрическая конструкция пенополиуретана с открытыми порами делает его нестандартным по физическим свойствам. И это затрудняет теоретические исследования, особенно в отношении точных тепловых характеристик. На самом деле, теплопроводность адиабатических материалов можно измерить с помощью пластинчатого термозащитного устройства, но это неудобно для научных исследований и разработки пенополиуретана.Анализ и оценка эффективной теплопроводности пористой среды в течение длительного времени представляли собой масштабный исследовательский проект для теплофизической инженерии и гилологии [1]. Хотя в качестве исследовательского проекта для расчета теплопроводности используется пенопластовый материал пористой среды, он всегда считается соединяющей виртуальной средой в крупномасштабном пространстве, то есть «средним объемом» в геометрическом распределении. Уитакер [2, 3] и Уитакер и Чоу [4] использовали метод виртуального «среднего объема» для описания процедуры тепломассопереноса внутри пористой среды.Считалось, что пористая среда объединена с твердофазным материалом, жидкостью и газом. Газовая фаза содержит сухой воздух и пар. Предположили, что все фазы в пористой среде представляют собой тепловые балансы, а размеры пор соответствуют «среднему объему» - дюжине переменных, входящих в математическую формулу. Yu et al. [5, 6] также экспериментально исследовали их физическую модель связи и диффузии и вывели соответствующую математическую формулу.

В настоящее время существует два основных метода оценки теплопроводности материалов пористой среды.Во-первых, теплопроводность описывается как сложные математические функции пропорцией пор и параметрами микроструктуры. Лагард [7] вывел эквивалентную эффективную функцию теплопроводности насыщенных пористых материалов. Эквивалентная эффективная теплопроводность получается из где - теплопроводность жидкой фазы (), а - теплопроводность твердой фазы ().

Здесь было высказано предположение, что тепловые потоки через флюид в поре и через твердую фазу пористого тела индивидуальны и происходят одновременно.Однако теплообмен также происходил между жидкой фазой и твердой фазой одновременно. Таким образом, реальная модель была более сложной, чем выражение в (1). Поэтому Уильямс и Доу [8] разработали функцию следующим образом: где. Фактор - это отношение, которое тепловой поток передает вместе с градиентами температуры к общему тепловому потоку, в то время как является фактором отсутствия соединения твердое тело-твердое тело и для существования соединения твердое тело-твердое тело и соединения твердое тело-жидкость.

Фактически, в микропространственной структуре материалов пористой среды существование идеального равномерного распределения пор в пористом теле невозможно. Таким образом, существует большая ошибка между упомянутой выше идеальной моделью и реальным телом. Доступные идеальные модели и эмпирические уравнения для пенопластовых теплоизоляционных материалов обычно связаны только с пропорцией пор, которая является приблизительным отражением кажущейся теплопроводности в макропространстве. Но для реального вспененного материала с неравномерным распределением пор имеющиеся идеальные модели и эмпирические уравнения не относятся к микроструктуре и не могут раскрыть фактическую процедуру тепломассопереноса и распределение температуры и влажности.В результате большая ошибка - наличие в исследовательской работе.

Другой метод связан с теорией фракталов. Теория фракталов, внедренная в оценочные и исследовательские работы по расчету теплопроводности пористых пеноматериалов, представляет собой новый путь развития теории тепловых характеристик материалов пористой среды. Теория фракталов была впервые выдвинута в 1975 году Мандельбротом, профессором Гарвардского университета в США. Некоторые эксперты, такие как Питчумани [9], Ю и Ли [5], а также Ма и др.[6], провели глубокие исследования эффективной теплопроводности гранулированной пористой среды с помощью теории фракталов и создали соответствующие математические уравнения. Основываясь на теории фракталов, Thovert et al. [10], Zhang et al. В [11] и др. Разработаны теоретические модели для расчета эффективной теплопроводности неоднородной пористой среды. Согласно концепции модели ковра Серпинского, Пичумани и Рамакришнан [12, 13] создали теоретическую модель распределения пор, но модель и математические уравнения были очень сложными во фрактальной размерности.Ma et al. [6] построили математическую модель эффективной теплопроводности для пористой среды в соответствии с теорией фракталов, которая показала, что теплопроводность пористой среды зависит от соотношения пор, соотношения площадей, соотношения теплопроводности в компонентах и ​​теплопроводности. контактное сопротивление все вместе. Это не имело ничего общего с эмпирическими константами и меньшим количеством параметров и просто вычислялось по формуле. Однако разные пористые среды не совпадают друг с другом по внутренней фрактальной сущности.Кроме того, на практике сложно оценить термическое контактное сопротивление пористой среды. Универсальность модели еще требует дополнительной проверки. Thovert et al. [10] осветили фрактальную пористую среду с помощью перколяционной математической модели и выполнили решение с помощью геометрической итерации. После этого Адлер, Товерт и Томпсон добавили эмпирические константы, полученные в результате экспериментов, в функцию Адлера. И функция обычно описывается как где - теплопроводность жидкости в порах пористого материала ().А верхний индекс здесь определяется как: где фактор фрактальной размерности = 2.5–2.85, а спектральная размерность используется для описания процедуры перколяции в порах.

Яншэн [14], основанный на теории перколяции, установил взаимосвязь между диаметром пор в различных зернистых материалах и теплопроводностью. Но пористость пор, фрактальная размерность и микроструктура в модели не участвуют. Пичумани и Яо [15] рассчитали поперечные и продольные фрактальные измерения для освещения микроструктуры волокнистых материалов, а коэффициент теплопроводности был получен на основе традиционной теории теплопередачи.Но модель хорошо работает только с некоторыми волокнистыми пористыми материалами.

Итак, построить теоретически математическую модель эффективной теплопроводности, универсальную для пористой среды, значительно затруднительно. Следовательно, создание математической модели теплопроводности для одной определенной пористой среды, отражающей ее структурную характеристику во внутреннем мире, является важным развивающимся направлением для исследований пористой среды.

2. Микроструктуры пенополиуретана с открытыми порами и описание фрактала
2.1. Микроструктуры

Полиуретан с открытыми ячейками состоит из твердых субстратов и ячеек. Под действием пенообразователя и агента открытия ячеек образуется большое количество ячеек, которые непрерывно распределяются внутри материала. Ячейки соединяются друг с другом бок о бок, и газ в порах может свободно течь через одну ячейку в другую. Это действительно преимущество для удаления пенообразователя и паров, скопившихся в порах. Между тем газ в порах может быть легко вытеснен прочным соединением ячеек.Твердая подложка из полиуретана с открытыми порами имеет определенную прочность, чтобы поддерживать материал и предотвращать сжатие в вакууме. Таким образом, пенополиуретан с открытой структурой ячеек может широко использоваться в качестве основного материала вакуумной изоляционной панели.

Микроструктура полиуретана с открытыми ячейками, состоящая из каркаса твердой подложки (белая часть на рисунке) и ячеек (черная часть на рисунке), показана на рисунке 1 (полученном с помощью электронной микроскопии). Ячейки обычно имеют кубическую форму в пространстве и непрерывно распределены в плоскости сечения, размеры отверстий находятся в диапазоне 140–220 м, а длина среднего каркаса составляет 125 м.Размеры ячеек различны, а распределение случайное и неравномерное.


