СП63. Расчет минимального и максимального армирования плит
Минимальное и максимальное, как продольное так и поперечное армирование плит вычислено на основе конструктивных требований Раздела 10 СП63.13330.2018.
Минимальное и максимальное армирование плит согласно СП63.13330.2018
Минимальные / максимальные площади продольной и поперечной арматуры железобетонных плит определяются конструктивными требованиями Раздела 10 СП63.13330.2018.
Конструктивные требования к геометрическим размерам и армированию железобетонных элементов являются обязательными к выполнению согласно пункту 10.1.1 СП63.
Расчет продольного армирования реализован на основе требований пунктов 10.2.1, 10.2.2, 10.3.5, 10.3.6, 10.3.8 и 10.3.9; расчет поперечного – 10.3.12, 10.3.13, 10.3.14 и 10.3.16.
Требования в части возможности размещения арматуры (пункт 10.2.1), обеспечения качественного уплотнения бетонной смеси (пункт 10.3.5) и др. не имеют количественных критериев выполнения. Выполнение таких требований
1. Продольное армирование плит
1.1. Комментарии и ограничения в реализации
Расчет выполняется для продольных стержней арматуры фиксированного диаметра, расположенных в один ряд*.
1.2. Минимальное продольное армирование
As,minМинимальный процент продольной растянутой арматуры μmin, а также требуемой по расчету сжатой, в явном виде определен пунктом 10.3.6 в зависимости от вида напряженно-деформированного состояния (НДС) и формы поперечного сечения. Соответствующая площадь минимального армирования вычисляется по формуле As,min = μmin · b · (h – c)*.
1.3. Расчет максимального продольного армирования
As,maxМаксимальный процент армирования не определен нормами СП63 в явном виде, однако, может быть вычислен* на основе нормируемого минимального расстояния между арматурными стержнями и принятого максимального диаметра ds,max. Проектировщику необходимо контролировать выполнение качественных конструктивных требований (см. выше).
2. Поперечное армирование плит
Поперечное армирование устанавливается у всех поверхностей железобетонных элементов, вблизи которых расположены стержни продольной арматуры, пункт 10.3.11 СП63.13330.2018. В случае воздействия крутящих моментов, пункт 10.3.16 СП63, армирование должно образовывать замкнутый контур.
2.1. Комментарии и ограничения в реализации
Рассмотрено поперечное армирование в виде шпилек и/или ветвей хомутов, расположенных с фиксированным шагом sw под углом 90° к продольной оси балки. Стержни поперечного армирования имеют одинаковый номинальный диаметр dsw.
2.2. Расчет минимального поперечного армирования
Asw,minМинимальное армирование Asw,min плит вычислено* из условия размещения на ширине b – 2·cs целого числа поперечных стержней минимального диаметра dsw,min с стремящимся к максимальному по СП63 шагом sw,max. Шаг поперечных стержней по направлению оси плит принят равным sw,max.
2.3. Расчет максимального поперечного армирования
Asw,maxИспользование данного расчета означает факт согласия с Отказом от ответственности.
Замечания и предложения по данному расчету можно направить через форму обратной связи.
Любое использование материалов сайта допускается лишь с разрешения правообладателя и только со ссылкой на источник: www.RConcreteDesign.com
Расход арматуры на 1 м3 бетона: нормы, примеры расчетов
Для правильного расчета расхода арматуры на 1 м3 бетона необходимо соблюдать строительные нормы и требования по армированию железобетонных конструкций. Так как, для конструкций разного типа, процент содержания стальных стержней в железобетоне может существенно отличается.
Какие показатели влияют на расчет расхода
При расчете расхода арматуры для армирования железобетонных конструкций следует учесть:
- Вид и тип строения. Нормы армирования для каждой конструкции свои, они регламентируются, ГОСТ и СНиП.
- Марку бетона. Чем выше марка, тем больше у бетона показатель сопротивления сжатию и растяжению, данные характеристики учитываются при вычислениях.
- Размер и вес строения. Чем больше масса постройки, следовательно, тем больше процент содержания стали в бетоне.
- Класс арматуры. Показатели расчетного сопротивления на растяжение и сжатие у стержней более высокого класса выше.
Все вышеперечисленные характеристики учитываются при расчетах количества арматуры требуемого для армирования возводимой конструкции. От их величины зависит и объем требуемого материала на 1 м3 бетона. Так как эти показатели для каждой конструкции свои, то и расход для них будет разный.
Как рассчитывается расход арматуры на куб бетона
Согласно СП 52-101-2003 конструкцию можно назвать железобетонной, если площадь сечения продольных стальных стержней равна минимум 0,1 %, от площади сечения бетона. Максимальный процент содержания стальных стержней в бетоне равен 5, в местах стыковки, например колонн, этот показатель может доходить до 10. Рекомендуемый диапазон, это 0,5-3 % арматуры, от площади сечения бетона.
Исходя из конструктивных требований СП 52-101-2003, норма расхода арматуры для армирования железобетонных конструкций, находится в пределах от 20 до 430 кг на 1 м3 бетона.
Таблица расхода арматуры
В данной таблице, рассчитан вес арматуры, необходимый для армирования железобетонных конструкций, в зависимости её количества в процентах от площади сечения бетона.
Содержания арматуры, % | Масса арматуры на 1 м3 бетона, кг |
0.1 | 7.85 |
0.5 | 39.25 |
1 | 78.5 |
1.5 | 117.75 |
2 | 157 |
2.5 | 196.25 |
3 | 235.5 |
3.5 | 274.75 |
4 | 314 |
4.5 | 353.25 |
5 | 392.5 |
Примеры расчета расхода арматуры
Как уже было сказано выше, количество стержней требуемых для армирования зависит от типа конструкции, ниже приведены примеры как проводить расчёты для них.
Ленточный фундамент
Рассчитаем количество арматуры на 1 м3 бетона, необходимое для армирования ленточного фундамента – высота 1,2 м, ширина 0,4 м. Для продольного армирования используем стальные стержни диаметром 12 мм – 14 шт., для поперечного хомуты из прутов 8 мм – шаг 30 см, а также соединительные стержни с шагом 60 см.
Пример схемы усиления ленточного фундамента.
Порядок выполнения расчета расхода по схеме приведенной выше:
- Считаем площадь сечения бетона: 120*40=4800 см2.
- Площадь сечения продольной арматуры: 14*1,131=15,834 см2.
- Находим процент содержания продольных стержней в бетоне: 15,834/4800*100=0,329875%, округляем 0,33 %.
- С помощью таблицы расхода переводим проценты в кг, для этого: 0,33/0,1*7,85=25,905 кг.
- Для изготовления одного хомута необходимо 3 м прута толщиной 8 мм (вес 1 метра 0,395 кг), всего на 1 м3 фундамента уйдет 7 хомутов, а это: 7*0,395= 2,765 кг.
- Также понадобятся 4 соединительных стержня длиной 50 см, и диаметром 8мм, всего: 4*0,5*0,395=0,79 кг.
- Получаем на 1 м3 бетона ленточного фундамента при таком армировании, всего уйдет: 25,905+2,765+0,79=29,46 кг арматуры.
Так, рассчитав требуемый объем бетона и количество стержней на 1 м3, можно узнать, сколько тонн стали необходимо для армирования всего фундамента. Но также следует учесть количество и размер нахлестов арматуры, и подсчитать количество дополнительных элементов по усилению углов и других элементов.
Монолитная плита перекрытия
Рассчитаем на примере армирования плиты перекрытия толщиной 20 см, так как это самый распространённый размер. Шаг армирующей сетки 200 на 200 мм диаметр стержня 10 мм, усиления 14 мм – шаг 200 мм.
Схематический пример армирования перекрытия.
Порядок расчета расхода на 1 м3 перекрытия по схеме:
- На 1 м2 плиты уходит 20 м арматуры для вязки верхнего и нижнего слоя сетки.
- 1 м3 бетона занимает площадь 5 м2, следовательно: 5*20=100 метров – расход стержня для вязки сетки.
- Вес метра арматуры 10 мм – 0,617 кг. Получаем, 100*0,617=61,7 кг, расход продольных стержней для устройства сетки.
- На дополнительные усиления, понадобится около 50 метров стержня диаметром 14 мм, всего: 50*1,21=60,5 кг.
- Дополнительные элементы плиты (пространственные каркасы, «П» образные элементы), необходимо около 20 м стальных прутов 10 мм, всего: 20*0,617=12,34 кг.
- Всего расход: 61,7+60,5+12,34= 134,54 кг арматуры на 1 м3 бетона монолитной плиты перекрытия.
Таким образом, можно произвести расчеты для перекрытий различных конструкций. Но при этом следует ещё учесть расход на стыки, усиления в зоне продавливания, и другие дополнительные элементы, в зависимости от формы и особенностей строения.
Железобетонная колонна
Рассчитаем расход для армирования колонны 300 на 300 мм. Продольная арматура класса А500С диаметром 16 мм – 4 шт, поперечная А240 – 8 мм. Порядок расчета:
- Считаем размер площади сечения колонны: 30*30=900 см2.
- Площадь сечения арматуры равна: 4*2,01=8,04 см2.
- Рассчитываем процент содержания продольных прутов в бетоне: 8,04/900*100= 0,893 %.
- Переводим проценты в кг, для этого: 0,893/0,1*7,85= 70,1 кг.
- При таком сечении 1 м3 бетона в длину это 11 метров колонны.
- На 11 метр колонны при шаге 25 см уйдет около 45 хомутов.
- На 1 хомут уходит 1 метр стержня диаметром 8 мм весом 0,395 кг, значит всего на куб: 45*0,395=17,775 кг.
- Всего на куб бетона колонны уйдет, 70,1+17,775=87,875 кг арматуры.
Все расчеты по расходу стали являются теоретическими, к каждому случаю следует подходить индивидуально, учитывать все действующие нагрузки на конструкцию, так как от этого зависит минимальный процент армирования, а от него, то, сколько арматуры уйдет на 1 м3 бетона. Если остались вопросы, задавайте в комментариях, будем рады помочь.
Калькулятор Армирование_Ленты_Онлайн v.1.0 — армирование ленточного фундамента
Калькулятор Армирование-Ленты-Онлайн v.1.0
Расчет продольной рабочей, конструктивной и поперечной арматуры для ленточного фундамента. Калькулятор основан на СП 52-101-2003 (СНиП 52-01-2003, СНиП 2.03.01-84), Пособие к СП 52-101-2003, Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предв. напряжения).