2.2. Описание фрактала

Теория фракталов с момента своего зарождения вызвала интерес многих ученых благодаря своим уникальным преимуществам исследования нерегулярных и сложных геометрических объектов и успеху в решении многих задач геометрии, физики, геологии, гилологии и т. Д. на. Между тем, различные проблемы в научных дисциплинах также способствовали развитию теории фракталов.Теория фракталов - это эффективный подход к описанию нелинейных явлений в природе, сложных геометрических структур, внутренних объектов и пространственного распределения. Теория фракталов впервые провела исследование нелинейных сложных систем и проанализировала внутренние законы изучаемых предметов, которые не были упрощенными и абстрактными. В этом существенное отличие теории фракталов от линейного пути. Два предмета можно рассматривать как самоподобие, при этом значения фрактальной размерности равны согласно теории фракталов.Эксперты и исследователи построили различные фрактальные модели для материалов пористой среды, а многие исследователи применяют такие известные модели, как модель ковра Серпинского, модель губки Менгера и модель кривой Коха. Однако материалы почти пористой среды по своей природе не совпадают с упомянутыми выше моделями. Они не являются строгим подобием, но похожи по математическому расчету.

Согласно теории фракталов, это самоподобное масштабное соотношение между метрической мерой объектов и физической величиной, существующей в размерном евклидовом пространстве, включая площадь и объем, или длину пористого фрактала [16]:

Для одного фрактального тела значение фрактальной размерности находится в диапазоне от 2 до 3.Но для полиуретана с открытыми порами микроструктуры диаметры пор разные. Структура нерегулярная, а распределение случайное. Для пенополиуретана с открытыми порами наибольший размер пор ячеек = 220 мкм, а наименьший -; и, предполагая длину такта для шага, объем ячейки V может быть описан следующим образом:

На основании теории фракталов, распределение ячеек статистически автомодельно для пенополиуретана с открытыми ячейками.Уравнение (6) можно заменить следующим: где C постоянная. Логарифмируя (7), (8) можно получить как

Согласно методу случайных фракталов ковра Серпинского, на Рисунке 1 вычислен фрактал, и результат показан на Рисунке 2. То есть, объем пенополиуретана с открытыми ячейками в этом исследовании имеет фрактальную характеристику, а значение фрактальной размерности соответствует образцу.


Однако структура пористой среды нерегулярна, а распределение пор также является случайным.Физическая величина, количество пор, зависит от диаметра пор D . Итак, (5) можно переписать как или же

Принимая дифференциальный коэффициент к (9), тогда

Итак, объединение с (10) и (12) может быть получено как

Здесь функцию вероятности распределения пор можно переписать как

Фрактальный эффективный диаметр L пор в полиуретане с открытыми ячейками можно рассчитать в соответствии с функцией вероятности распределения пор:

Основываясь на внутренней структуре полиуретановой формы с открытыми ячейками, мы предполагаем, что ячейки имеют кубическую форму и хорошо распределены, как на рисунке 3.


3. Эквивалентная теплопроводность фрактальной модели

Эквивалентная теплопроводность материалов пористой среды с открытыми ячейками является функцией переменной теплопроводности фаз, внутренней структуры и распределения пор [17]. Таким образом, эквивалентная теплопроводность может быть представлена ​​следующим образом: где - теплопроводность фазы и в материалах пористой среды. Для твердой фазы проводимость равна, а для газа в порах - пористость среднего объема.

Математическая модель для полиуретана с открытыми ячейками разработана на основе (15) в данной статье. Пренебрегая эффектом теплового излучения в ячейках и конвекции тепла газа, мы заключаем, что на теплообмен в одной ячейке полиуретановой формы с открытыми ячейками влияют только соседние ячейки. Для одной ячейки предполагаем, что структура представляет собой правильную призму, фрактальный диаметр L ; высота указана выше в (14), а высота твердых подложек d , как на рисунке 3.Таким образом, всю процедуру теплопередачи в ячейке можно проанализировать как передачу электричества в электрической цепи. Предположим, что тепловой ток течет сверху вниз через корпус элемента, тогда тепловое сопротивление элемента в основном состоит из четырех частей.

- термическое сопротивление вертикальной стойки 1, стойки уровня 2, газа между стойками уровня и газа в полости.

Упрощенная модель теплового сопротивления может быть описана как на рисунке 4.


Согласно взаимосвязанным знаниям о теплопередаче, мы можем легко получить, что где - полное тепловое сопротивление; - теплопроводность каркаса пены; - теплопроводность газа в ячейках; эффективная теплопроводность формы.

Из приведенного выше анализа мы можем сделать вывод, что

Из (3) и (17), (18) легко получить: где в (18) - эффективная теплопроводность при наличии статического газа в порах полиуретана с открытыми ячейками.

Здесь будет представлена ​​концепция пористости пористого полиуретана. Как правило, это отношение суммы объема вакансии ко всему объему блока материала. Используя методы расчета по теории фракталов, пористость может быть легко освещена как [18] Комбинируя (18) с (19), получим эффективную теплопроводность:

Из (20) можно сделать вывод, что эффективная теплопроводность полиуретановой формы с открытыми ячейками связана с фазами тела ячейки, фрактальной размерностью и структурой ячейки, то есть пористостью.

Теплопроводность будет уменьшаться с увеличением фрактальной размерности объема ячеек и увеличением пористости пор, и это соответствует теплопроводности. Чем больше фрактальная размерность и пористость, тем меньше твердые подложки и тем хуже теплопроводность.

4. Эффективная теплопроводность теплового излучения

Тепловое излучение является важным фактором для пенополиуретана с открытыми порами. Его можно рассматривать как среду серого тела для оценки радиационного теплового потока в ячейках [10].Таким образом, скорость радиационного теплового потока для ячейки равна где - постоянная Стефна-Больцмана, Вт / (K 4 · м 2 ), - коэффициент ослабления излучения для пористой среды, а and - температура теплового потока на входе и выходе отдельно.

Таким образом, мы можем получить эквивалентную радиационную теплопроводность для пористой среды:

5. Сравнение результатов теоретического расчета и эксперимента

Полная эквивалентная теплопроводность может быть получена в (23) при условии объединения теплопроводности и радиационно-проводящей теплопроводности вместе:

Определенная полиуретановая пена с открытыми ячейками, указанная выше, выбрана в качестве образца для испытаний в экспериментах, ее теплопроводность твердых субстратов составляет Вт / (м · К), теплопроводность газа в порах составляет Вт / (м · К). , а протестированный коэффициент затухания равен m −1 .Метод измерения теплопроводности образца - метод термозащитных пластин. Стандарт тестирования относится к GB / T3399-2009. Результаты представлены в таблице 1.


Образец Плотность кг / м 3 Пористость% Фрактальное измерение Средняя температура K Вт / (м · К) Разница
%

1 45 81 2.63 300 0,2804 0,0022 0,2826 0,280 -0,93%
355 0,2804 0,0028 0,2832 0,287 1,377 2 60 72 2,53 300 0,3186 0,0022 0,3208 0,330 2.8%
355 0,3186 0,0028 0,3214 0,332 3,2%

6. Заключение

Из таблицы 1 видно, что небольшая разница между результатами, рассчитанными по теоретической модели, представленной выше, и экспериментальными. Выводы по результатам исследования следующие.

Между экспериментальными и теоретическими расчетами, представленными в этой статье, наблюдается хорошее соответствие.Ошибка менее 5%. В частности, если взять пенополиуретан с открытыми ячейками в качестве основы вакуумных изоляционных панелей, теплопроводностью газа в (18) можно пренебречь, и можно упростить вычисления и получить более точные результаты.

Эффективная теплопроводность полиуретановой пены с открытыми порами зависит от свойств материала, внутренней микроструктуры и температуры окружающей среды. Теплопроводность при теплопроводности в целом эффективная теплопроводность преобладает при нормальной температуре, тогда как эффективная теплопроводность при излучении немного волнообразна, но значение не является первичным.Таким образом, увеличение пористости корпуса может улучшить все его теплоизоляционные свойства при условии, что его структурная прочность будет достаточной для пенополиуретана с открытыми порами.

Исследовательская работа явно установила связь между теплофизическими свойствами и внутренней микроструктурой пористой среды с помощью теории фракталов. Теоретическая работа могла бы стать важным справочным материалом для улучшения теплоизоляции пористой среды и полезной при разработке нового материала для защиты окружающей среды и энергосбережения.

Номенклатура
C : Постоянное значение
: Наименьший размер отверстия по размеру
: Самый большой размер отверстия по размеру
: Фрактальный размер коэффициент
: Спектральный размер
d : Ширина модельной стойки
L : Длина модельной стойки
: Физическое количество
R : Тепловое сопротивление (м 2 · К / Вт)
T : Температура (К)
V : Объем (м 3 ).
Греческие символы
:
: Константа Стефна-Больцмана,
σ = 5,6697 × 10 −8 W / (K 4 · м 2 )
: Коэффициент ослабления излучения
: Теплопроводность (Вт / (м · К))
: Изменяемая длина измерения (м)
: Пористость пор в среднем объеме.
Нижние и верхние индексы
: Действующие
: Излучение
г : Остаточная газовая фаза в порах
f : Жидкая фаза
S : Твердая фаза
всего: Общее значение
тест: Ценность, полученная в результате экспериментов.
Выражение признательности

Работа выполнена при финансовой поддержке Программы науки и технологий Шанхайского морского университета No. 20120091. Мы благодарны профессору Вэньчжэ Суну и профессору Дэну Цао за их советы и предложения по этому проекту. Авторы также выражают признательность доктору Вэньчжун Гао за ценные обсуждения и вклад в установку экспериментальных устройств и устройств сбора данных.

Экспериментальное исследование и корректировка модели

В этом исследовании сверхлегкий пенополистироловый пенобетон (EFC) был изготовлен методом химического вспенивания, а его теплоизоляционные свойства были измерены переходным методом при различных температурах окружающей среды (от −10 до 40 ° C). ° С).Затем наблюдали влияние температуры и объемной доли EPS на теплопроводность и плотность EFC в сухом состоянии. В конечном итоге уравнение Ченга – Вачона было модифицировано путем введения температурного параметра. Результаты показали, что теплопроводность EFC уменьшается с повышением температуры. Также было продемонстрировано, что подходящий объем частиц EPS может не только уменьшить теплопроводность EFC, но также уменьшить влияние температуры на теплопроводность. Теплопроводность EFC при различных температурах была точно предсказана в этом исследовании с использованием предложенной модели.

1. Введение

Пенобетон (FC) - это тип легкого пористого материала на основе цемента с плотностью от 400 кг / м 3 до 1900 кг / м 3 , который широко используется в области строительства, особенно для снижения статической нагрузки конструкций и для сохранения тепла, демпфирования, звукоизоляции и заполнения пор [1]. По сравнению с органическими изоляционными материалами ТЭ имеет более высокую прочность, лучшую огнестойкость и долговечность [1–3]. Однако, чтобы соответствовать более высоким требованиям к теплоизоляционным характеристикам, плотность FC следует дополнительно снизить до менее чем примерно 400 кг / м 3 .В соответствующих исследованиях было установлено, что метод химического вспенивания больше подходит для сверхлегких ТЭ, чем механическое вспенивание [4–9].

Пенополистирол (EPS) был впервые представлен в качестве легкого заполнителя для бетона Куком в 1973 году [10]. Благодаря своей превосходной теплоизоляции и близким пористым свойствам частицы пенополистирола существенно влияют на тепловые характеристики FC. Например, Sayadi et al. [11] добавили регенерированные частицы EPS в FC и обнаружили, что теплопроводность образца FC с объемной долей EPS 82% была снижена на 45%, а плотность - на 62.5%. Видно, что EPS имеет широкие перспективы применения и большую потенциальную ценность в FC [12–14].

Теплопроводность - важный параметр, отражающий способность бетона передавать тепло. Многие исследования изучали теплопроводность композиционных материалов и выявляли влияние различных факторов на теплопроводность [15]. Температура как внешнее условие оказывает важное влияние на теплопроводность бетона [16–20]. Рахим и др. [21] протестировали теплопроводность трех бетонных материалов на биологической основе при различных температурных условиях (от 10 до 40 ° C) в установившемся состоянии с использованием метода защищенной горячей плиты.Они обнаружили, что теплопроводность бетонных материалов увеличивается с повышением температуры. Тандироглу [22] изучил теплопроводность легкого необработанного бетона с перлитовым заполнителем и установил функции взаимосвязи для теплопроводности, водоцементного отношения, количества перлита по массе и температуры. Предложенные эмпирические соотношения теплопроводности применимы в диапазоне температур от -70 до 30 ° C. Ли и др. [23] обсудили общие модели теплопроводности, основанные на экспериментальных данных, и предложили модель прогнозирования теплопроводности FC, но они не смогли учесть влияние внешних факторов окружающей среды на теплопроводность модели, таких как температура.Таким образом, теплопроводность различных типов бетона значительно различается при изменении температуры. В настоящее время теоретические модели теплопроводности ТЭ не учитывают температурные эффекты.

В данном исследовании сверхлегкий пенополистирол пенобетон (EFC) с различным содержанием пенополистирола готовится методом химического вспенивания, а его теплопроводность измеряется при различных температурах окружающей среды (от -10 до 40 ° C). На основе результатов испытаний и существующих моделей теплопроводности была получена модель теплопроводности EFC с поправкой на температуру.

2. Экспериментальные программы
2.1. Сырье и соотношение смеси

Загущенный материал, использованный в этом исследовании, был изготовлен из китайского обычного портландцемента 42,5 и золы уноса класса I. Соответствующие технические показатели для этих двух материалов показаны в таблицах 1 и 2. Добавление летучей золы может оптимизировать структуру пор FC и улучшить его теплоизоляционные характеристики. Кроме того, EPS имеет размер частиц от 2 до 4 мм, кажущуюся плотность 18,8 кг / м 3 и теплопроводность 0.0313 Вт / (м · К). Пенообразователь, использованный в этом тесте, представлял собой раствор перекиси водорода с концентрацией 30%. Стабилизатором служил стеарат кальция. Первым укрепляющим агентом был нитрит натрия, а загустителем - эмульсия акрилатного сополимера. Используемая вода была водопроводной. Соотношение воды и связующего, содержание пенообразователя и дозировка летучей золы были скорректированы для определения эталонного соотношения смеси, которое показано в таблице 3. Всего было приготовлено 12 испытательных блоков пенобетона с химическим вспениванием EPS путем изменения объемной доли EPS (0% ~ 60%).


Тип цемента Удельная поверхность (м 2 / кг) Время схватывания (мин) Прочность на изгиб (МПа) Прочность на сжатие (МПа)
Начальная установка Окончательная установка 3d ​​ 28d 3d ​​ 28d

PO 42,5 345,00 150 210 5.0 8,0 16,5 46,2


Химический состав (%) Кажущаяся плотность (кг / м

3 )

Насыпная плотность (кг / м 3 )
SiO 2 Al 2 O 3 Fe 2 O 3 Cao MgO NaO 907

58 30 4.3 1,5 2,8 3,2 2100 1086


Образцы Цемент (г) Зола г) w / b Объем пены (%)

A 1 193 157 0,48 6,3

соотношение w / b: вода-связующее.