Результаты
Параметры проектируемого фундамента
Ширина фундамента, м:
Высота фундамента, м:
Сечение ленты, м2:
Общая длина ленты, м:
Объем фундамента, м3:
Расчет арматуры
Продольная рабочая арматура
Диаметр арматуры, мм:
Расчитанная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:
Подобранная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:
Количество стержней арматуры в верхнем (нижнем) поясе, шт:
Количество стержней арматуры на сечение ленты, шт:
Общая площадь сечения арматуры, мм2:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м
Продольная конструктивная арматура (противоусадочная)
Диаметр арматуры не менее (оптимально 12мм), мм:
Количество стержней арматуры на сечение ленты, шт:
Количество горизонтальных рядов:
Расстояние между рядами (шаг), мм:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м3:
Поперечная арматура (хомуты)
Диаметр арматуры, мм:
Расстояние между хомутами (шаг), мм:
Количество хомутов на ленту, шт:
Длина одного хомута (с учетом крюков), м:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м3:
Общая масса и объем арматуры на ленту
Масса арматуры, кг:
Объем арматуры на ленту, м3:
Алгоритм работы калькулятора
Конструктивное армирование
Если выбран данный пункт меню, калькулятор рассчитает минимальное содержание рабочей продольной арматуры для конструкции фундамента согласно СП 52-101-2003. Минимальный процент армирования для железобетонных изделий лежит в диапазоне 0.1-0.25% от площади сечения бетона, равной произведению ширины ленты на рабочую высоту ленты.СП 52-101-2003 Пункт 8.3.4 (аналог Пособие к СП 52-101-2003 Пункт 5.11, Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.8)
Пособие к СП 52-101-2003 Пункт 5.11
В нашем случае минимальный процент армирования составит 0.1% для растянутой зоны. В связи с тем, что в ленточном фундаменте растянутой зоной может быть как верх ленты, так и низ, процент армирования составит 0.1% для верхнего пояса и 0.1% для нижнего пояса ленты.
Для продольной рабочей арматуры используются стержни диаметром 10-40мм. Для фундамента рекомендуется использовать стержни диаметром от 12мм.
Пособие к СП 52-101-2003 Пункт 5.17
Руководство по конструированию бетонных и ж/б изделий из тяжелого бетона пункт 3.11
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.27
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94
Расстояние между стержнями продольной рабочей арматуры
Пособие к СП 52-101-2003 Пункт 5.13 (СП 52-101-2003 Пункт 8.3.6)
Пособие к СП 52-101-2003 Пункт 5.14 (СП 52-101-2003 Пункт 8.3.7)
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.95
Конструктивная арматура (противоусадочная)
Согласно руководству по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (аналог Пособие к СП 52-101-2003 Пункт 5.16) для балок высотой более 700мм предусматривается конструктивная арматура по боковым поверхностям (2 прутка арматуры в одном горизонтальном ряду). Расстояние между стержнями конструктивной арматуры по высоте должно быть не более 400мм. Площадь сечения одной арматуры должна составлять не менее 0,1% от площади сечения, равной по высоте расстоянию между этими стержнями, по ширине половине ширины ленты, но не более 200мм.
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (Пособие к СП 52-101-2003 Пункт 5.16)
По расчету получается, что максимальный диаметр конструктивной арматуры составит 12мм. По калькулятору может получаться и меньше (8-10мм), но все же, чтобы иметь запас прочности лучше использовать арматуру диаметром 12мм.
Пример
Исходные данные:
- Размеры фундамента в плане: 10х10м (+одна несущая внутренняя стена )
- Ширина ленты: 0.4м (400мм)
- Высота ленты: 1м (1000мм)
- Защитный слой бетона: 50мм (выбран по умолчанию)
- Диаметр арматуры: 12мм
Расчет:
Рабочая высота сечения ленты [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр рабочей арматуры) = 1000 – (50 + 0.5 * 12) = 944 мм
Площадь сечения рабочей арматуры для нижнего (верхнего) пояса = (Ширина ленты * Рабочая высота сечения ленты) * 0.001 = (400 * 944) * 0.001 = 378 мм2
Подбираем кол-во стержней по СП 52-101-2003 приложения 1.
Сечение подбираем большее либо равное найденному сечению выше.
Получилось 4 стержня арматуры диаметром 12мм (4Ф12 А III) с площадью поперечного сечения 452мм.
Итак, мы нашли стержни для одного пояса нашей ленты (допустим нижнего). Для верхнего получится столько же. В итоге:
Кол-во стержней на нижний пояс ленты: 4
Кол-во стержней на верхний пояс ленты: 4
Общее кол-во продольных рабочих стержней: 8
Общее сечение продольной рабочей арматуры на ленту = Поперечное сечении одного стержня * Общее кол-во продольных стержней = 113.1 * 8 = 905мм2
Общая длина ленты = Длина фундамента * 3 + Ширина фундамента * 2 = 10 * 3 + 10 * 2 = 50м (47.6м в калькуляторе с учетом ширины ленты)
Общая длина стержней = Общая длина ленты * Общее кол-во продольных стержней = 47.6 * 8 = 400м = 381м
Общая масса арматуры = Масса одного метра арматуры (находим по таблице выше) * Общая длина стержней = 0.888 * 381 = 339кг
Объем арматуры на ленту = Сечение одной продольной арматуры * Общую длину стержней / 1000000 = 113.1 * 381 / 1000000 = 0.04м3
Расчетное армирование
Если выбран данный тип меню, то расчет продольной рабочей арматуры для растянутой зоны будет выполнен по формулам пособия к СП 52-101-2003.
В нашем случае растянутая арматура устанавливается сверху и снизу ленты, поэтому у нас будет рабочая арматура и в сжатой и в растянутой зоне.
Пример
Исходные данные:
- Ширина ленты: 0.4м
- Высота ленты: 1м
- Защитный слой бетона: 50мм
- Марка (класс) бетона: М250 | B20
- Диаметр арматуры: 12мм
- Класс арматуры: А400
- Макс. изгибающий момент в фундаменте: 70кНм
Расчет
Для нахождения Rb воспользуемся таблицей 2.2 пособия к СП 52-101-2003
Для нахождения Rs воспользуемся таблицей 2.6 пособия к СП 52-101-2003
Максимальный изгибающий момент [M] у нас был предварительно найден. Для его нахождения понадобится знать распределенную нагрузку от веса дома (включая фундамент). Для данных целей можно воспользоваться калькулятором: Вес-Дома-Онлайн v.1.0
Расчетная схема для нахождения изгибающего момента: балка на упругом основании.
Расчет для наглядности будем производить в [см].
Рабочая высота сечения [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр арматуры) = 100см – [5см + 0.6см] = 94.4см
Am = 700000кгс*см / [117кг/см2 * 40см * 94.4см * 94.4см] = 0.016
As = [117кгс/см2 * 40см * 94.4см] * [1 – кв. корень (1 – 2 * 0.016)] / 3650кгс/см2 = 2,06см2 = 206мм2
Теперь нам нужно сравнить площади сечения рабочей арматуры полученную по расчету и площадь сечения конструктивного армирования (0.1% от сечения ленты). Если площадь конструктивного армирования окажется больше расчетного, то принимается конструктивное, если нет то расчетное.
Площадь сечения растянутой арматуры при конструктивном армировании (0.1%): 378мм2
Площадь сечения растянутой арматуры при расчете: 250мм2
В итоге выбираем площадь сечения при конструктивном армировании.
Поперечное армирование (хомуты)
Поперечное армирование рассчитывается по данным пользователя.
Нормативы поперечного армирования
Пособие к СП 52-101-2003 Пункт 5.18
Пособие к СП 52-101-2003 Пункт 5.21
Пособие к СП 52-101-2003 Пункт 5.21
Пособие к СП 52-101-2003 Пункт 5.23
Пособие к СП 52-101-2003 Пункт 5.20
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.105
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.106
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.107
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.109
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.111
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 2.14
Пособие к СП 52-101-2003 Пункт 5.24
Пособие к СП 52-101-2003 Пункт 5.22
Защитный слой бетона
Пособие к СП 52-101-2003 Пункт 5.6
Пособие к СП 52-101-2003 Пункт 5.8 (Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.4)
Полезное
Нормативная документация
СП 52-101-2003 Бетонные и жб конструкции без предв. напряжения арматуры
Пособие к СП 52-101-2003 по проектированию бетонные и жб конструкции без предв. напряжения арматуры
СНиП 2.03.01-84 Бетонные и железобетонные конструкции
Руководство по конструированию бетонных и жб конструкций из тяжелого бетона (без предв. напряжения)
Книги
Армирование элементов монолитных железобетонных зданий И.Н. Тихонов 2007г.
Строительные калькуляторы
Расчет железобетонной плиты фундамента по раскрытию нормальных трещин (СП)
Цель: Проверка расчета ширины раскрытия трещин в постпроцессоре «Железобетон» вычислительного комплекса SCAD
Задача: Проверить правильность анализа раскрытия нормальных трещин.
Ссылки:
1. Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003), 2005, с. 155-157.
2. Перельмутер М.А., Попок К.В., Скорук Л.Н. Расчет ширины раскрытия нормальных трещин по СП 63.13330.2012, Бетон и железобетон , 2014, №1, с.21-22.
Файл с исходными данными:
SCAD 43 SP.spr
отчет – SCAD 43 SP-2003.doc
Соответствие нормативным документам: СП 52-101-2003.
Исходные данные:
b×h = 1150×300 мм | Размеры сечения плиты |
а = 42 мм | Расстояние до ц.т. растянутой арматуры |
Asw = 923 мм2 (6Ø14) | Площадь сечения растянутой арматуры |
Мl = 50 кНм | Изгибающий момент в расчетном сечении от постоянных и длительных нагрузок |
Мsh = 10 кНм | Изгибающий момент от кратковременных нагрузок |
Класс бетона В15 | |
Класс арматуры А400 |
Результаты расчета SCAD:
N Макс. 0 Т Макс. 0 Т | My Макс. 0 кН*м Макс. 60 кН*м | Mz
|
Mk
| Qz Макс. 0 Т Макс. 0 Т | Qy
|
Длина стержня 1 м |
Конструктивная группа Балка
Коэффициент надежности по ответственности γn = 1
Тип элемента — Изгибаемый
Напряженное состояние — Одноосный изгиб
Максимальный процент армирования 10
Коэффициенты учета сейсмического воздействия | |
---|---|
Нормальные сечения | 0 |
Наклонные сечения | 0 |
Расстояние до ц.т. арматуры | |
---|---|
a1 | a2 |
мм | мм |
42 | 42 |
Арматура | Класс | Коэффициент условий работы |
---|---|---|
Продольная | A400 | 1 |
Поперечная | A240 | 1 |
Бетон
Вид бетона: Тяжелый
Класс бетона: B15
Коэффициенты условий работы бетона | ||
---|---|---|
γb1 | учет нагрузок длительного действия | 1 |
γb2 | учет характера разрушения | 1 |
γb3 | учет вертикального положения при бетонировании | 1 |
γb4 | учет замораживания/оттаивания и отрицательных температур | 1 |
Влажность воздуха окружающей среды — 40-75%
Трещиностойкость
Ограниченная ширина раскрытия трещин
Требования к ширине раскрытия трещин выбираются из условия сохранности арматуры
Допустимая ширина раскрытия трещин:
Непродолжительное раскрытие 0,4 мм
Продолжительное раскрытие 0,3 мм
Конструктивная группа Балка. Элемент № 1
Длина элемента 1 м
Заданное армирование
Участок | Арматура | Сечение |
1 | S1 — 6Ø14
|
Результаты расчета | |||
---|---|---|---|
Участок | Коэффициент использования | Проверка | Проверено по СНиП |
1 | 0,97 | Ширина раскрытия трещин (длительная) | п.п. 7.2.3, 7.2.4, 7.2.12 |
Сравнение решений
Проверка | ширина раскрытия трещин (длительная) |
Пособие | 0,306/0,3 = 1,02 |
SCAD | 0,97 |
Отклонение, % | 4,9 % |
Комментарии
- Значение полного момента, действующего в сечении, М = Ml + Msh = 50 + 10 = 60 кН∙м, коэффициент длительной части равен Ml /М = 50/60 = 0,833.