2.2. Прибор для испытаний
2.2.1. Тестер теплопроводности

Для испытания теплопроводности использовался анализатор термических характеристик ISOMET 2114, произведенный в Словакии (рис. 1). Прибор может быть использован для определения теплопроводности, объемного теплового потока и температуропроводности композитов на основе цемента [24]. Он основан на принципе испытания на переходные процессы, а диапазон измерения температуры составляет 15 ~ + 50 ° C с точностью 1 × 10 -4 Вт / (м · К).Прибор можно проверить с помощью зонда или плоской пластины. В этом тесте используется поверхностный зонд с диапазоном измерения 0,04 ~ 0,3 Вт / (м · К).


2.2.2. Испытательный бокс при высоких и низких температурах

В этом испытании использовался испытательный стенд для моделирования высоких и низких температур, разработанный Северо-восточным сельскохозяйственным университетом. Его основные показатели производительности приведены в таблице 4.


Полезный объем 5 м × 4 м × 2,5 м
Температурный диапазон −45∼ + 60 ° C
Колебания температуры ± (0.05∼0.1) ° C
Мощность нагрева 1500 Вт
Холодопроизводительность 1500 Вт

2.3. Технология приготовления и методика химического вспенивания пенобетона EPS
2.3.1. Технология подготовки

В соответствии с характеристиками пенополистирола и технологией формования химического пенобетона образцы пенополистирола с химическим вспениванием были приготовлены в соответствии со следующим процессом: (a) Частицы пенополистирола были влажными в течение одной минуты с одной третью общая вода.(b) Цемент для смешивания, летучая зола, другие твердые материалы, оставшаяся вода и загуститель смешивались и перемешивались до тех пор, пока смесь не стала однородной. Затем смоченные частицы EPS помещали в смесь и перемешивали в течение одной минуты. Температуру суспензии поддерживали на уровне 25 ° C. (c) Добавляли раствор нитрита натрия. Смесь перемешивали на низкой скорости в течение 30 секунд, а затем перемешивали на высокой скорости в течение 10 секунд. (D) В смесь вливали перекись водорода, и ее перемешивали в течение 10 секунд.(e) Смесь быстро вылили в форму и оставили на 24 часа при 20 ° C. Затем образцы вынимали из формы, когда они имели определенную прочность, и затем осуществляли стандартное отверждение. Бетонный образец показан на рисунках 2 (а) и 2 (б).

2.3.2. Экспериментальные методы

Испытание образцов на плотность в сухом состоянии проводили в соответствии с китайским стандартом GB / T11969-2008. Измерения проводились после сушки образцов до постоянного веса. Окружающая среда с постоянной температурой обеспечивалась испытательным боксом при высоких и низких температурах.Теплопроводность образцов была проверена после двух часов выдержки при постоянной температуре. При постоянной температуре измеряли теплопроводность полированных образцов с обеих сторон с помощью анализатора тепловых характеристик. Теплопроводность некоторых образцов EFC при 20 ° C показана в Таблице 5. Из-за неоднородности FC были протестированы три положения лицевой поверхности, и было вычислено среднее значение результатов.


Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К)) Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К))

304 73.47 0,0838 291 73,04 0,0704
366 68,06 0,0926 230 79,93 0,0761
357 68,85 0,0890 0,0921
362 70,07 0,1000 237 79,32 0,0750
336 71.99 0,0810 267 76,70 0,1037

3. Результаты и обсуждение
3.1. Взаимосвязь между объемной плотностью в сухом состоянии и теплопроводностью образцов EFC при различных температурах

Теплопроводность - это основной физический параметр, используемый для характеристики теплопроводности материалов. Механизм теплопроводности у разных веществ разный.Согласно теории теплопередачи [25, 26], свободная подвижность электронов и колебания решетки являются двумя основными независимыми механизмами теплопередачи твердого тела. В основном это упругая волна (или волна решетки), которая, создаваемая колебанием решетки в месте с более высокой температурой, вызывает колебание соседней решетки для передачи тепла в неорганических неметаллических твердых материалах. Поскольку бетон состоит в основном из твердых компонентов, механизм теплопередачи каркаса аналогичен механизму передачи тепла твердого тела.Поэтому теплопроводность бетона в первую очередь зависит от плотности материалов. Обычно низкая плотность соответствует низкой теплопроводности [27].

Закон изменения был получен путем подгонки результатов испытаний объемной плотности в сухом состоянии и теплопроводности при различных температурах, как показано на рисунке 3. Объемная плотность в сухом состоянии химического вспенивания пенобетона EPS положительно коррелирует с теплопроводностью.


Данные испытаний были подогнаны для получения соотношения между объемной плотностью в сухом состоянии и теплопроводностью EFC при температуре 0 ° C.Выражение отношения может быть записано как

Содержание пены и содержание EPS определяют его объемную плотность в сухом состоянии в EFC и влияют на теплопроводность EFC. В тех же условиях количество пор в пористом материале определяет его теплопроводность. Когда количество пор такое же, теплопроводность увеличивается с увеличением размера пор. Однако соединенные поры увеличивают теплопроводность бетона. Кроме того, объемная доля пенополистирола является ключевым фактором, изменяющим объемную плотность FC в сухом состоянии.На рис. 4 представлена ​​кривая влияния объемной доли EPS на объемную плотность FC в сухом состоянии. Согласно Фигуре 4, микропоры не изменились при добавлении небольшого количества частиц EPS до тех пор, пока не было добавлено 10% частиц EPS. В этот момент соотношение больших пор в образцах показало тенденцию к увеличению, что привело к уменьшению сухой объемной плотности. Однако, когда процент пор с диаметрами, достигающими 200-400 мкм, мкм, был слишком большим, внутренняя структура пор была бы нестабильной, и некоторые большие поры могут быть разрушены.Это привело бы к увеличению сухой объемной плотности образца и, таким образом, повлияло бы на теплопроводность EFC [28].


3.2. Влияние температуры на теплопроводность пенобетона EPS

В этом эксперименте использовались пять температур, а именно -10 ° C, 0 ° C, 20 ° C, 30 ° C и 40 ° C. Эти температуры были использованы для изучения теплоизоляционных характеристик EFC. Теплопроводность FC, смешанного с различным содержанием частиц EPS, была протестирована для получения закона изменения теплопроводности FC с различными объемными долями EPS в зависимости от температуры, как показано на рисунке 5.Как видно из рисунка 5, теплопроводность химического пенобетона положительно коррелирует с внешней температурой. При изменении температуры наибольшая амплитуда изменения ТЭ без частиц ЭПС достигла 52%, что свидетельствует о значительном влиянии температуры на теплопроводность ТЭ [29]. Это связано с тем, что теплопроводность FC связана не только с интенсивностью движения частиц в твердой, жидкой и газовой фазах, но также с силами взаимодействия между различными фазами частиц и их пространственным распределением.Из-за большой пористости FC высокая температура может усилить неравномерное движение и столкновение молекул газа в порах. Это усилило бы взаимодействие между различными фазами частиц, тем самым увеличив теплопроводность.


На рисунке 5 показано сравнение с кривой теплопроводности FC без шариков из пенополистирола, другие кривые с шариками из пенополистирола, очевидно, более гладкие и с меньшими наклонами в том же диапазоне температурных градиентов. Когда объемное содержание EPS составляло 55%, изменение температуры меньше всего влияло на теплопроводность.Этот результат демонстрирует, что надлежащее количество частиц EPS может не только снизить теплопроводность EFC, но и компенсировать изменения теплопроводности, вызванные изменениями температуры. Этот эффект является основным преимуществом структуры EPS и улучшения им структуры пор FC. Эмпирические корреляции между теплопроводностью ТЭ и температурой при различных объемных долях пенополистирола показаны в таблице 6.