- Отклонение результатов SCAD от теоретического решения связано с тем, что в SCAD для обеспечения вычислительной устойчивости рассматривается не идеальные диаграммы работы материалов, а диаграммы, в которых горизонтальная часть графика σ(ε) имеет небольшой наклон.
Армирование монолитных стен СНИП — Клуб Мастеров
14.Допуски и отклонения, контроль качества. Опалубка
Допускаемые отклонения положения и размеров установленной опалубки и поддерживающих лесов от проекта не должны превышать следующих значений, мм:
Отклонение расстояния между опорами опалубки изгибаемых элементов и расстояния между связями вертикальных поддерживающих конструкций от проектных размеров:
на 1 м длины. +25
на весь пролет, не более. +75
Отклонение от вертикали или проектного наклона плоскостей опалубки и их пересечения:
на 1 м высоты. ±5
на всю высоту фундаментов. +20
то же стен и колонн до 5 м. +10
— « — стен и колонн более 5м. +15
Смещение осей опалубки от проектного положения:
стен и колонн. +8
балок, прогонов, арок. +10
фундаментов под стальные конструкции. 1,1 L (L-длина пролета или шага конструкции, м)
Смещение осей перемещаемой или переставляемой опалубки относительно осей сооружения. +10
Отклонение внутренних размеров опалубки балок, колонн и расстояний между внутренними поверхностями опалубки стен + 3
Местные неровности опалубки при проверке двухметровой рейкой. +3
Армирование.
Перед началом бетонирования проверяют точность установки и качество закрепления арматурных стержней, сеток или каркасов, а также соответствие обеспеченной толщины защитных слоев нормам и техническим условиям. Необходимо проследить за сухостью и чистотой стержней арматуры, чтобы не снижалось их сцепление с бетоном. Допустимые отклонения при установке арматуры составляют, мм:
в расстояниях между отдельно установленными рабочими стержнями:
для колонн, балок и арок. +10
— « — плит, стен и фундаментов под каркас конструкции + 20
—«— массивных конструкций. +30
в расстояниях между рядами арматуры при армировании в несколько рядов по высоте:
в конструкциях толщиной более 1 м и фундаментах под конструкции и технологическое оборудование. +20
в балках, арках и плитах толщиной более 100 мм . +5
в плитах толщиной до 100 мм при проектной толщине защитного слоя до 10 мм. +3
в расстояниях между хомутами балок и колонн и между связями арматурных каркасов. +10
от вертикали или горизонтали хомутов (за исключением, когда наклонные хомуты предусмотрены проектом) . 10
в положении осей стержней в торцах сварных каркасов, стыкуемых на месте с другими каркасами при диаметре:
40 мм и более. ±10
в расположении стыков стержней по длине элемента:
в каркасах и тонкостенных конструкциях. +25
в массивных конструкциях. +50
в положении элементов арматуры массивных конструкций (каркасов, балок, ферм) от проектных:
Бетонирование.
Приемку законченных бетонных и железобетонных конструкций начинают с внешнего осмотра и проверки соответствия размеров и формы конструкции проекту. Для этого производят контрольные замеры, используя контрольно-измерительные приборы — металлические линейки, складные метры или рулетки, отвесы, уровни, деревянные остроганные рейки, нивелир. При приемке законченных бетонных и железобетонных конструкций проверяют:
соответствие конструкций рабочим чертежам и правильность их расположения в плане и по высоте;
качество бетона по прочности, а в необходимых случаях по морозостойкости, водонепроницаемости и другим показателям, обусловленным проектом;
наличие и соответствие проекту отверстий, каналов, деформационных швов, а также закладных деталей, патрубков и т.п.;
качество примененных в конструкции материалов, полуфабрикатов и изделий.
Отклонения в размерах и положении выполненных железобетонных монолитных конструкций (если допуски специально не оговорены в проекте производства работ) составляют, мм:
Вертикальность плоскостей и линий их пересечений или соответствие их проектному наклону на всю высоту конструкции:
для фундаментов. +20
« стен и колонн, поддерживающих монолитные покрытия и перекрытия. ±15
« стен и колонн, поддерживающих сборные балочные
Горизонтальность плоскостей на всю длину выверяемого
Местные неровности поверхности бетона при проверке рейкой
длиной 2 м (кроме опорных поверхностей). ±5
Длина или пролет элементов. ±20
Размеры поперечного сечения элементов. +6; -3
Отметки поверхностей и закладных частей, служащих опорами для металлических или сборных железобетонных колонн и других сборных элементов -5
Расположение анкерных болтов:
в плане внутри контура опоры. 5
в плане вне контура опоры. 10
Разница отметок по высоте на стыке (использовался комплект изоляции стыка) двух смежных поверхностей . 3
Приемку законченных бетонных или железобетонных конструкций или частей сооружения оформляют актом освидетельствования скрытых работ или актом на приемку ответственных конструкций. В процессе бетонирования обязательно ведут журнал бетонных работ, в котором отмечают все особенности производства работ, условия внешней среды, а также фамилии исполнителей и даты укладки бетона.
Допускаемые отклонения для монолитных бетонных и железобетонных конструкций и сооружений
Отклонения в размерах и положении выполненных монолитных бетонных и железобетонных конструкций и сооружений от проектных не должны превышать допускаемых отклонений, указанных в таблице ниже.
Допускаемые отклонения для монолитных бетонных и железобетонных конструкций и сооружений
Отклонения | Величина допускаемых отклонений, мм |
Отклонения плоскостей и линий их пересечения от вертикали или от проектного наклона на всю высоту конструкции: | |
для фундаментов | 20 |
для стен, возведенных в неподвижной опалубке, и для колонн, поддерживающих монолитные перекрытия | 15 |
для колонн каркаса, связанных подкрановыми и обвязочными балками | 10 |
для сооружений, возведенных в скользящей опалубке | 1/500 высоты сооружения, но не более 100 мм |
для зданий, возведенных в скользящей опалубке | 1/1000 высоты здания, но не более 50 мм |
Отклонения горизонтальных плоскостей от горизонтали: | |
на 1 м плоскости в любом направлении | 5 |
на всю плоскость выверяемого участка | 20 |
Местные отклонения верхней поверхности бетона от проектной при проверке конструкций рейкой длиной 2 му кроме опорных поверхностей | 8 |
Отклонения в длине или пролете элементов | ±20 |
Отклонения в размерах поперечного сечения элементов | ±8 |
Отклонения в отметках поверхностей и закладных частей, служащих опорами для металлических или сборных железобетонных колонн и других сборных элементов | ±5 |
Отклонения от проектных размеров в отдельных местах при устройстве дорожных покрытий: | |
отметка верха покрытий (на пикет) | ±50 |
поперечный уклон | ±0,25%; —0,5 % |
ширина покрытия | ± 50 |
толщина плиты | ±5% |
Отклонения от проектных размеров пазов, шахт и других аналогичных устройств в гидротехническом строительстве: | |
местоположение | ±10 |
расстояние между осями | ±15 |
поперечные размеры | ±10 |
Отклонения в расположении анкерных болтов: | |
в плане при расположении внутри контура опоры | 5 |
то же, вне контура опоры | 10 |
по высоте | ±20 |
Отклонения при разбивке осей оснований, фундаментов и других опор под металлические конструкции с нефрезерованными торцами | 1,1 vL (L-величина пролета шага конструкции) |
Нормы расхода лесоматериалов с учетом оборачиваемости и потерь. При определении расхода лесоматериалов на устройство опалубки и лесов следует Норму расхода, исчисленную на первоначальное их устройство, умножать на приведенный в таблице ниже коэффициент (К.).
Коэффициент К, учитывающий оборачиваемость и потери лесоматериалов
Число оборотов | Потери лесоматериалов при каждом обороте, проц. | |||
5 | 10 | 15 | 20 | |
1 | 0,59 | 0,612 | 0,693 | 0,655 |
2 | 0,32 | 0,356 | 0,392 | 0,428 |
3 | 0,23 | 0,271 | 0,311 | 0,352 |
4 | 0,185 | 0,288 | 0,27 | 0,314 |
5 | 0,158 | 0,202 | 0,247 | 0,291 |
6 | 0,14 | 0,185 | 0,231 | 0,276 |
7 | 0,127 | 0,174 | 0,219 | 0,265 |
8 | 0,118 | 0,165 | 0,21 | 0,257 |
9 | 0,11 | 0,157 | 0,203 | 0,251 |
10 | 0,104 | 0,151 | 0,198 | 0,246 |
Потери лесоматериалов при каждом обороте и число оборотов принимаются по данным наблюдений за фактическим использованием опалубки.
Их значения не должны превышать:
- для фундаментов под конструкции и оборудование объемом до 10 м 3 — 0,352 и более 10 м 3 – 0,291;
- для подпорных стен подвалов, стен зданий и перегородок — 0,243, для прочих конструкций — 0,246.
Пример. При установке опалубки колонны определилась ее оборачиваемость 5 раз, потери при каждом обороте 15% досок.
Норма расхода досок IV сорта толщиной 40 мм на первоначальное устройство 10 м 2 опалубки прямоугольных столбов фундаментов — 0,11 м 3 .
С учетом коэффициента К норма расхода досок на каждые 10 опалубки: 0,11 X 0,247 — 0,027 м 3 . Эта норма принимается для учета за расход материалов, так как она не превышает допускаемую норму.
«Справочник строителя», М.С.Екельчик
Группа Коэффициент значимости, К3 Наименование конструктивных частей (видов работ) зданий и сооружений Жилые и культурно-бытовые здания 1 1,5 Фундаменты, стены, перекрытия, перегородки, крыша, полы 2 0,5 Штукатурные работы, малярные работы, наружная отделка, окна, двери, благоустройство 3 1 Отопление, водоснабжение, канализация, вентиляция, электрооборудование, газификация Промышленные одноэтажные здания 1 1,5 Фундаменты, каркас, покрытие, заполнение степ, кровля 2…
При одновременной работе нескольких строительных организаций на строящемся объекте генеральный подрядчик обязан с участием субподрядных организаций разработать и по. согласованию с ними утвердить график производства совмещенных работ и мероприятия по технике безопасности и производственной санитарии, обязательные для всех организаций, участвующих в строительстве. Контроль за выполнением этих мероприятий возлагается на генерального подрядчика; ответственность за безопасное ведение…
Правовые нормы охраны труда установлены статьями 153—173 КЗоТ УССР и 160—172 КЗоТ РСФСР. Основным законодательным документом, в котором изложены требования безопасности в строительстве, является глава СНиП III-A.11—70, введенная в действие с 1 января 1971 г., взамен СНиП III-A.11—62. Она распространяется на строительно-монтажные работы независимо от ведомственной подчиненности выполняющих их организаций. Кроме указанной главы СНиП, необходимо…
Проектные организации несут ответственность: наряду со строительно-монтажными организациями за качество строительства, по которому осуществляется авторский надзор; за тщательное осуществление авторского надзора и своевременное предъявление требований по устранению выявленных недостатков. Проектные организации, осуществляющие авторский надзор, вправе требовать от строительно-монтажных организаций приостановления в необходимых случаях строительно-монтажных работ (при неудовлетворительном их качестве, отступлении от проекта, нарушении установленной технологической…
Затраты, связанные с осуществлением авторского надзора, производятся за счет средств, выделяемых на строительство объектов, и включаются в сводную смету, а порядок расчетов определяется в договорах на авторский надзор, заключаемых проектными организациями, заказчиками. Работники проектных организаций, осуществляющие авторский надзор за строительством предприятий, зданий и сооружений и за комплексной застройкой микрорайонов и жилых кварталов, премируются за успешное…
Армирование железобетонных конструкций: минимальный и максимальный процент усиления. Защитный слой бетона
Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.
Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.
Усиление фундамента под силу выполнить своими руками
В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.
Армирование бетона
Заливка монолитной плиты с усилительным каркасом: фото
Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).
В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.
Минимальный процент усиления
Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.
Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”
Готовый каркас и металлического прута
Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.
Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.
- Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
- Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
- Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).
Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.
Максимальный процент усиления
Сборка каркаса перед заливкой
В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.
Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.
Как и в предыдущем случае, здесь также имеются нормативы.
- Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;
Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.
Защитный слой бетона
Схема Ж/б в разрезе
Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).
Толщина слоя над металлическим каркасом составляющими должна составлять.
В стенках и плитах (толщиной мм) не менее:
- Свыше 100 мм – 15 мм;
- До 100 мм и включительно – 10 мм;
В ребрах и балках:
- Свыше 250 мм – 20 мм;
- До 250 и включительно – 15 мм;
В фундаментных балках:
Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.
Укрепление лестничного пролета
- Монолитных с цементной подушкой – 35 мм;
- Сборных – 30 мм
- Монолитных без цементной подушки – 70 мм;
Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”
Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.
Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).
Общие правила армирования монолитных конструкций.
9.1 При конструировании основных несущих элементов конструктивной системы (колонн, стен, плит перекрытий и покрытий, фундаментных плит) следует соблюдать общие требования по конструированию железобетонных конструкций согласно СП 52-103, а также рекомендации раздела 7 настоящего СП.
9.2 Колонны армируют продольной, как правило, симметричной арматурой, расположенной по контуру поперечного сечения и, в необходимых случаях, внутри поперечного сечения, и поперечной арматурой по высоте колонны, охватывающей все продольные стержни и расположенной по контуру и внутри поперечного сечения.
Конструкцию поперечной арматуры в пределах поперечного сечения и максимальные расстояния между хомутами и связями по высоте колонны следует принимать такими, чтобы предотвратить выпучивание сжатых продольных стержней и обеспечить равномерное восприятие поперечных сил по высоте колонны.
9.3 Стены рекомендуется армировать, как правило, вертикальной и горизонтальной арматурой, расположенной симметрично у боковых сторон стены, и поперечными связями, соединяющими вертикальную и горизонтальную арматуру, расположенную у противоположных боковых сторон стены.
Максимальное расстояние между вертикальными и горизонтальными стержнями, а также максимальное расстояние между поперечными связями следует принимать такими, чтобы предотвратить выпучивание вертикальных сжатых стержней и обеспечить равномерное восприятие усилий, действующих в стене.
9.4 На торцевых участках стены по ее высоте следует устанавливать поперечную арматуру в виде П-образных или замкнутых хомутов, создающих требуемую анкеровку концевых участков горизонтальных стержней и предохраняющих от выпучивания торцевые сжатые вертикальные стержни стен.
9.5 Сопряжения стен в местах их пересечения следует армировать по всей высоте стен пересекающимися П-образными или гнутыми хомутами, обеспечивающими восприятие концентрированных горизонтальных усилий в сопряжениях стен, а также предохраняющими вертикальные сжатые стержни в сопряжениях от выпучивания и обеспечивающими анкеровку концевых участков горизонтальных стержней.
9.6 Армирование пилонов, занимающих по своим геометрическим характеристикам промежуточное положение между стенами и колоннами, производят как для колонн или как для стен в зависимости от соотношения длины и ширины поперечного сечения пилонов.
9.8 Армирование плоских плит следует осуществлять продольной арматурой в двух направлениях, располагаемой у нижней и верхней граней плиты, а в необходимых случаях (согласно расчету) и поперечной арматурой, располагаемой у колонн, стен и по площади плиты.
9.9 На концевых участках плоских плит следует устанавливать поперечную арматуру в виде П-образных хомутов, расположенных по краю плиты, обеспечивающих восприятие крутящих моментов у края плиты и необходимую анкеровку концевых участков продольной арматуры.
9.10 Количество верхней и нижней продольной арматуры в плите перекрытий (покрытия) следует устанавливать в соответствии с действующими усилиями. При этом рекомендуется для нерегулярных конструктивных систем с целью упрощения армирования устанавливать: нижнюю арматуру одинаковой по всей площади рассматриваемой конструкции в соответствии с максимальными значениями усилий в пролете плиты; основную верхнюю арматуру принимать такой же, как и нижнюю, а у колонн и стен устанавливать дополнительную верхнюю арматуру, которая в сумме с основной должна воспринимать опорные усилия в плите. Для регулярных конструктивных систем продольную арматуру рекомендуется устанавливать по надколонным и межколонным полосам в двух взаимно перпендикулярных направлениях в соответствии с действующими в этих полосах усилиями.
Для сокращения расхода арматуры можно также рекомендовать установку по всей площади плиты нижней и верхней арматуры, отвечающей минимальному проценту армирования, а на участках, где действующие усилия превышают усилия, воспринимаемые этой арматурой, устанавливать дополнительную арматуру, в сумме с вышеуказанной арматурой, воспринимающей действующие на этих участках усилия. Такой подход приводит к более сложному армированию перекрытий, требующему более тщательного контроля арматурных работ.
Армирование фундаментных плит следует производить аналогичным образом.
9.11 В толстых фундаментных плитах помимо продольной арматуры, устанавливаемой у верхней и нижней граней плиты, следует предусматривать продольную арматуру, располагаемую в средней зоне по толщине плиты.
Для предотвращения продавливания плиты возле колонн и стен в плиты рекомендуется дополнительно укладывать в качестве одного из возможных способов сталефибробетон по СП 52-104.
9.12 Для сталебетонных конструкций в качестве жесткой арматуры следует применять прокатные стальные профили и другие элементы, марки стали которых принимать согласно СниП II-23.
9.13 Для снижения расхода стали и облегчения бетонирования в колоннах, балках и фундаментных плитах вместо стыковки стержневой арматуры диаметром 20 мм и более путем перепуска рекомендуется ее стыковать в торец с помощью ванной сварки или обжимных муфт.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
60. Каковы особенности расчета переармированных сечений? Чем определяется максимальный и минимальный процент армирования?
Предельный процент армирования изгибаемых элементов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий RbbxR -RsAsp =0 при высоте сжатой зоны, равной граничной. При этом для прямоугольного сечения RbbxR-RsAsp=0. Отсюда µ=100ξR(Rb/Rs)
Предельный процент армирования с учетом значения ξrпо формуле для предварительно напряженных элементов
µ=100ωRb/[(1+(σsr/σscu)(1-ω/1.1)Rs] для элементов без предварительного напряжения при σsr=σscu=Rs :
µ=100ωRb/[2(1-ω/1.1)Rs]
Предельный процент армирования с повышением класса арматуры уменьшается. Сечения изгибаемых элементов, имеющие процент армирования, превышающий предельный, называют переармированными.
Нижний предел процента армирования установлен в нормах из конструктивных соображений для восприятия не учитываемых расчетом различных усилий (усадочных, температурных и т. п.). Для изгибаемых и внецентренно растянутых прямоугольных сечений шириной b, высотой h минимальный процент армирования продольной растянутой арматурой µ1 =0,05 %; для внецентренно растянутых элементов в случае
В тавровых сечениях с полкой в сжатой зоне минимальный процент армирования относится к площади сечения ребра, равной b*h.
61. Выведите формулы для расчета прямоугольных сечений изгибаемых элементов с двойной арматурой. Какие условия обеспечивают прочность изгибаемых элементов прямоугольного профиля с двойной арматурой (рассмотрите 2 типа задач)?
Элементы с двойной арматурой – это такие элементы, у которых арматуру по расчету устанавливают в растянутой и сжатой зонах.
Сжатую арматуру устанавливают по расчету, когда прочность бетона сжатой зоны недостаточна, т.е. когда x£xR.
Элементы с двойной арматурой требуют повышенного расхода стали, поэтому их применение должно быть обосновано. Двойную арматуру приходиться принимать, когда сечение элемента ограничено и невозможно увеличение класса бетона. Сжатую арматуру устанавливают также при воздействии на элемент изгибающих моментов двух знаков (неразрезные конструкции и т.д.), а также для уменьшения эксцентриситета предварительного обжатия в преднапряженных элементах.
Формулы для расчета нормальных сечений элементов с двойной арматурой получены из тех же условий, что и для элементов с одиночной.(рис)
Прочность сечения будет обеспечена, если расчетный момент от внешней нагрузки не превысит расчетного момента внутренних усилий, или, иначе, SМ = 0.