4 + 0,0659

4 = 0.998 9709 9029

Объемная доля пенополистирола (%) λ = a ( T 2 ) + bT + c R 2

0 λ 0 = −0.000008 T 2 + 0,0008 T + 0,071 R 2 = 0,995
5 λ 5 = −0,00001 T 6 2 2 + 0,0749 R 2 = 0,995
20 λ 20 = −0,000001 T 2 + 0,0009 T + 0,0659
55 λ 55 = −0,000009 T 2 + 0,0007 T + 0,0625 R 2 = 0,987
3.3. Влияние содержания пенополистирола на теплопроводность FC при различных температурах

Избыточное содержание пузырьков, введенных в цементную матрицу, вызовет некоторые трудности в формировании бетона.Поэтому сложно снизить плотность и теплопроводность сверхлегкого ТЭ за счет увеличения количества пенообразователя. В этом исследовании определенная объемная доля частиц пенополистирола была добавлена ​​к химическому вспениванию пенобетона для изменения собственного веса и теплоизоляционных характеристик бетона.

Частицы EPS обладают хорошими тепловыми характеристиками. Влияние объемной доли EPS на теплопроводность FC при различных температурах показано на рисунке 6. Добавление частиц EPS значительно изменило теплопроводность FC.По сравнению с FC без EPS максимальная амплитуда изменения теплопроводности FC уменьшилась на 46% после добавления определенной объемной доли частиц EPS. Согласно рисунку 6, теплопроводность EFC сначала уменьшалась, а затем увеличивалась с увеличением содержания EPS. Это произошло в первую очередь потому, что частицы пенополистирола (98% воздуха и 2% полистирола) имеют внутри множество закрытых пор, которые обладают большим термическим сопротивлением. С увеличением содержания EPS соответственно увеличивалось тепловое сопротивление EFC.Следовательно, его теплопроводность снизилась. Недавние исследования показывают, что при добавлении пенопласта к бетону из пенополистирола пенообразователь создает структуру микропор между гранулами пенополистирола [30]. Однако, когда объемная доля пенополистирола слишком велика, расстояние между частицами пенополистирола будет уменьшаться. Это заставляет окружающую пену собираться вместе и соединяться, образуя более крупные поры. В результате увеличилась внутренняя связная пористость и значительно увеличилась теплопроводность, что даже повлияло на обычное вспенивание FC.


Как видно из рисунков 4 и 6, результаты показывают, что сверхлегкий пенобетон с химическим вспениванием EPS с плотностью в сухом состоянии менее 300 кг / м 3 и нормальной теплопроводностью от 0,0704 до 0,0767 Вт / (м · К) можно было получить, когда объемная доля EPS составляла 25% ~ 35%. Кроме того, по сравнению с обычным FC, он показал эффективную теплоизоляцию при изменении температуры.

4. Температурно-модифицированная модель теплопроводности для EFC
4.1. Базовая модель теплопроводности пенобетона
4.1.1. Последовательные и параллельные модели

Основной формой передачи тепла внутри бетонных материалов является теплопроводность. Хашин и Штрикман предложили эффективные модели теплопроводности двухфазной системы [31]. Последовательная и параллельная модели основаны на верхнем и нижнем пределах теплопроводности материалов соответственно. В этих моделях частицы пены и пенополистирола используются в качестве дисперсной фазы, а цемент, летучая зола и суспензия используются в качестве непрерывной фазы для расчета теплопроводности бетона.Выражения, как правило, можно записать в виде следующих уравнений: Серийные модели: Параллельные модели:

4.1.2. Maxwell
- Eucken Model

Модель Максвелла-Ойкена предполагает, что пена состоит из однородных сфер, которые неравномерно распределены и не имеют сил взаимодействия. Более кратко модель утверждает, что теплообмен не может осуществляться между дисперсными фазами. На этой основе удалось успешно вывести минимальные границы теплопроводности изотропных и макроскопических однородных двухфазных материалов [32].

Когда пена замешивается в бетон, ее форма и распределение будут изменены из-за выдавливания суспензии, но модель учитывает только показатель пористости. Его выражение выглядит следующим образом [32]:

4.1.3. Модифицированная объемная модель для пенобетона

Li рассмотрела объемное содержание пены и предложила модифицированную модель, которая может быть применена к расчету теплопроводности FC путем объединения данных испытаний FC на основе модели теплопроводности Cheng-Vachon [23].Модель предполагает, что в бетонном растворе нет пор, а тепловая конвекция, излучение и контактное сопротивление не учитываются. Он в первую очередь корректирует объемное содержание дисперсной фазы и учитывает влияние сложных факторов, таких как путь теплопередачи и извилистость во время процесса теплопередачи. Эта модель может точно предсказать теплопроводность FC.

Ниже приведены уравнения для модели поправки на объем теплопроводности FC [23]:

Разница в теплопроводности между пеной и цементно-зольным раствором представлена ​​с помощью простого уравнения:

Модифицированный объемное содержание пены можно выразить следующим образом:

Из уравнений (5) и (6) эффективное тепловое сопротивление FC представляется следующим образом:

Тогда уравнение теплопроводности для FC равно

Оно должно быть отметили, что t - это поправочный коэффициент на объемное содержание пены, полученный путем подбора данных испытаний.

4.2. Оценка модели и определение параметров

Модель коррекции объема, предложенная Ли, была использована для проверки и изучения экспериментальных результатов FC в исследовании. Поскольку 98% частиц EPS были воздухом и разница в теплопроводности между ними была небольшой, пористость и EPS были упрощены до дисперсной фазы, а цементно-зольный раствор был непрерывной фазой. Сравнение между прогнозируемым значением и экспериментальным значением последовательных и параллельных моделей, модели Максвелла – Ойкена и модели поправки на объем показаны на рисунке 7.


Согласно рисунку 7, данные теплопроводности, предсказанные параллельной и последовательной моделями, находились в верхнем и нижнем пределах соответственно, и они значительно отличались от экспериментальных результатов. Теплопроводность, предсказанная моделью Максвелла – Эйкена, была намного больше, чем экспериментальные данные. Это произошло потому, что модель Максвелла – Ойкена предполагала, что устьица в тестовых блоках были однородными и независимыми сферами. В действительности эти формы пор сильно различаются, и некоторые из них являются связанными порами, что приводит к большому отклонению между прогнозируемым значением и экспериментальным значением.

Аппроксимация методом наименьших квадратов модифицированной объемной модели, предложенной Ли, была выполнена с использованием частичных тестовых данных. Когда t = 2,15, был получен эффект наилучшего соответствия, и прогнозируемый результат был наиболее близок к значению теста. Поэтому модифицированная объемная модель, предложенная Ли, была использована для прогнозирования и оценки теплопроводности EFC в этом исследовании.

Модель оценила влияние температуры на теплопроводность различных фаз на основе модифицированной объемной модели, предложенной Ли, и скорректировала поправочный коэффициент объема с помощью температурной функции.

В настоящем исследовании мы предлагаем новую корреляцию для дисперсной фазы:

Разница между двумя фазами в теплопроводности с поправкой была дана

Влияние температуры было введено в теплопроводность для корректировки объемного содержания Корректирующий коэффициент пены:

Затем были скорректированы пористости при различных температурах, можно записать, как показано в следующих уравнениях:

Объемный поправочный коэффициент пены после двухкратной коррекции можно записать следующим образом:

Корректирующее уравнение объемного содержания пены при различных температурах было следующим:

Комбинируя уравнения (9) и (15), было получено модифицированное термическое сопротивление FC

Тогда модифицированное уравнение теплопроводности FC можно выразить как упрощенная форма

Экспериментальные данные теплопроводности ЭПЧ при различных температурах введите данные в скорректированную модель теплопроводности EFC, чтобы получить рисунок 8.На рисунке предсказанные значения температурно-модифицированной модели при различных температурах сравниваются с экспериментальными значениями. Результаты показывают, что предсказанные значения совпадают с экспериментальными значениями при различных температурах, что указывает на хороший предсказывающий эффект модели. По сравнению с другими моделями прогноза, модель в этом исследовании не только отражала влияние температурных параметров, но также рассчитывала теплопроводность EFC при различных температурах.