Уравнение равенства моментов относительно центра тяжести растянутой арматуры:
M £ Nb × (h0 — x/2) + Ns’ × (h0 – a’) или M £ Rb × b × x × (h0 — x/2) + Rsc × As’ × (h0 – a’)
и уравнение равенства моментов относительно центра тяжести сжатой зоны бетона:
M £ Ns × (h0 — x/2) + Ns’ × (x/2 — a’) или M £ ss × As × (h0 — x/2) + Rsc × As’ × (x/2 — a’)
где а’ – расстояние от сжатой грани сечения до центра тяжести сжатой арматуры;
As’ – площадь сечения сжатой арматуры.
Составляется также вспомогательное уравнение равенства нулю суммы проекций усилий на продольную ось элемента:
Nb × b × x + Ns’ × As’ – Ns × As = 0 или ss × As = Rb × b × x + Rsc × As’ .
Исследования показали, что сечение будет наиболее экономичным, когда на бетон передается максимально возможное сжимающее усилие. Это будет иметь место при x=xR. В этом случае площади сжатойAs’ и растянутойAsарматуры определяют приведенных уравнений, принимаяx=xR=xR×h0. Таким образом:
Rsc×As’×(h0–a’) =M-Rb×b×xR×(h0-xR/2)
Rs × As = Rb × b × xR + Rsc × As’
Задача типа 1. Заданы размеры b и h. Требуется определить площадь сечения арматуры As и As’.
As’= [M — Rb × b × xR × (h0 — xR/2)]/[ Rsc-(h0 – a’)]
As= [Rb × b × xR + Rsc × As’]/Rs
Задача 2 типа. Заданы размеры сечения b и h и площадь сечения сжатой арматуры As’. Определить площадь сечения арматуры As
αm = (M-Rsc·A’S·zs)/(b·h20·Rb) по таблице находим ξ, проверяя условие ξ< ξR.
AS=M/(ξ·h0·RS)=[As’·Rsc +ξ·b·h0·Rb]/Rs
Если αm> αR, заданного количества арматуры по площади сечения As’ недостаточно.
Армирование монолитных стен СНИП — МастерСам
СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА
5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).
Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.
5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .
5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.
Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .
5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.
5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.
Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона.
Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов.
5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).
Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.
Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.
Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:
сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;
плиты утеплителя устанавливают после бетонирования стен.
При этом необходимо применять калиброванные по толщине плиты утеплителя.
При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.
5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).
Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).
Рис. 26. Наружные стены монолитных зданий
а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона
1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон
5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:
если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;
в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .
Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.
Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.
Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.
5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.
Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.
5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.
5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.
В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.
5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.
Армирование ленточного фундамента по СНиП
Армирование ленточного фундамента: СНиП
Вес любого здания через фундамент передается на грунт. Основание здания не позволяет строению разрушиться. Все требования к фундаментам и информация о них собрана в сборники правил СНиП. Руководствуясь этими документами можно сделать вывод, что армированный ленточный фундамент является самым распространенным при возведении зданий в местах неглубоко промерзающих почв.
Цель армирования
Ленточный фундамент имеет не обычную конструкцию: его длина во много раз больше, чем ширина и глубина. Вследствие такого устройства основы здания почти все нагрузки, которые на него действуют, распределяются вдоль.
Самостоятельно бетонный монолит не может выдержать это давление. И, чтобы сгладить силы, действующие на разрыв, применяется укрепление бетонного фундамента стальной арматурой. Этот процесс и получил название армирование.
Основным нагрузкам подёргается верхняя часть фундамента (сжатие) и нижняя(растяжение), поэтому следует усиливать именно эти части основания. Для середины основания это не имеет смысла, потому что там не наблюдается повышенных нагрузок.
Требования
Основные проекты и условия возведения конструкций из железобетона указаны в СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Данный эталон устанавливает, как правильно монтировать стальную арматуру. Основные условия, предъявляемые к процессу:
- • Размеры основания не должны мешать правильному положению арматуры в траншее.
- • Зашитый покров над арматурой должен предохранять арматуру от воздействия внешней среды и надежно сопротивляться нагрузкам.
- • Расстояние между отдельными прутьями не должно препятствовать правильной состыковке и заполнению бетоном.
При усилении фундамента следует использовать арматуру только высокого качества. Монтирование каркасных сеток для ленточных фундаментов должно происходить в строгом соответствии со СНиП 3.03.01-87 «Несущие и ограждающие конструкции».
Основные принципы
Перед заливкой ленточного фундамента бетоном необходимо грамотно скомпоновать армированный пояс с помощью стальной арматуры. Толщина и глубина основания зависит от будущих нагрузок на здание и используемых материалов для стен.
Ленточный фундамент можно обустроить двумя способами:
- • использовать готовые блоки заводского изготовления;
- • залить на месте в готовую траншею.
При использовании заводских блоков можно выделить слабое место: скрепление изделий между собой. Их соединяют армированным бетоном, что не очень надежно. А при заливке бетонным раствором получится надежный и прочный монолитный фундамент.
Монтаж каркаса из арматуры на месте строительства требует соблюдения ряда важных условий:
- • Арматура должна находится на расстоянии не менее 5 см от края опалубки.
- • Забиваются вертикальные прутки, к которым потом привязываются горизонтальные ряды. Можно и приварить с помощью сварки – это увеличит темп армирования. Но при нагреве металл теряет свою прочность и лучше все-таки вязать мягкой проволокой.
- • Один горизонтальный пояс способен сдерживать вертикальную деформацию примерно в пространстве 30-35 см. То есть, для основы высотой в 70 см достаточно двух поясов, а если высота больше, то и количество рядов нужно увеличивать.
- • Очень важное значение имеет монтаж армирования в углах фундамента, так как на них приходится самая большая часть нагрузок. При угловом соединении лучше согнуть свободные концы буквой «Г» и прикрепить их к вертикальным пруткам: внутренние к внутренним, а внешние – к внешним.
При проектировании и армирование фундаментов возникает множество вопросов, и чтобы избежать проблем при изготовлении армированного каркаса своими руками, нужно внимательно изучить все нормы и требования ГОСТов, и СНиП.
Армирование ленточного фундамента – правила, схемы, инструкции
Возведение фундаментного основания зданий это важнейший этап строительства, который определяет дальнейшую надежность и долговечность постройки. Поэтому при выполнении этой работы не допустима непродуманная экономия на расходах материалов и самовольные изменения проектных решений принятых специалистами.
Ленточные фундаменты пользуются заслуженной популярности при строительстве объектов индивидуальной застройки. Это объясняется возможностью универсального применения для самых различных зданий на большинстве распространенных типов грунтов.Они отличаются высоким уровнем надежности и возможностью выполнения монтажа своими руками. Ленточные фундаменты нельзя применять для строительства зданий на неустойчивых грунтах, в заболоченной местности и на вечной мерзлоте.
Описание конструкции ленточного фундамента
Несущее основание этого типа представляет собой заглубленную в землю железобетонную монолитную ленту. Она монтируется под все несущие стены и тяжелые перегородки. Глубина заложения фундамента определяется в зависимости от следующих исходных параметров:- общий вес строительных конструкций здания с учетом снеговых нагрузок, мебели и установленного оборудования;
- тип и строение грунтов на участке;
- глубина залегания грунтовых вод;
- нижняя точка промерзания грунта в холодное время года.
В результате фундамент небольших легких зданий домов быть мелкозаглубленным и иметь нижнюю опору на глубине 500-800 мм. Для тяжелых больших зданий и при наличии подвала подошва монолитной конструкции должна находиться ниже точки промерзания грунта более чем на 400 мм.
Ширина фундаментной ленты в ее верхней части зависит от толщины возводимых стен и должна превышать ее более чем на 100 мм, но в любом случае не мене 300 мм. В нижней части может быть предусмотрено наличие более широкой опорной подошвы, которая устраивается при большом весе строительных конструкций или слабых грунтах. Однако правильный расчет такой опоры довольно сложная инженерная задача. Данные о поперечном сечении фундаментной ленты и об общей массе строительных конструкций позволяют правильно рассчитать конструкцию армирующего каркаса.
Расчет фундамента должен быть выполнен на профессиональном уровне
Наличие армирующего каркаса повышает прочность фундаментного монолита и позволяет более равномерно распределить весовую нагрузку на грунт. При проектировании элементов здания всегда учитываются реальные данные, на основании которых получают результат способный обеспечить долговечность и надежность постройки.
На основании этого можно сделать вывод, что для разработки проекта необходимы специальные знания и опыт подобных работ. Поэтому выполнение расчетов и определение проектных схем рекомендуется поручить специалисту, а вот монтажные работы можно выполнять самостоятельно. Если только вы не собираетесь построить небольшой сарай, баньку, хозяйственные постройки или легкий гараж.Расчет необходимого количества материалов
При определении нужного количества арматуры следует учитывать, что продольные струны и поперечные прутки имеют разный диаметр и цену. Имея проект подсчитать количество необходимого для армирования материала не сложно. Только следует предусмотреть запас 7-10% на остатки в виде коротких обрезков и на нахлесты при соединении прутов на длинных участках.
Если вы производите расчеты самостоятельно, то рекомендуется принять:
- диаметр арматуры 10 мм для продольных участков длиной до 3-х метров;
- 12 мм на участках более 3-х метров;
- поперечная арматура с гладкой поверхностью диаметром 8 мм.
Кроме этого не забудьте приобрести вязальную проволоку (сварка прута для железобетона запрещена), а так же фиксаторы «звездочка» и «опора», которые устанавливаются на каждый крайний прут через каждые 3 метра.
Общее количество продольных армирующих струн определяется по суммарному сечению. Согласно СНиП общая площадь сечения арматуры должна быть не менее 0,1% от поперечного сечения фундаментной ленты. Если в результате вы определите, что для армирования достаточно всего 2-х прутов, то эту количество необходимо увеличить до 4-х. При этом принимая минимальное сечение прутов в 10 мм. Поперечные прутки никаких нагрузок не несут и считаются фиксирующими элементами.
Шаг поперечных прутков (хомутов) должен быть не более трех четвертей высоты фундаментной ленты и меньше 500 мм. В местах примыкания двух прямых конструкций и на углах шаг должен уменьшаться вдвое. Существует много специально разработанных схем вязки углов элементов и примыкающих участков. Перед началом работы рекомендуем с ними ознакомиться.
Что нужно знать про арматуру
Для ленточных фундаментов обычно применяют горячекатаную арматуру классов A-II и A-III с диаметром от 10 мм с периодическим профилем (рифленую), который обеспечивает надежное сцепление металла с бетоном. Пруты класса A-I с гладкой поверхностью и сечением 8-10 мм применяют для изготовления связующих хомутов и перемычек.Adblockdetector
Страница не найдена для minimum_reinforcement_ratio
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*
Страница не найдена для 2maximum_reinforcement_ratio_in_columns
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*
Минимальное и максимальное армирование в плите
Минимальное и максимальное армирование в плите | минимальное армирование в плите | максимальное армирование в плите | минимальное армирование в плите согласно IS 456 | минимальное армирование в плите согласно BS8110.
Минимальная и максимальная арматура в плитеСуществует два типа продольных стальных стержней, предусмотренных в стержнях натяжения и сжатия RCC плиты, они предназначены для увеличения прочности плиты. Существуют различные стандарты, такие как код IS 456: 2000 и BS8110, которые объясняют, что такое минимальное и максимальное армирование, необходимое для плиты.
◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube
Вам также следует посетить: —
1) что такое бетон, его виды и свойства
2) Расчет количества бетона для лестницы и его формула
Основной стержень из стали, также известный как стержень короткого замыкания, предусмотренный в более коротком направлении плиты, он также известен как стержень натяжения, используемый для противодействия действующей на него растягивающей нагрузке. Основные арматурные стержни используются для передачи изгибающего момента, возникающего в нижней части плиты.
Распределительные стержни, также известные как самые длинные стержни, используемые в самом длинном направлении плиты, это стержень сжатия, используемый для удержания плит в любом направлении и для сопротивления трещинам и напряжениям сдвига, возникающим в верхней части.
У нас возникает множество вопросов, какое минимальное и максимальное армирование используется в плите. Как мы знаем, существуют различные типы стальных стержней, такие как стержни из мягкой стали (Fe 250) и стержни HYSD с высоким пределом текучести, такие как Fe415 и Fe500 и выше. Если мы используем более высокую марку стали, то минимальное процентное соотношение стального стержня, требуемого для сляба, если мы используем низкоуглеродистую сталь, процентное соотношение стали увеличивается.
Минимальное и максимальное армирование в плитеМинимальное и максимальное армирование, используемое в RCC-плите, зависит от типа плиты: это будет односторонняя плита, двухсторонняя плита или плоская плита. Теперь вопрос в том, каков минимальный коэффициент армирования в плите и каково минимальное армирование, необходимое для работы RCC.
Какое значение минимального армирования Fe415 в плитеКакое значение имеет минимальная арматура fe415 в плите?: — Согласно IS 456: 2000 в плите согласно разделу 26.5.2.1 для HYSD / Fe415 / Fe500 и выше минимальная арматура должна составлять 0,12 процента от общей площади поперечного сечения (B × D), где B = ширина плиты, а D — общая глубина, включая покрытие.
Какое минимальное армирование плиты из низкоуглеродистой сталиКакая минимальная арматура в плите, изготовленной из мягкой стали?: — Согласно IS 456: 2000 в плите, изготовленной в соответствии с пунктом 26.5.2.1, для мягкой стали Fe250 минимальная арматура должна составлять 0,15 процента от общей площади поперечного сечения (B × D), где B = ширина плиты, а D — общая глубина, включая покрытие.
Минимальное армирование плиты с помощью HYSD составляетСогласно IS 456: 2000 для плиты согласно пункту 26.5.2.1, для использования HYSD / Fe415 / Fe500 и выше минимальная арматура составляет 0,12 процента от общей площади поперечного сечения (B × D), где B = ширина плиты, а D — общая глубина, включая крышку.
Минимальное армирование в плите согласно IS 456Согласно IS 456: 2000 в плите согласно пункту 26.5.2.1, для мягкой стали (Fe250) минимальное армирование должно быть 0.15 процентов от общей площади поперечного сечения (B × D) и для арматуры с высоким пределом текучести HYSD / Fe 415 / Fe500 и выше минимальное армирование используется около 0,12% от общей площади поперечного сечения (B × D). Максимальное армирование в плите ограничено 1-2% от общей общей площади поперечного сечения (B × D), где B — ширина плиты, а D — по всей глубине плиты, включая покрытие.
Минимальное армирование в плите В плите минимальное армирование должно составлять 0,12% общей площади сечения (B × D), принимая B = 1 м ширины плиты и D = общую глубину, включая покрытие, тогда минимальное армирование будет = 0.12/100 × × 100 × D = 0,12D кв. См.
В плите обеспечивается минимальное армирование (в обоих направлениях) для предотвращения усадки, тепловых перемещений, распределения нагрузок и т. Д.
Согласно BS 8110 в плите, для низкоуглеродистой стали (Fe250) минимальная арматура должна составлять 0,24% от общей площади поперечного сечения (B × D), а для арматуры с высоким пределом текучести HYSD / Fe 415 / Fe500 и выше используется минимальное армирование. около 0.24% от общей площади поперечного сечения (B × D). Максимальное армирование в плите ограничено 1-2% от общей общей площади поперечного сечения (B × D), где B — ширина плиты, а D — по всей глубине плиты, включая покрытие.
Минимальное армирование плиты согласно коду ACI Согласно Кодексу ACI, в плите минимальное армирование должно составлять 0,18% общей площади сечения (B × D), принимая B = 1 м ширины плиты и D = общую глубину, включая покрытие, тогда минимальное армирование будет = 0,18 / 100 × × 100 × D = 0.18D кв. См.
В плите обеспечивается минимальное армирование (в обоих направлениях) для предотвращения усадки, тепловых перемещений, распределения нагрузок и т. Д.
Минимальные требования к стальной арматуре в бетоне и прозрачном покрытии
Минимальное количество стальной арматуры определяется как такое, для которого «пиковая нагрузка при первом растрескивании бетона » и «предельная нагрузка после деформации стали » равны.Таким образом можно избежать любого хрупкого поведения, а также любого локального разрушения, если элемент не чрезмерно усилен.
Другими словами, существует процентный диапазон армирования, зависящий от шкалы размеров, в пределах которого может применяться анализ предела пластичности с его статическими и кинематическими теоремами. Минимальная площадь арматуры требуется для контроля растрескивания, которое возникает в бетоне из-за температуры, усадки и ползучести. Это позволяет равномерно распределить трещины и, следовательно, минимизировать ширину отдельных трещин.
Следующие критерии были использованы для определения площади поперечного сечения при температуре или минимальном армировании, требуемом в гидротехнических сооружениях. Указанные проценты основаны на общей площади поперечного сечения армируемого бетона. Если толщина секции превышает пятнадцать (15) дюймов (380 мм), для определения температуры или минимального армирования следует использовать толщину пятнадцати (15) дюймов (380 мм).
Минимальный коэффициент необходимого армирования составляет;
ДЛЯ ПЛИТ:f мин = 0.002 (для f y = 40 000 фунтов на кв. Дюйм)
S мин = 0,0018 (для f y = 60000 фунтов на кв. Дюйм)
ДЛЯ СТЕН:Для вертикальной стали
f мин = 0,0015
Для горизонтальной стали
f мин = 0,0025
Температурное усиление не должно быть меньше ½ дюйма на расстоянии 9 дюймов от центра до центра. Все бетонные успокоительные бассейны, гласис и полы, а также все бетонные конструкции перемычки (с толщиной плиты> 15 дюймов) должны быть усилены на открытой (верхней) поверхности с помощью стержней диаметром ¾ дюйма в двенадцати (12) дюймах от центра к центру, в обе стороны, размещенных по три (3) дюйма от бетонной поверхности, если не предусмотрено иное.
Номинальная арматура бетонных блоков желоба, перегородок и порогов для успокоительных бассейнов, перронов и других частей конструкций должна состоять из стержней диаметром ¾ дюйма, расположенных между центрами двенадцать (12) дюймов.
Температурная и усадочная арматура должна быть равномерно распределена вдоль поверхностей элементов конструкции для предотвращения растрескивания из-за температурных изменений, ползучести и усадки.
В зависимости от толщины конструктивного элемента предпочтительно, чтобы расстояние между центрами первичной и вторичной арматуры было равно или меньше 300 мм; однако ни в коем случае он не должен превышать 450 мм.Минимальное расстояние между стержнями не должно быть меньше 1,4 диаметра стержня или 1,4 номинального максимального размера крупного заполнителя, в зависимости от того, что больше. Это требование также распространяется на расстояние в свету между контактным стыком внахлест и соседними стыками и стержнями.
Требования к прозрачной крышке
Минимальная толщина бетонного покрытия над арматурой была определена с учетом достаточной огнестойкости и долговечности.Покрытие для арматуры, отвечающее заданному периоду огнестойкости, имеет следующую информацию:
Пожар Сопротивление (часы) | Балки | плиты | колонки | ||
---|---|---|---|---|---|
Простая поддержка | непрерывный | Простая поддержка | непрерывный | ||
0.5 | 20 | 20 | 20 | 20 | 20 |
1,0 | 20 | 20 | 20 | 20 | 20 |
1.5 | 20 | 20 | 25 | 20 | 20 |
2,0 | 40 | 30 | 35 | 25 | 25 |
3.0 | 60 | 40 | 45 | 35 | 25 |
4,0 | 70 | 50 | 55 | 45 | 25 |
Крышка более 40 мм (1.57 дюймов) могут потребоваться дополнительные меры для снижения риска выкрашивания.
Крышка от выкрашивания
Бетонный элемент | Минимум Бетонное покрытие | |
---|---|---|
(дюйм) | (мм) | |
Лицо в контакте с землей | 3 | 75 |
Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!
Проектирование арматурной стали — интерактивное покрытие
В CRCP и JRCP арматурная сталь используется для плотного удержания любых трещин, которые могут образоваться.Образование трещин зависит от температуры, влажности и трения основного материала. Когда плита остывает и теряет влагу, она сжимается. Этому сжатию препятствует трение о материал основы. Если эта сила трения становится больше, чем предел прочности PCC, плита трескается, и растягивающие напряжения передаются на заделанную арматурную сталь. Таким образом, чтобы предотвратить чрезмерную ширину трещин, арматурная сталь должна быть спроектирована так, чтобы выдерживать эти напряжения без значительного удлинения.Количество стали обычно выражается в процентах от площади поперечного сечения сляба. В этом разделе, взятом в основном из Руководства AASHTO 1993 г., кратко обсуждается процесс проектирования для JRCP и CRCP.
Конструкция арматурной стали JRCP
Расчет арматурной сталиJRCP — это простой процесс, который зависит от следующих трех факторов:
- Длина перекрытия . Это имеет большое влияние на максимальные растягивающие напряжения PCC, возникающие в плите.По мере увеличения длины плиты площадь контакта с основным материалом увеличивается, что увеличивает общую силу сопротивления трения, что приводит к более высоким напряжениям растяжения, поскольку плита сжимается и / или теряет влагу.
- Рабочее напряжение стали . Обычно это значение составляет 75% от предела текучести стали. Рабочее напряжение стали должно быть достаточно большим, чтобы противостоять силам трения, возникающим во время сжатия сляба.
- Коэффициент трения . Это представляет собой сопротивление трению между нижней частью плиты и верхней частью основного материала.Это похоже на коэффициент трения. В таблице 1 показаны коэффициенты трения, рекомендованные руководством AASHTO Guide 1993 года.
Таблица 1. Рекомендуемые коэффициенты трения (из McCullough, 1966, как указано в AASHTO, 1993 [1] )
Тип материала под плитой | Коэффициент трения (F) |
---|---|
Обработка поверхности | 2,2 |
Стабилизация извести | 1,8 |
Укрепление асфальта | 1.8 |
Стабилизация цемента | 1,8 |
Речной гравий | 1,5 |
Щебень | 1,5 |
Песчаник | 1,2 |
Натуральное земляное полотно | 0,9 |
Принимая во внимание три вышеуказанных фактора, следующее уравнение используется для определения количества арматурной стали в процентах от площади поперечного сечения плиты:
где: | л | = | длина плиты |
F | = | коэффициент трения | |
f s | = | Рабочее напряжение стали(обычно принимаемое за 75% предела текучести) |
Эта процедура проектирования JRCP также используется для проектирования поперечной арматурной стали CRCP.
Конструкция арматурной стали CRCP
Расчет арматурной стали CRCPиспользуется для определения количества продольной стали, которое будет удовлетворять следующим трем ограничивающим критериям:
- Расстояние между трещинами . Чтобы свести к минимуму выкрашивание трещин, максимальное расстояние между трещинами должно быть менее 2,5 м (8 футов). Чтобы свести к минимуму возможность выбивки, минимальное расстояние между трещинами должно составлять 1,07 м (3,5 фута).
- Ширина трещины . Чтобы свести к минимуму выкрашивание и проникновение воды, допустимая ширина трещины не должна превышать 1 мм (0.04 дюйма). Небольшая ширина трещин важна для работы CRCP.
- Напряжение стали . Это обычно принимается равным 75% предела текучести стали, чтобы предотвратить любую пластическую деформацию, хотя исследования показали, что многие покрытия из CRCP работают адекватно, даже несмотря на то, что напряжение их стали было рассчитано выше предела текучести (Маджидзаде, 1978, как указано в AASHTO). , 1993 [1] ).
Одна процедура расчета продольных стальных конструкций приведена в 1993 AASHTO Guide :
- Решите следующие три уравнения ограничивающих критериев для требуемого процентного содержания стали (да, они кажутся сложными, но 1993 AASHTO Guide содержит решения номограммы).Обратите внимание, что расстояние между трещинами (x) должно быть решено с использованием входных значений x = 2,5 м (8 футов), чтобы определить минимальное количество стали, необходимое для поддержания максимального расстояния между трещинами менее 2,5 м (8 футов), а x = 1,07 м (3,5 фута), чтобы определить максимальное количество стали, необходимое для поддержания минимального расстояния между трещинами более 1,07 м (3,5 фута). Разрешение ширины трещины и рабочего напряжения стали дает минимальное количество требуемой стали.
где: | f t | = | Растягивающее напряжение PCC через 28 дней |
= | коэффициент термического коэффициента стали (5 x 10 905 · 10-6 дюймов./ дюйм / ° F) к тепловому коэффициенту PCC | ||
φ | = | диаметр стального прутка | |
σ w | = | нагрузка на колесо | |
-п. | = | количество стали в поперечном сечении в процентах от площади поперечного сечения плиты | |
Z | = | Коэффициент усадки PCC | |
ΔT | = | расчетное падение температуры (между высокой и низкой ожидаемыми температурами) |
- Решения для шага 1 обеспечат минимальное (P мин. ) и максимальное (P макс. ) необходимое процентное содержание арматурной стали.Если P max > P min , тогда расчет осуществим и можно продолжить. В противном случае необходимо изменить исходные данные проекта и пересчитать приведенные выше уравнения.
- Определите необходимое количество (N) арматурных стержней:
где: | P мин. | = | минимальный процент стали |
P макс. | = | максимальный процент стали | |
Вт с | = | Общая ширина участка дорожной одежды | |
D | = | толщина плиты | |
φ | = | арматурный пруток или проволока диаметром |
- Определите расчетное количество арматурных стержней (N дизайн ) таким образом, чтобы оно представляло собой целое число от N min до N max .
Затем можно спроектировать поперечную сталь с использованием процедуры JRCP для определения необходимого количества стали и следующего уравнения для определения расстояния между арматурными стержнями:
где: | А с | = | площадь поперечного сечения поперечной арматурной стали |
П т | = | площадь поперечного сечения поперечной стали в процентах от площади поперечного сечения плиты | |
D | = | толщина плиты |
Технический совет T 5080.14 Сплошное железобетонное покрытие — Тротуары
Технические рекомендации T 5080.14 Сплошное железобетонное покрытие
Заменено в августе 2016 г. Руководством по непрерывно армированному бетонному покрытию: Руководство по проектированию, строительству, техническому обслуживанию и ремонту
5 июня 1990 г.
- НАЗНАЧЕНИЕ . Обрисовать в общих чертах рекомендуемые методы проектирования, строительства и ремонта непрерывно армированного бетонного покрытия (CRCP).
- ОТМЕНА . Техническая рекомендация T 5080. 5, Непрерывно армированное покрытие от 14 октября 1981 г., отменена.
- ИСТОРИЯ
- Непрерывно армированное бетонное покрытие — это покрытие из портландцементного бетона (PCC), которое имеет непрерывную продольную стальную арматуру и не имеет промежуточных поперечных деформационных или усадочных швов. Мостовому покрытию дают возможность растрескиваться в случайном порядке поперечного растрескивания, и трещины плотно удерживаются вместе сплошной стальной арматурой.
- В 1970-х и начале 1980-х годов расчетная толщина CRCP составляла примерно 80 процентов от толщины обычного бетонного покрытия с сочленениями. Значительное количество более тонких покрытий вышло из строя раньше, чем предполагалось.
- Внимание к проектированию и контролю качества строительства CRCP имеет решающее значение. Отсутствие внимания к деталям конструкции и конструкции привело к преждевременным отказам некоторых CRCP. Причины раннего повреждения обычно связывают с: (1) методами строительства, в результате которых покрытия не соответствуют проектным требованиям; (2) конструкции, приводящие к чрезмерным прогибам при больших нагрузках; (3) основания низкого качества, или; (4) сочетание этих или других нежелательных факторов.
- РЕКОМЕНДАЦИИ ПО ДИЗАЙНУ
- Толщина бетона . Как правило, толщина плиты равна толщине бетонного покрытия с сочленениями, если местные эксплуатационные характеристики не показали, что более тонкие покрытия, спроектированные с использованием принятого процесса проектирования, являются удовлетворительными.
- Сталь арматурная
- (1) Сталь продольная
- (2) Поперечная арматура и поперечные стержни
- (a) Если включена поперечная арматура, это должны быть деформированные стержни № 4, № 5 или № 6 класса 60, отвечающие тем же характеристикам, что и для продольной арматуры.
- (b) Хотя его можно не использовать, поперечное армирование снижает риск раскрытия случайных продольных трещин и, таким образом, снижает вероятность выбивания. Если включена поперечная арматура, можно использовать следующее уравнение для определения количества необходимой арматуры (см. Номер 5 в Приложении 2):
Где:
P t = поперечная сталь,%
W s = общая ширина покрытия, (футы)
F = коэффициент трения основания
f s = допустимое рабочее напряжение в стали, фунт / кв. дюйм, (0.75 предел текучести) - (c) Расстояние между поперечными арматурными стержнями можно рассчитать с помощью следующего уравнения (см. Номера 1 и 5 в Приложении 2):
Где:
Y = поперечный шаг стали (дюймы)
A s = площадь поперечного сечения стали (в 2 ) на стержень (4, 5 или 6 бар)
P t = процент поперечной стали
D = толщина плиты (дюйм)Примечание. Расстояние между поперечными стержнями должно быть не менее 36 дюймов и не более 60 дюймов.
- (d) В тех случаях, когда не используется поперечная сталь, анкерные стержни следует размещать в продольных швах в соответствии с Техническими рекомендациями FHWA, «Соединения бетонных покрытий».
- Базы
- (1) Конструкция основания должна обеспечивать устойчивый фундамент, что имеет решающее значение для строительных работ CRCP, и не должна задерживать свободную влагу под дорожным покрытием. Рекомендуется положительный дренаж. Свободная влажность в основании или земляном полотне может привести к перекачиванию кромок плиты, который был определен как один из основных факторов, вызывающих или ускоряющих повреждение дорожного покрытия.Основания, которые будут противостоять эрозии от высокого давления воды, вызванного прогибами дорожного покрытия под нагрузкой от движения транспорта, или которые будут свободно стекать, чтобы предотвратить свободную влагу под дорожным покрытием, будут действовать, чтобы предотвратить перекачивание. Стабилизированные проницаемые основания следует учитывать для маршрутов с интенсивным движением. Тротуары, построенные на основе из стабилизированного или щебеночного камня, как правило, дают лучшие эксплуатационные характеристики, чем покрытия из нестабилизированного гравия.
- (2) Трение между дорожным покрытием и основанием играет роль в развитии трещин в CRCP.Большинство методов проектирования CRCP предполагают умеренный уровень трения между дорожным покрытием и основанием. Полиэтиленовую пленку не следует использовать в качестве разрыва сцепления, если при проектировании не учитывается низкое трение между дорожным покрытием и основанием. Кроме того, государства сообщили о проблемах с ездой и конструкцией, когда PCC был построен на полиэтиленовой пленке.
- Подкладки . Непрерывно армированное бетонное покрытие не рекомендуется в районах, где ожидается деформация земляного полотна из-за известных экспансивных грунтов, морозного пучения или мест поселений.Особое внимание следует уделять получению однородных и должным образом уплотненных грунтовых оснований. Обработка земляного полотна может потребоваться при плохих почвенных условиях.
- Соединения
- (1) Продольные шарниры . Продольные швы необходимы для снятия напряжений, вызванных усадкой бетона и перепадами температур, и их следует включать, когда ширина дорожного покрытия превышает 14 футов. Тротуары шириной более 14 футов подвержены продольному растрескиванию.Стык следует выполнять пропилом на глубину до одной трети толщины дорожного покрытия. Смежные плиты должны быть связаны между собой стяжками или поперечной сталью, чтобы предотвратить разделение полос. Конструкция Tiebar обсуждается в Техническом бюллетене FHWA под названием «Бетонные швы дорожного покрытия».
- (2) Клеммные соединения . Наиболее часто используемые оконечные устройства — это стальная балка с широкими полками (WF), которая компенсирует движение, и анкер с проушиной, который ограничивает движение.
- (3) Поперечные строительные швы
- (a) Строительный шов формируется путем размещения верхней панели с прорезями поперек тротуара, чтобы продольная сталь могла проходить через шов.Сталь в продольном направлении через конструкционный шов увеличивается минимум на одну треть за счет размещения трехфутовых поперечных стержней того же номинального размера между каждой другой парой продольных стержней. Ни один продольный стальной стык не должен попадать ближе 3 футов от стопорной стороны или ближе 8 футов от начальной стороны строительного шва. См. Параграф 4b (1) (e) для получения информации о рекомендуемых схемах сращивания. Если возникает необходимость выполнить сращивание в указанных выше пределах, каждое сращивание должно быть усилено 6-футовой штангой равного размера.Требуется дополнительная осторожность, чтобы обеспечить качество бетона и уплотнение в этих швах. Если между заливкой бетона проходит более 5 дней, температуру прилегающего покрытия следует стабилизировать, поместив на него изоляционный материал на расстоянии 200 футов от свободного конца не менее чем за 72 часа до укладки нового бетона. Эта процедура должна снизить потенциально высокие растягивающие напряжения в продольной стали.
- (b) Могут потребоваться специальные меры для защиты верхней панели и прилегающей арматуры во время строительства.
- Отпуска . Следует избегать временных пробелов в CRCP. Необходимость в пропусках минимизируется за счет надлежащего учета графика укладки во время разработки проекта. Могут быть указаны следующие меры предосторожности, чтобы уменьшить повреждение незаполненной части плиты в случае, если исключение все же станет необходимым.
- Вспомогательные полосы и обочины пандусов . Покрытие PCC для пандусов, вспомогательных полос и обочин, прилегающих к CRCP, рекомендуется из-за возможного уменьшения прогибов кромок покрытия и более плотных продольных стыков, прилегающих к основному покрытию.Пандусы следует сооружать с использованием бетонного покрытия с сочленениями. Использование сочлененного покрытия на пандусах компенсирует движение и снизит вероятность повреждения CRCP на конечной станции пандуса. Когда покрытие PCC используется для пандусов, вспомогательных полос или обочин, стык следует проектировать так же, как и любой другой продольный стык. Обратитесь к Техническому совету FHWA T 5040. 29, Плечи с твердым покрытием, для получения дополнительной информации о правильной конструкции соединения.
- Расширенные полосы . Следует рассмотреть возможность расширения плит правой полосы движения для уменьшения или устранения нагрузок на края дорожного покрытия.Это обсуждается в Техническом бюллетене FHWA T 5040. 29, Мощеные плечи.
- СТРОИТЕЛЬСТВО
- Многие проблемы с производительностью CRCP были связаны с методами строительства, в результате которых покрытие не соответствовало ранее описанным рекомендациям по проектированию. Поскольку CRCP менее щадящий и сложный для восстановления, чем сочлененные тротуары, большая осторожность во время строительства чрезвычайно важна. И подрядчик, и инспекторы должны быть осведомлены об этой необходимости, и надзор за строительством CRCP должен быть более строгим.
- Размещение стали имеет прямое влияние на производительность CRCP. В ряде государств были обнаружены отклонения продольного размещения стали на ± 3 дюйма в вертикальной плоскости, когда для размещения стали использовались трубчатые питатели. Рекомендуется использовать стулья, чтобы удерживать сталь в нужном месте. Стулья должны располагаться таким образом, чтобы сталь не могла постоянно отклоняться или смещаться на глубину более 1/2 толщины плиты. Пример устройства кресла показан на рисунке 3, комбинация кресла и поперечной стальной детали.
Рисунок 3: Комбинация стула и поперечной стальной детали
- Должны быть выполнены процедуры, обеспечивающие единообразие основания и земляного полотна. Перед укладкой бетона необходимо отремонтировать и исправить мягкие участки или отклонения от отметок. Особое внимание следует уделять дозированию, перемешиванию и укладке бетона для достижения однородности и качества. Строгая проверка процедур дозирования и смешивания чрезвычайно важна и может потребовать отклонения партий из-за отклонений, которые могли считаться незначительными в соответствии с ранее существовавшей практикой.При укладке бетона необходимо добиться соответствующей вибрации и уплотнения. Это особенно важно в областях с разрывами дорожного покрытия, таких как конструкция или оконечные стыки. Автоматические вибраторы следует регулярно проверять, чтобы гарантировать работу с заданной частотой и амплитудой и в надлежащем месте в пластиковом бетоне. Рядом с поперечными швами следует использовать ручные вибраторы. Любой бетон, имеющий признаки расслоения заполнителя, следует немедленно заменить.
- Процедуры проверки необходимы, чтобы убедиться, что окончательная длина стыка арматуры и структура, а также размещение стержней соответствуют проектным требованиям.Следует соблюдать особые меры предосторожности, чтобы предотвратить изгиб и смещение арматуры в строительных швах. Когда необходимы пропуски, они должны быть построены в полном соответствии с проектными требованиями. Продольные швы следует распиливать как можно раньше, чтобы предотвратить случайное растрескивание. Особенно это актуально при многополосном строительстве. Пиление не следует начинать, пока бетон не станет достаточно прочным, чтобы предотвратить растрескивание.
- Асфальтобетонные заплатки не рекомендуются в качестве временного или постоянного метода ремонта, поскольку они нарушают целостность CRCP и не обеспечивают передачу нагрузки через соединение.
\ S \
Энтони Р. Кейн
Заместитель администратора
для инженерии и
Программа развития
Вложения
ПРИМЕР ПРОБЛЕМЫ
Инженер-проектировщик должен выполнить следующие расчеты, чтобы убедиться, что соединение между арматурной сталью и бетоном, а также продольные расстояния между стальными элементами соответствуют критериям параграфа 4c. Уравнение для определения отношения площади сцепления к кубическим дюймам бетона выглядит следующим образом, а уравнение для определения минимального продольного расстояния между стальными поверхностями следует за ним:
R b = | n x P s x L |
W x t x L |
Где:
- Ps = периметр стержня (дюйм.)
- L = длина плиты = 1 дюйм
- W = Ширина плиты (дюйм)
- t = Толщина плиты (дюймы)
- n = Количество продольных стержней
Дано: арматурные стержни №6, поэтому P s = 2,456 дюйма и площадь стержня = 0,44 дюйма 2
W = 12 футов t = 10 дюймов | ||||||||||
Предположим: | 0.6% сталь | |||||||||
Определить: | Требуемая минимальная площадь стали и необходимое минимальное количество стержней Площадь Conc. = 10 x 144 = 1440 дюймов 2 | |||||||||
Определить: | Минимальное отношение площади сцепления к кубическим дюймам бетона.
соблюдается минимальное соотношение площади сцепления к кубическим дюймам бетона, поэтому необходимо проверить минимальное расстояние. | |||||||||
Определить: | Продольные расстояния между стальными элементами следует проверять следующим образом:
поэтому минимальное расстояние между стержнями также соблюдается. |
ССЫЛКИ (CRCP)
1. «AASHTO РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ДВУХСТОРОННИХ КОНСТРУКЦИЙ», 1986.
2. «Руководство по реабилитации дорожного покрытия FHWA», FHWA-ED-88-025, сентябрь 1985 г. с дополнениями.
3. Мунчхол Вон, Б.Фрэнк Маккалоу, У. Р. Хадсон, Оценка предлагаемых стандартов проектирования для CRCP, Отчет об исследовании 472-1, апрель 1988 г.
4. «Методы восстановления дорожного покрытия — учебный курс», FHWA, октябрь 1987 г.
5. «Проектирование непрерывно армированного бетона для автомобильных дорог», Ассоциированные производители арматурных стержней — CRSI, 1981.
6. «CRCP — Практика проектирования и строительства в различных государствах», Связанные производители арматурных стержней — CRSI, 1981.
7. «Проектирование, эксплуатационные характеристики и восстановление концевых соединений балок с широким фланцем», FHWA, отдел дорожных покрытий, февраль 1986 г.
8. Дартер, Майкл И., Барнетт, Терри Л., Моррилл, Дэвид Дж., «Процедуры ремонта и профилактического обслуживания непрерывно армированного бетонного покрытия», FHWA / IL / UI-191, июнь 1981 г.
9. «Отказ и ремонт CRCP», NCHRP, Synthesis 60, 1979.
10. Снайдер, М.Б., Рейтер, М.Дж., Холл, К.Т., Дартер, М.И., «Восстановление бетонных покрытий, Том I — Методы ремонта и восстановления, Том III — Оценка и система восстановления бетонных покрытий», FHWA-RD-88-071 , Июль 1989 г.
сколько% стали используется в фундаменте, плите, колонне
как рассчитать арматуру плиты c / c распорными стержнями и как рассчитать базовую плиту minuam и балки крыши Расчет арматуры
1 ответов
Объясните, почему бетонные ограждения имеют криволинейные профили поверхности?
0 ответов
как подготовить спецификацию стали или спецификацию гибки стержней.
1 ответов
Требуются данные по материалам, таким как цементно-песчаный стальной кирпич 20 и 40 мм заполнитель на квадратный фут здания?
2 ответа
Сколько цемента и песка требуется для 9-дюймовой кирпичной стены на квадратный метр
0 ответов Design Space, Ругипо,
как определить твердые пласты в буронабивной свае при DMC метод принят.
1 ответов
Что такое контракт, подготовленный архитектором?
0 ответов
В ГРАЖДАНСКОМ ДИЗАЙНЕ ПОЧЕМУ МЫ ИСПОЛЬЗУЕМ ОГРАНИЧЕННОЕ СОСТОЯНИЕ МЕТОД ЛУЧШИЙ? Я ДУМАЮ НАИЛУЧШИМ СПОСОБ РАБОТЫ НА СТРЕСС? БЫВШИЙ; ДЛЯ ПРОЕКТИРОВАНИЯ КОЛОНН В ПРЕДЕЛАХ МЕТОДА AST IS; 1913SQ.MM ТО ЖЕ ВРЕМЯ МЕТОД РАБОЧИХ СТРЕССОВ; 2213. Я ДУМАЮ, ЧТО МЕТОД РАБОТЫ НА СТРЕСС ОЧЕНЬ СИЛЬНО СРАВНИТЬ ТОГДА МЕТОД ПРЕДЕЛЬНОГО СОСТОЯНИЯ? МОЕ ОТКРЫТИЕ ПРАВИЛЬНО ИЛИ НЕТ? ПОЖАЛУЙСТА, ОБЪЯСНИТЕ SIRS
12 ответов
Чем отличается опалубка
20 ответов Комета,
Стандартный размер туалета и ванны? Также лестничная клетка?
2 ответа
Какие области выбраны как прямоугольные и фланцевые в конструкции с тавровой балкой?
1 ответов
Вт — это размер мелкого и крупного заполнителя?
3 ответа
.