5.Выводы

(1) Температура оказала значительное влияние на теплопроводность EFC. Теплопроводность EFC увеличивалась с повышением температуры. При изменении температуры амплитуда изменения теплопроводности того же КЭТ достигала 28% -52%. (2) При увеличении содержания ЭПС влияние температуры на теплопроводность ТЭ снижалось, что указывало на что соответствующее количество частиц EPS может не только снизить его теплопроводность, но и смягчить изменение теплопроводности, вызванное изменениями температуры.(3) Частицы пенополистирола имели хорошие тепловые характеристики. С увеличением объемной доли ЭПС теплопроводность ЭТЦ уменьшалась. Однако, когда объемная доля EPS была слишком большой, теплопроводность явно увеличивалась. Результаты показали, что химический пенополистирол сверхлегкий пенобетон с плотностью в сухом состоянии менее 300 кг / м 3 и нормальной теплопроводностью от 0,0704 до 0,0767 Вт / (м · К) может быть приготовлен, когда объемная доля пенополистирола составляла 25% ~ 35% при изменении температуры.Кроме того, по сравнению с обычным FC, он обладал хорошей температурной стабильностью. (4) Модель прогнозирования теплопроводности EFC, которая учитывала влияние температуры, была создана на основе модифицированной модели теплопроводности объема дисперсной фазы. Кроме того, предсказанные результаты были проверены с использованием экспериментальных данных для подтверждения их точности. Важно отметить, что модель применима только для прогнозирования теплопроводности EFC в условиях температуры наружного воздуха, и определение коэффициента температурной коррекции не было уникальным.

Список символов
k c : Теплопроводность цементно-зольной суспензии (Вт / (м · K))
k d : Тепловой воздух электропроводность (Вт / (м · К))
: Модифицированная теплопроводность дисперсной фазы (Вт / (м · К))
: Теплопроводность пенобетона (Вт / (м · К) K))
: Модифицированная теплопроводность пенобетона (Вт / (м · K))
M : Коэффициент увеличения между двумя фазами
: Увеличение коррекции температуры коэффициент между двумя фазами
n : Пропорциональный коэффициент
: Модифицированное тепловое сопротивление ((м · К) / Вт)
: Температурная поправка среднеквадратичное сопротивление ((м · К) / Вт)
T : Температура испытания (° C)
t ′ : Прогноз коэффициента поправки на объем
t x : Коэффициент температурной коррекции объемного содержания пены
: Пористость (%)
: Константа температурной коррекции
λ : Эффективная теплопроводность (Вт / (м · К))
ρ : Объемная плотность в сухом состоянии (кг / м 3 )
λ 1 : Теплопроводность непрерывной фазы (Вт / ( м · К))
λ 2 : Теплопроводность дисперсной фазы (Вт / (м · К))
: Объемная доля дисперсной фазы (%) 9 0070
: Модифицированная объемная доля дисперсной фазы (%)
: Объемное содержание дисперсной фазы с поправкой на температуру (%).
Доступность данных

Данные, использованные для подтверждения результатов этого исследования, включены в статью.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Авторы выражают признательность за финансовую поддержку со стороны Национального фонда естественных наук Китая (51541901), ключевого проекта науки и технологий провинции Хэйлунцзян (GZ16B010) и финансовой помощи постдокторантам Хэйлунцзян (LBH-Z13045).

Исследование свойств пенобетонного блока с фазовым переходом, смешанного с композитным материалом с фазовым переходом парафин / коллоидный диоксид кремния

Основные моменты

Композитный ПКМ парафин / коллоидный диоксид кремния был успешно добавлен во вспененный цемент.

PCM может снизить способность пенобетона к теплопередаче и повысить его способность аккумулировать тепло.

Пенобетонные блоки с фазовым переходом могут уменьшить колебания температуры в помещении, отсекая пиковую температуру наружного воздуха.

Реферат

Системы производства возобновляемой энергии на месте устанавливаются для зданий, чтобы компенсировать потребление энергии из-за нагрузок на охлаждение и обогрев. Колеблющаяся энергетическая нагрузка может существенно повлиять на решение о выборе систем возобновляемой энергии. В рамках данного исследования был разработан новый пенобетон с фазовым переходом с низкой теплопроводностью и подходящей температурой фазового перехода, позволяющий снизить пик температуры летом и повысить экономическую целесообразность использования возобновляемых источников энергии.С помощью метода адсорбции в этом исследовании использовался коллоидальный диоксид кремния для поглощения парафина для образования композитных материалов с фазовым переходом (ПКМ). Путем морфологии и испытаний на утечку жидкости это исследование показало, что композитный ПКМ с содержанием парафина 45% (вес.) Имеет наилучшую адсорбционную способность и характеристики схватывания. Согласно испытаниям с помощью сканирующей электронной микроскопии (SEM), металлографической микроскопии и порошковой рентгеновской дифракции (XRD) предлагаемые композитные блоки из ПКМ и пенобетонных блоков с фазовым переходом имеют стабильные морфологические структуры и физические свойства.Кроме того, дифференциальный сканирующий калориметр (DSC) показал, что предлагаемый композитный PCM в бетоне имеет подходящую температуру фазового перехода (около 41 ° C) и скрытую теплоту фазового перехода (эндотермический процесс составляет 113,3 Дж / г, а экзотермический процесс - -112 Дж. / г) во избежание перегрева здания летом. Наконец, эксперименты по теплопроводности и нагреву показали, что предлагаемые пенобетонные блоки с фазовым переходом имеют низкую теплопроводность и высокую способность аккумулировать тепло.

Ключевые слова

Коллоидный диоксид кремния

Композитный PCM

Пенобетон с фазовым переходом

Теплоаккумулятор

Рекомендуемые статьиЦитирующие статьи (0)

Полный текст

© 2020 Elsevier Ltd.Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Пенные металлообменники | Охлаждение электроники

Сетчатая металлическая пена (RMF) - это экономичные и сверхвысокопроизводительные материалы для регулирования температуры, которые можно интегрировать с электронными устройствами и модулями. RMF совместимы с деионизированной водой, инертными фторуглеродами, реактивным топливом и инертными газами.

СТРУКТУРА RMF

Существует довольно много способов изготовления RMF [1], однако способ изготовления методом литья по выплавляемым моделям обеспечивает наиболее желательные свойства материала.В заводском состоянии изотропный RMF состоит из случайно ориентированных ячеек многоугольной формы, которые можно аппроксимировать как додекаэдр, рисунок 1 [2,3,4]. Обратите внимание, что поперечные сечения твердых связок длиной примерно 2 мм в основном имеют треугольную форму. Геометрия структуры ячейки RMF, а также высокая чистота и пластичность металла обеспечивают наиболее желательные характеристики для теплообменников (HX). Физические размеры его структуры, как показано ниже, не позволяют пограничным слоям расти и вносят усиленное перемешивание за счет завихрений и турбулентности.Эти особенности приводят к высокому коэффициенту локальной пленки. Металлические пены RMF обычно имеют конфигурацию 5, 10, 20 и 40 пор на дюйм (PPI) и теоретическую плотность 4-13%, изготовленную, среди прочего, с использованием 6061 Al, C10100 Cu или Ag. Важные параметры RMFs: теплопроводность, площадь поверхности теплопередачи, высокая механическая пластичность и податливость.

Теплопроводность:

В процессе производства пеноматериала сохраняется высокая чистота материала в RMF.Теплопроводность 6061 Al и C10100 Cu, наиболее распространенных материалов RMF, составляет около 170 Вт / м-К и 390 Вт / м-К соответственно. Однако эффективная объемная теплопроводность зависит от пористости пены. Эффективная объемная проводимость (ke) пены может быть оценена по уравнению (1) [2].

(1)

Где: λ, константа пропорциональности λ = 0,346

k b , теплопроводность основного материала

ρ, пористость (относительная плотность) вспененного RMF ~ 8%

Рисунок 1.40 пор на дюйм (PPI) 6101 Металлическая пена на основе алюминия, состоящая из узлов и связок, образующих сеть додекаэдров, заполняющих пространство, с 12 гранями в форме пятиугольника.

Эффективная объемная проводимость материала 6061 Al RMF с плотностью 8% составляет около 4,7 Вт / м-К. Благодаря своей высокой пластичности, RMF могут подвергаться значительным неупругим и упругим деформациям продольного изгиба без разрушения связок, что приводит к увеличению относительной плотности структуры пены до 50%. Поскольку теплопроводность является векторной величиной, ее значение будет зависеть не только от степени сжатия (как и для эффективной площади поверхности), но и от направления сжатия.Эффективная теплопроводность пен на основе алюминия 6061 двухосно увеличивается до ~ 30 Вт / м-К при однонаправленном сжатии в направлении X до относительной плотности 50% в плоскости (YZ), где связки выровнены в направлениях Y и Z. Поскольку стоимость также зависит от объема, эта функция позволяет одновременно и эффективно оптимизировать как тепловые характеристики, так и стоимость RMF HX [2].

Плотность поверхности:

Одной из наиболее важных особенностей RMF является их чрезвычайно высокая и масштабируемая удельная поверхность (ρ s ) по сравнению с паяными или экструдированными ребрами и штырями.ρ s напрямую связано с увеличенной площадью поверхности для улучшения конвективной теплопередачи. Значение ρ s RMF было охарактеризовано с использованием экспериментальных измерений, многоточечного метода Брунауэра, Эммета и Теллера (БЭТ) путем адсорбции газообразного криптона при 77,4 К и модельных исследований авторов.

Результаты этих исследований показали, что ρs 40 PPI RMF в состоянии изготовления 6% и сжатого 50% состояния составляет около 15,5 см 2 / см 3 (40 дюймов 2 / дюйм 3 ) и 138 см 2 / см 3 (350 дюймов 2 / дюйм 3 ) соответственно [2,3].

Термические интерфейсы и коэффициенты конвективной пленки:

Компактный теплообменник на основе RMF может быть интегрирован с источниками тепловыделения посредством пайки. Интеграция устраняет высокоомные термоинтерфейсы мягких материалов, таких как термопрокладки, пасты или термические эпоксидные смолы, обычно используемые для соединения дискретных устройств, гибридных многочиповых модулей (HMCM) фотонных и электронных устройств с холодными пластинами. RMF может быть припаян к поверхностным слоям с низким коэффициентом расширения и функционировать как ограничивающий двухсторонний теплообменник с сердечником (HX) для печатных монтажных плат (PWB).

Структура RMF имеет очень высокую эффективную податливость [2], что позволяет производить металлургическое соединение с пеной путем пайки или пайки материалов с низким КТР (металлизированные керамические пластины, композиты с низким коэффициентом расширения, Mo и CuMoCu, среди других). Поскольку термические напряжения и деформации, связанные с несоответствием КТР, ограничены, надежность встроенного теплообменника и тепловой основы не снижается, что подтверждается несколькими сотнями тепловых циклов [5].

Преимущественно треугольное поперечное сечение и всего пара миллиметров длины связки RMF дает значительные преимущества в конвективном охлаждении.Он уменьшает толщину пограничных слоев, тем самым создавая вихри и вызывая ранний переход к турбулентному потоку, и аналогичным образом задерживает или устраняет переход от пузырькового кипения к пленочному. В результате улучшается теплопередача за счет высоких локальных коэффициентов пленки.

Изготовление теплообменников RMF:

Способ изготовления теплообменников RMS зависит от материала и конструкции. HX на основе Al RMF могут изготавливаться вакуумной пайкой или пайкой погружением.Конфигурации полностью закрытых HX / холодных пластин (CP) требуют вакуумной пайки с использованием заготовок для твердой пайки. HX с открытым RMF можно изготавливать пайкой погружением или вакуумной пайкой. Открытая структура ячейки RMF позволяет очистить любые остаточные соли, оставшиеся от ванны для пайки погружением. Однако преимущество вакуумной пайки становится очевидным при производстве в больших количествах. Использование вакуумной печи может вместить сотни единиц в одной партии при более низкой стоимости единицы.

Рисунок 2.Прекурсоры Al и Cu RMF, напаянные под вакуумом, HX и CP

Рис. 3. Эффективное h для HX RMF 40 PPI 6061 Al (вверху) и Cu (внизу) RMF HX с деионизированной водой при 63,1 см 3 / сек . Диапазон толщины пенопласта Al и Cu составляет 0-38 мм. Диапазоны эффективного коэффициента теплопередачи для пен Al и Cu составляют от 0 до 7,5 (Вт / см, 2, ° C) и от 0 до 15 (Вт / см, 2, ° C), соответственно.

Производство теплообменников на основе пены Cu, в которых пена Cu соединяется с медной пластиной закрытого корпуса, изготавливается в печах для высокотемпературной пайки в инертной атмосфере или в печах для вакуумной пайки с подходящими заготовками для твердой пайки Cu-Ag.Паяльные пасты могут использоваться для изготовления CP в печах с инертной атмосферой, где подвергается воздействию RMF. На рис. 2 показаны изделия на основе пеноалюминия, изготовленные вакуумной пайкой [6].

Тепловые характеристики теплообменников RMF:

Основными факторами, влияющими на тепловые характеристики RMF HX, являются:

  • Теплопроводность основного материала (Al, Cu, Ag или других).
  • Размер пор измеряется как PPI, линейная плотность пор на дюйм (5-40 ppi).
  • Относительная плотность (от 5% до ~ 50%)
  • Толщина (аналогична эффективности ребер)
  • Теплофизические свойства охлаждающей жидкости

Рекомендуемые жидкие охлаждающие жидкости: дистиллированная вода, этиленгликоль, реактивное топливо , смазочные моторные масла, Castrol, инертные фторуглероды и др.Дистиллированная вода со скоростью потока 1 галлон в минуту использовалась в качестве охлаждающей жидкости для создания поверхностей с тепловыми характеристиками, показанных на Рисунке 3 [2].

Экспериментальное исследование тепловых характеристик:

Испытательный модуль был изготовлен путем пайки в инертной атмосфере медного блока размером 2,54 см x 2,54 см x 0,635 см (1,00 дюйма x 1,00 дюйма x 0,250 дюйма) к центру 5,08 см x 5,08 см x 0,318 см (2,00 дюйма x 2,00 дюйма x 0,125 дюйма) Cu. Корпус из оргстекла с такой же глубиной полости был изготовлен из 0.Лист оргстекла толщиной 635 см (0,250 дюйма), прикрученный к пластинам из алюминия и меди с помощью пробковой прокладки. Резистор 2,54 x 2,54 см (1,00 x 1,00 дюйма) был эвтектическим Sn / Pb, припаянным к центру медной пластины в среде инертного газа. Скорость потока и температура на входе поступающей деионизированной воды поддерживались постоянными с использованием рециркуляционного охладителя. Объемный расход, температура охлаждающей жидкости на входе и выходе контролировались с помощью расходомеров и термопар. Температура поверхности холодной пластины оценивалась путем измерения температуры с помощью термопар на резисторе.Рисунки и чертеж холодильной плиты показаны на рисунках 4 и 5 соответственно. Экспериментальная установка и испытательная холодная пластина показаны на рисунке 6.

Рисунок 4. Двусторонние и односторонние прозрачные функциональные холодные пластины (слева), вид сверху одностороннего испытательного устройства (справа).

Рисунок 5. Рисунок 5. Чертеж Cu RMF Cold Plate

Рисунок 6. Агрегат при испытаниях на текучесть и термическое сопротивление

Расчет эффективного коэффициента пленки

Расчетный местный Коэффициент пленки 1 Вт / см 20 C для 63 см 3 Скорость потока / сек (1 галлон в минуту) использовалась при создании поверхностей с тепловыми характеристиками, показанных на Рисунке 3 [2].

Вертикальная ось представляет собой эффективный коэффициент плоской пленки, тогда как оси X и Y графика поверхности показывают толщину и плотность RMF, соответственно. Эффективный коэффициент пленки пропорционален плотности. Толщина RMF линейно связана с эффективным коэффициентом пленки при малой толщине, который асимптотически приближается к своему значению насыщения при увеличении толщины, аналогично тому, как это имеет место для эффективности ребра.

Средний эффективный коэффициент пленки можно оценить по измеренной мощности, подводимой к резистивному нагревателю, и разнице между средними температурами теплоносителя и резистора, как это было сделано в лаборатории авторов.Результаты таких испытаний согласуются с результатами расчетов, представленными на Рисунке 3.

Сравнение тепловых характеристик:

Требования к характеристикам охлаждающей пластины для мощного электронного устройства определяются тепловым сопротивлением. На ранних стадиях проектирования осуществимость данной технологии холодной пластины может быть оценена по ее термическому сопротивлению (Rth), которое обычно рассчитывается по уравнению (2).

(2)

Где;

P: Мощность, рассеиваемая устройством

ΔT: Разница температур между максимально допустимой температурой поверхности CP и температурой охлаждающей жидкости на выходе.ΔT можно рассчитать по уравнению (3), где ρ w = 1000 (кг / м 3 ), V = 6,3 * 10 -5 м3 / с (1,0 галлонов в минуту), C PW = 4184 (Дж / кг - o C), T in = 21 o C, а максимально допустимая температура поверхности охлаждаемого электронного устройства T Max = 60 o C.

(3)

R th и Измерения и расчеты падения давления:

R th был рассчитан с использованием описанной выше процедуры.В частности, значение R th при V = 6,3 * 10 -5 м 3 / сек (1,0 галлона в минуту) равно 0,042 o C / W. Термическое сопротивление высокопроизводительных холодных пластин из меди с микроканалом, среди прочего, составляет около 0,05 - ° C / Вт при тех же условиях. Графики, отображающие значения R th и падение давления в зависимости от скорости потока, основанные на измерениях и анализе CFD, представлены на рисунке 7.

Рисунок 7. Поток и термическое сопротивление холодных пластин на основе пены Cu [6].

Рис. 8. Распределение перепада давления (вверху) и температуры поверхности холодной пластины, изготовленной из 30 ppi и 30% Cu RMF пены при скорости потока 1 галлон в минуту.

Эффективные коэффициенты пленки и плотность площади поверхности 30 ppi, 30% плотного Al RMF были введены в CFD с использованием запатентованного метода для расчета теплового сопротивления и сопротивления потоку испытательной холодной пластины. Результаты таких расчетов показаны на рисунках 8 для холодных пластин из RMF Al с плотностью 30 пикселей на дюйм и 30% плотностью и 30 пикселей на дюйм из пеноматериала RMF с плотностью 45%.На рис. 8 показаны результаты CFD-анализа для холодной плиты, изготовленной из вспененного меди с плотностью 30 ppi и плотностью 30%.

РЕЗЮМЕ И ОБСУЖДЕНИЯ

Исследования показывают, что CP и HX на основе RMF обладают высокими тепловыми характеристиками благодаря чрезвычайно высокой удельной поверхности, локальным коэффициентам пленки и теплопроводности, особенно для применений с меньшим объемом и весом.

RFM демонстрируют совместимость с широким спектром жидких и газообразных хладагентов, что делает эту технологию выгодно подходящей для широкого спектра коммерческих и военных применений.Структурные и термические характеристики пен RMF также предлагают аналогичные преимущества в применениях с пассивным фазовым переходом и двухфазным потоком.

ССЫЛКИ

[1] Ashby, M. F. et al. «Металлические пены - Руководство по проектированию», Баттерворт Хайнеманн, стр. 6-20, 2000.

[2] Б. Озмат и др., «Термическое применение металлических пен с открытыми порами», материалы и производственные процессы, Специальное издание, Том .19, No. 5, pp. 839-862, 2004

[3] Brunauer, Emmet, Teller, Journal of the American Chemical Society, Volume 60, 1938, p 309.

[4] Сорго М., «Материалы с термоинтерфейсом», «Охлаждение электроники», Vol. 2, No. 3, pp. 12-16., Sept. 1996.

[5] Заключительный отчет по программе, контракт COMNAVSEASYSCOM N00024-94-NR58001.

[6] ergaerospace.com

Почему пенополистирол - хороший изолятор?

Когда на улице холодно, лучший способ согреться - это закутаться в несколько слоев одежды. Это хорошо работает, потому что каждый слой задерживает воздух и снижает количество потерянной тепловой энергии. Чем толще слои и чем больше слоев вы носите, тем лучше изоляция.Тот же принцип применим ко всем объектам, от огромных зданий до чашки кофе на вынос.

TL; DR (слишком долго; не читал)

Пенополистирол Пенополистирол состоит из захваченных пузырьков воздуха, которые препятствуют прохождению тепловой энергии через него. Это предотвращает потерю тепла, что делает пенополистирол отличным изолятором.

Что такое пенополистирол

Пенополистирол - это товарный знак, используемый для обозначения пенополистирола, пластика на нефтяной основе. Он принадлежит компании Dow Chemical.Пенополистирол исключительно легкий, отличный амортизатор и эффективный изолятор, что делает его одним из наиболее распространенных пластиков, используемых при производстве упаковочных и изоляционных материалов. Пенополистирол также термопластичен, что означает, что он переходит из жидкого состояния в твердое при определенной температуре. Это позволяет изготавливать мелкие детали для изготовления материалов для рукоделия и одноразовых контейнеров.

Как течет тепловая энергия

Тепловая энергия теряется - она ​​перемещается от более горячего объекта к более холодному - одним из трех способов.Проводимость - это передача тепла, возникающая при столкновении крошечных частиц внутри тела. Ложка в горячем напитке проводит тепло, делая ручку теплой на ощупь. Конвекция - это передача тепла из-за объемного движения молекул в жидкостях, таких как жидкости и газы. Когда жидкость расширяется, она создает конвекционный ток при повышении температуры. Это объясняет, почему более теплый воздух поднимается вверх, а более холодный - опускается. Радиация - это испускание энергии в виде электромагнитных волн или движущихся субатомных частиц; он нагревает все твердое тело, через которое проходит, что поглощает его энергию.Чтобы сохранить что-то теплое, нужно прекратить передачу тепла от одного объекта к другому. Так работает изоляция.

Как изолирует пенополистирол

Пенополистирол состоит в основном из воздуха, что означает, что он плохо проводит тепло, но является отличным конвектором. Он задерживает воздух в небольших карманах, блокируя поток тепловой энергии. Это снижает как проводимость, так и конвекцию, и делает пенополистирол хорошим изолятором. С другой стороны, такие проводники, как металл, являются плохими изоляторами, потому что через них течет энергия.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *