Теплопроводность газоблока – Теплопроводность газобетона:

Автор

Содержание

Теплопроводность газобетона:

Последние 30-40 лет для строительства широко применяется газобетон, а именно газобетонные блоки. Впервые они появились еще в начале XX века, но применение нашли только ближе к XXI. Теплопроводность газобетона позволяет применять его в строительстве хозяйственных сооружений и для возведения жилых домов. Из газобетонных блоков высокой плотности возводят даже многоэтажные здания.

Характеристики материала

Газобетон получают при проведении реакции извести с алюминиевой пудрой. Из-за выделения газа водорода в процессе в толще бетона образуются пустоты в виде ячеек, поэтому этот материал еще называют ячеистым бетоном. Эта пористость и делает газобетон легким (для него характерен небольшой вес относительно его размеров), паропроницаемым, хорошим теплоизолирующим материалом.

По способу затвердевания блоки бывают автоклавные и неавтоклавные. Первые оставляют затвердевать в специальном оборудовании – автоклаве, где устанавливают нужную температуру и давление. Неавтоклавный газобетон твердеет на воздухе, его характеристики ниже, чем у автоклавного, а долговечность всего 50 лет (что в 4 раза меньше, чем у первого вида блоков).

Малый вес газобетонных блоков позволяет строить здания на небольшом фундаменте, который нет необходимости заглублять больше, чем на метр. Поверхность блоков ровная, что позволяет монтировать их на клей, без применения цемента. Это также повышает теплоизоляционные свойства.

Газобетонные блоки огнеупорны и экологичны, а строения из них прочные, надежные и безопасные для здоровья. А также обладают шумоизолирующими свойствами.

Внимание! Все газобетонные блоки делятся на 3 категории точности. Газобетон первой категории самый ровный, отклонения по размерам не должны превышать 1,5 мм! Второй класс точности – отклонения 2 мм, а третий –неровный, используется при строительстве хозяйственных построек.

По результатам исследований, газобетонный блок способен выдерживать до 100 циклов замораживания-оттаивания, не теряя своих физических свойств, что говорит о его морозостойкости. В зависимости от марки, показатели морозостойкости изменяются в пределах 35-150 для автоклавного, и 15-35 для неавтоклавного блока.

Коэффициент теплопроводности

Коэффициент теплопроводности – способность газобетона передавать тепловую энергию. То есть, чем выше этот коэффициент, тем быстрее строительный материал отдаст тепло окружающей среде и сделает помещение холодным. Чтобы не тратиться на дополнительный обогрев жилья в зимнее время года, стоит заранее продумать выбор материала для строительства и способы утепления.

Более пористая структура делает газобетон менее теплопроводным, но при этом хрупким. Разные маркировки газобетонных блоков характеризуют их свойства в зависимости от плотности. Так, теплопроводность газобетона d300, d400 меньше теплопроводности блоков с маркировкой d500, d600. Поэтому первые чаще всего используют в качестве теплоизоляции строений, но из-за хрупкости не применяют в возведении несущих конструкций. Для строительства жилых многоэтажных зданий подойдет более плотный газобетон d1000-d1200. Средний по плотности и изоляционным свойствам блок используют при строительстве одноэтажных зданий.

Газобетонные блоки делятся на три вида в зависимости от плотности и теплопроводности: теплоизоляционные (D300-500), конструкционно-теплоизоляционные(D600-D900) и конструкционные (D1000-1200).

Сравнить теплопроводность газобетона разных марок можно в таблице:

Маркировка Теплопроводность, Вт/м °C, 0% влажности Теплопроводность, Вт/м °C, 4% влажности Теплопроводность, Вт/м °C, 5% влажности
D300 0,072 0,084 0,088
D400 0,096 0,113 0,117
D500 0,112 0,141 0,147
D600 0,141 0,160 0,183
D700 0,15
D800 0,21
D900 0,24
D1000 0,29
D1100 0,34
D1200 0,38

Газобетонные блоки марки D500 способны выдерживать вес стен высотой в 3 этажа вместе с перекрытиями. При этом предусмотрено обязательное укрепление конструкции армированием.

Улучшение тепловых характеристик

Чтобы повысить энергосберегающую способность дома, построенного из газобетона, можно выбрать более широкую толщину стен. Обычно для жилого помещения толщину внешних конструкций 30-40 см оптимальна для средней полосы. Для очень холодных регионов возводят каркас сооружений в два или более слоя, а для хозяйственных построек можно выложить блоки шириной 20 см.

Для утепления жилого помещения из данного материала специалисты рекомендуют применять дополнительную наружную отделку. Если внешние стены оставить незащищенными, то из-за высокой паропроницаемости газобетона со временем теплопроводность таких газобетонных блоков повысится из-за влажности, а изоляционные свойства соответственно снизятся.

Наружный слой утеплителя должен обладать меньшей пароизолирующей способностью и большей теплоизолирующей, чем газобетон и материал внутренней отделки.

Для утепления можно применять пенопласт или пенополистирол, в том числе экструдированный, минвату и эковату, а также теплую штукатурку. А в качестве отделочных материалов используют виниловый или фиброцементный сайдинг, декоративную плитку, штукатурку.

Сравнение с другими материалами и блоками

Среди других строительных материалов, газобетонные блоки можно сравнить с пеноблоками, деревом, кирпичом.

Пеноблоки похожи на газобетонные, но их плотность несколько выше, а ячейки не открытые, а замкнутые. Из всех представленных, дерево является самым экологичным строительным материалом. Жилье из дерева пропускает воздух, что позволяет создать приятный микроклимат в помещении, но один из главных минусов этого материала – его высокая горючесть. А если сравнить теплопроводность дерева и газобетона, то первое существенно проигрывает по способности к теплоизоляции. Кирпич же является самым плотным материалом для возведения стен, выдерживает самые низкие морозы и долгие годы эксплуатации. Но стены из кирпича приходится делать многослойными, поскольку его плотная структура плохо задерживает тепло.

Несомненно, при сравнении других строительных материалов с бетонными газоблоками, теплопроводность последних ниже.

Материал/плотность Теплопроводность, Вт/м °C, 0% влажности Теплопроводность, Вт/м °C, 4% влажности
Газобетон D500/500 0,12 0,141
Керамзитобетон/800 0,231 0,35
Железобетон/2500 1,69 2,043
Кирпич из глины (полнотелый)/1800 0,56 0,81
Кирпич из глины

(пустотелый)/1000

0,26 0,439
Силикатный кирпич (полнотелый)/1800 0,70 0,87
Дерево/500 0,09 0,18
Минвата/150 0,042 0,045
Пенополистерол/35 0,028 0,028

По такой характеристике, как теплопроводность, а точнее теплоизоляция, газобетон уступает лишь дереву, минеральной вате и пенополистеролу для утепления, поэтому можно сказать, что для возведения наружных стен здания более теплого материала не найти.

Как показывает практика, блоки из газобетона очень хорошо зарекомендовали себя как в качестве утеплителя, так и в качестве основного строительного материала. Но, полагаясь на заверения производителя, не стоит забывать, что в зависимости от природных условий места, где используется такой блок, его характеристики способны изменяться. Возможно, что в местах с повышенной влажность придется хорошо утеплять стены, а в местах, где мороз достигает значений ниже -40°С придется класть стены в несколько газобетонных слоев.

betonov.com

Теплопроводность газобетона: коэффициент теплопроводности

Газобетон, теплопроводность

Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность. Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала? И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности?

Содержание статьи

Краткая характеристика газобетона

Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования. Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются.

Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Газобетон

Обзор основных свойств и качеств

Воспользуемся таблицей.

Основные характеристики газобетона:

Наименование характеристики Среднее ее значение
Морозостойкость 35-150
Марка прочности Для неавтоклава – от В1,5, в соответствии с ГОСТ21520-89; для автоклавного газобетона, в среднем — В3,5
Усадка От 0,3 мм/м2
Минимальная рекомендуемая толщина стены От 0,4 м
Теплопроводность От 0,09
Экологичность 2
Пожароопасность Не горит

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже.

Классификация и сфера применения

Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

В соответствии со способом твердения, газобетонный блок может быть:

  1. Автоклавным;
  2. Неавтоклавным.

Автоклавный и неавтоклавный газобетон

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании – автоклаве, при воздействии высокой температуры и давления. Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже. Сравним показатели данных видов газобетона при помощи таблицы.

Сравнение автоклавного и неавтоклавного газобетона:

Наименование показателя Значение для автоклавного газобетона Значение для неавтоклавного газобетона
Прочность, марка В2,5-5 В1,5-2,5
Морозостойкость 35-150 15-35
Паропроницаемость 0,2 0,18
Теплопроводность эксплуатационная 0,096-0,155 0,17-0,25
Огнестойкость Не горит Не горит
Рекомендуемая минимальная толщина стены, метры От 0,4 От 0,65
Долговечность До 200 лет До 50 лет

Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Характеристика газобетона разной плотности

Также газобетон разделяют в зависимости от плотности.

В соответствии с этим, материал может быть:

  1. Теплоизоляционным. Такие изделия отличаются низкой плотность (до 400) и теплопроводностью. Используются они в качестве материала для утепления, так как никаких существенных нагрузок блок выдержать не способен.
  2. Конструкционно-теплоизоляционный газобетон обладает более высокой плотностью. Числовой показатель варьируется от 400 до 800. Однако коэффициент теплопроводности газобетонных блоков также вырастает. Используется материал при возведении стен и перегородок.
  3. Конструкционный газобетон – наиболее прочный из всех. Плотность его равна 900-1200. Может выдержать значительные нагрузки, однако при этом, стены требуют дополнительного утепления, так как способность к сохранению температуры у таких блоков достаточно низкая.

Отличия газобетона разной плотности

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко.

В зависимости от типа вяжущего, газобетон бывает:

  • На цементном вяжущем;
  • На известковом;
  • На шлаковом;
  • На зольном;
  • На смешанном.

Это указывает на то, что содержание основного компонента варьируется в пределах от 15 до 50%.

В соответствии с типом кремнеземистого компонента:

  1. На песке;
  2. На золе;
  3. На иных вторичных продуктах промышленности.

Также хотелось бы отметить классификацию, основанную на геометрии блока.

Газобетон может быть:

  1. Первой категории точности;
  2. Второй категории точности;
  3. Третьей категории точности.

Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Важно! Блоки первой категории – самые ровные, отклонения по размеру не должны превышать 1,5 мм. Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние!

Вторая категория имеет большие отклонения: до 2-х мм – по размеру, до 3-х – по диагонали.

Блоки третьей категории обычно используются при возведении хозяйственных построек. Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения.

Обратите внимание! Блоки различной категории отличаются между собой только геометрическими отклонениями. Различий в технических характеристиках существенных нет. Теплопроводность, прочность, морозостойкость и иные показатели будут идентичными. Отличаться они могут только ввиду сравнения изделий различных производителей.

Понятие теплопроводности и ее значение

Теплопроводность – это способность материала к сохранению температуры. Например, если коэффициент ее высок, то в холодное время года, затраты на отопление помещения значительно возрастут, так как тепло будет быстро выходить наружу — и здание, соответственно, будет быстро остывать.

Давайте разберемся, насколько практичным является использование газобетона в качестве материала для утепления либо возведения стен в данном случае.

Что такое теплопроводность

Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей

Коэффициент теплопроводности газобетона продиктован ГОСТ 25485-89. Бетоны ячеистые. Технические условия. Как уже упоминалось, данный показатель напрямую зависит от плотности изделий и, более того, от типа кремнеземистого компонента. Рассмотрим таблицу.

Зависимость теплопроводности от плотности газобетона и типа кремнеземистого компонента:

Вид газобетона Марка прочности Коэффициент теплопроводности газобетона, изготовленного на золе Коэффициент теплопроводности газобетона, изготовленного на песке
Теплоизоляционный 300 0,08 0,08
400 0,09 0,1
Конструкционно-теплоизоляционный 500 0,1 0,12
600 0,13 0,14
700 0,15 0,15
800 0,18 0,21
900 0,20 0,24
Конструкционный 1000 0,23 0,29
1100 0,26 0,34
1200 0,29 0,38

Вывод напрашивается сам собой: чем больше плотность, тем выше и показатель теплопроводности.

График зависимости теплопроводности от плотности

  • В соответствии с ГОСТ, производителем должен быть учтен тот факт, что теплопроводность изделий не должна превышать вышеуказанных показаний более чем на 20%.
  • Также в таблице видно, что газобетон, изготовленный на золе, более способен к сохранению температуры.
  • Возьмем, к примеру, блоки газозолобетонные d=600: коэффициент теплопроводности у них равен значению в 0,13. А у блоков той же плотности, но изготовленных на песке, данный показатель — на 0,1 выше
  • Немаловажным фактом является то, что теплопроводность блока значительно ухудшается при его увлажненности. А так как газобетон впитывает влагу достаточно сильно, стоит обратить внимания на подобные изменения.
  • Например, коэффициент теплопроводности газобетона d500 равен 0,12, но это – при стандартных условиях измерения. При эксплуатационной влажности, этот показатель увеличивается минимум на 0,2.

Теплопроводность газобетона d500

То есть, чем выше влажность, тем выше и коэффициент теплопроводности. В соответствии с ГОСТ, отпускная влажность газобетонных изделий не должна превышать показателя в 25%, при производстве изделий на песке, и 30% — на основе золы и иных вторичных продуктов промышленности.

Отдельно стоит обратить внимание на такой материал как монолитный газобетон. Он также может быть разной плотности, и обладать различным коэффициентом теплопроводности. Во многом это зависит от марки используемого при изготовлении цемента, пористости и соотношения компонентов.

Его активно используют при:

  • Устройстве стяжки. Монолитные полы из газобетона прочны, материал прост в обращении. Нередко с его помощью производят подготовку основания под теплый пол.
  • Для изоляции кровли. При этом применяют материал меньшей плотности.

Это, разумеется, не все возможные сферы применения материала, их существует достаточно большое количество. Фактом остается то, что популярность газобетона растет с каждым годом все больше, именно благодаря соотношениям плотности и теплопроводности, высоким показателям морозостойкости и других эксплуатационных характеристик.

Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами

А теперь давайте сравним показатели теплопроводности газобетона с другими стеновыми изделиями, а также проанализируем соотношение плотности к данной характеристике. Достоин ли газобетон находиться в лидерах?

Сравнение физико-технических показателей газобетона и других стеновых материалов:

Наименование материала Плотность кг/м3 Коэффициент теплопроводности
Газобетон 600-800 0,18-0,28
Силикатный кирпич 1700-1950 0,85-1,16
Арболит 400-850 0,08-0,18
Шлакобетон 900-1400 0,2-0,58
Пенобетон 400-1200 0,14-0,39
Керамзитобетон 900-1200 0,5-0,7
Кирпич пустотелый 1500-1900 0,56-0,95

Фактически выходит, если сравнивать вышеперечисленные материалы и газобетон, теплопроводность его несколько превышает лишь аналогичный показатель у арболита и пенобетона. Остальные стеновые материалы остаются далеко позади.

Сравнение теплопроводности материалов

 

Сравнение газобетона

Как уже говорилось, газобетон низкой плотности используют в качестве материала для утеплителя. Давайте сравним теперь обоснованность его применения.

Теплопроводность материалов, предназначенных для утепления, в сравнении с теплоизоляционным газобетоном:

Наименование материала Коэффициент теплопроводности, м2*С/Вт
Газобетон теплоизоляционный, Д300 От 0,08
Эковата 0,014
Изовер 0,044
Пенопласт 0,037
Керамзит 0,16
Стекловата 0,033-0,05
Минеральная вата 0,045-0,07

Теплопроводность строительных материалов

Даже в качестве теплоизоляционного материала, газобетон может быть достойным конкурентом.

Часто выбирая утеплитель, застройщики задаются вопросом: керамзит или газобетон, что лучше? Ответить однозначно достаточно сложно. В первую очередь, следует обратить внимание на приоритеты в показателях. Оба материала – легкие, недорогие и способны сохранять тепло.

Однако, если учитывать данные, указанные в таблице, то теплоизоляционный газобетон все же выигрывает в последнем показателе. А выбор, остается за вами.

Расчет оптимальной толщины стены

Рекомендуемая минимальная толщина стены из газобетона, как мы уже выяснили, составляет 400 мм. Однако для разных регионов, этот показатель может значительно отличаться. В местах, где температура воздуха более низкая, стена должна быть значительно толще, при сохранении оптимальной температуры.

Давайте разберемся, как же правильно посчитать нужную толщину стены, с учетом всех необходимых факторов, в том числе требований СНиП 23-02-2003 Тепловая защита зданий, СП 23-101-2004 Проектирование тепловой защиты зданий.

Для начала рассмотрим, каким будет показатель теплопроводности, в соответствии со СНиП, при условиях изготовления с использованием различного кремнеземистого компонента и кладки готовых изделий на различные растворы.

Расчетные коэффициенты теплопроводности в условиях эксплуатации при возведении стен с использованием раствора и клея и соответствующие условия эксплуатации А-В:

Вид блока Марка плотности Коэффициент теплопроводности, при условии укладки на известково- песчаный раствор (условия эксплуатации А-В). Коэффициент теплопроводности, при условии укладки на цементно-песчаный раствор

(условия эксплуатации А-В).

Коэффициент теплопроводности, при условии укладки изделий на клей

(условия эксплуатации А-В).

Газобетон, изготовленный из кварцевого песка Д500 0,25-0,3 0,24-0,28 0,18-0,23
Д600 0,27-0,32 0,26-0,31 0,22-0,26
Д700 0,35-0,4 0,34-0,39 0,27-0,31
Газозолобетон Д500 0,28-0,33 0,27-0,32 0,19-0,25
Д600 0,31-0,37 0,3-0,36 0,25-0,31
Д700 0,39-0,45 0,38-0,44 0,3-0,36

Далее, для проведения расчетов необходимо определить, к какой зоне влажности относится ваш регион. Для этого можно воспользоваться картой зон влажности и следующей таблицей:

Влажностный режим регионов:

Режим Влажность воздуха при температуре до 12 градусов Влажность воздуха при температуре от 12 до 24 градусов Влажность воздуха при температуре более 24 градусов
Влажный – 1 Более 75 От 60 до 75 От 50 до 60
Нормальный -2 От 60 до 75 От 50 до 60 От 40 до 50
Сухой -3 Менее 60 Менее 50 Менее 40

Теперь следует заглянуть в СНиП 23-02-2003 и определить, к каким условиям эксплуатации ограждающих конструкций относится регион в зависимости от влажности.

Карта зон влажности, фото

Эксплуатационные условия конструкций А, Б в зависимости от влажностного режима в регионе:

Режим влажности Условия эксплуатации во влажной зоне Условия эксплуатации в нормальной зоне Условия эксплуатации в сухой зоне
Влажный – 1 Б Б Б
Нормальный – 2 Б Б А
Сухой — 3 Б А А

Теперь стоит вернуться в таблице 6, в которой мы сможем найти нужный для себя показатель.

  • Например, предположим, что наш регион – Смоленск. Его территория относится к зоне нормальной влажности – 2, влажность в помещении – тоже нормальная, значит, в этом случае, для региона характерны условия В.
  • Теперь переходим к расчетам. Нам потребуется значение нормируемого сопротивления теплоотдаче. Для Москвы это – 3,29.
  • Возводить мы будет стену из блоков плотностью Д500, укладку производить – на клей. Находим в таблице 6 необходимое значение. В данном случае оно равно – 0,23.
  • Теперь определяем толщину стены, для чего перемножаем коэффициент теплопроводности и показатель сопротивления теплоотдаче: 3.29*0.23=0,7567 метра.
  • То есть, для того, чтобы не нарушить нормы СНиП, толщина стены, при вышеописанных условиях, должна составлять 0,76 метра!

Так почему же все производители в один голос заявляют, что толщина стены может быть от 400 мм, а на практике выходит по-другому? Все просто!

Во-первых, теплопроводность газоблока в условиях эксплуатации – повышается, так как изменяется влажность, во-вторых, изготовителями, при подсчетах показателей для рекламы продукции, не учитываются мостики холода и иные определяющие факторы. Теоретически, толщина стены может быть и тоньше, но, чтобы сохранить нужное значение теплопроводности, необходимо будет компенсировать разницу при утеплении конструкции.

Газобетонные блоки теплопроводность: вариант утепления, схема

Видео в этой статье расскажет подробнее о методах утепления газобетона, и сохранения оптимального показателя качества теплопроводности

Обзор основных достоинств и недостатков строений, возведенных из газобетона

Итак, мы выяснили, что коэффициент теплопроводности газобетона достаточно хорош, относительно других материалов, предназначенных, в первую очередь, для возведения стен. Однако это не может являться единственным аргументом при выборе изделий.

Давайте кратко рассмотрим, какими же еще сильными сторонами обладают газоблоки:

  1. Изделия — легкие, что значительно сократит нагрузку на фундамент;
  2. Как уже упоминалось выше, материал прост в обращении, он легко пилится, режется, шлифуется;
  3. Состав газоблока – немаловажный аспект. Он не содержит ядовитых и вредных для окружающих веществ, а, значит, является экологически чистым;
  4. Газобетон не горит и не поддерживает огня. При возгорании может в течение нескольких часов находиться под воздействием высокой температуры;
  5. Высокие показатели морозостойкости. Изделия могут выдержать до 150 циклов размораживания и оттаивания;
  6. Паропроницаемость обеспечит максимально комфортный микроклимат;
  7. Звукоизоляционные характеристики – также достаточно неплохие. Стены из газобетона смогут оградить пребывающих в помещении от посторонних шумов извне;
  8. Доступность и распространенность материала среди производителей. Это – тоже значительный плюс. Практически в любом регионе можно найти изготовителя или дилера, находящегося по близости. Это поможет сэкономить на доставке;
  9. Вариативность выбора размеров;
  10. Еще одно весомое преимущество – возможность самостоятельного изготовления изделий. Для желающих сэкономить или просто попробовать свои силы – отличный шанс;

Основными недостатками являются:

  1. Высокое водопоглощение материала. В этом случае, пористость является отрицательной стороной в особенности, при отрицательных температурах воздуха. В это время, влага может кристаллизироваться и разрушительно воздействовать на структуру блока.
  2. Хрупкость изделий. Это достаточно заметно при проведении работ и транспортировке.
  3. Усадка здания имеет место быть достаточно часто и, в следствие этого, а также некоторых других факторов, могут появиться трещины.
  4. Необходимость поиска и приобретения специального крепежа, а при желании закрепить особо тяжелых предметы, необходимость планирования и укрепления узлов фиксации.

Метод испытания теплопроводности изделий

Метод контроля теплопроводности осуществляется в соответствии с ГОСТ 7076, а отбор проб – в соответствии с ГОСТ 10180. Документы содержат всю информацию о порядке отбора проб, их испытаний и протоколировании результатов.

Суть метода заключается в следующем: создается стационарный тепловой поток, который проходит через образец выбранной толщины. Направление его – перпендикулярно наибольшим граням образца. В результате производят измерение плотности этого потока тепла, а также температуру лицевых граней образца и его толщину.

Необходимое количество образцов, подлежащих испытанию, должно быть указано в сертификате на материал. Если же такое указание отсутствует, испытания проводятся на образцах в количестве пяти штук.

Прибор для измерения теплопроводности твердых тел

Краткая инструкция о порядке проведения испытания выглядит так:

  • Производят подготовку образцов и необходимого оборудования, согласно технической документации;
  • Образец помещают в прибор, предварительно градуированный;
  • Каждые 300 секунд производят измерения сигналов тепломера и датчика температуры;
  • После установления стационарного теплового потока, толщина образца подлежит измерению;
  • Заключительным этапом является определение массы образца.

Основные итоги

От показателя теплопроводности стенового материала зависят расходы на утепление помещения при строительстве, а в будущем — и величина расходов на отопление. Ведь данная характеристика отвечает за способность здания к сохранению температуры.

Газобетон обладает завидным числовым показателем в сравнении с другими материалами для стен — но, все же, совсем без утепления все равно не обойтись. Теплопроводность зависит от иных показателей качеств, таких, например, как плотность, или влажность. А это значит, что при возведении здания, данный факт должен быть обязательно учтен.

Помимо вышеуказанного, газоблок наделен большим количеством сильных сторон, поэтому если ваш выбор пал на него, то вы не прогадали. Материал позволит возвести практичное, долговечное строение — а теплопроводность газобетонных блоков при этом, является крайне важной характеристикой.

beton-house.com

Теплопроводность газобетона D300, D400, D500, D600; сравнение с кирпичом, деревом, пенобетоном

Химическая реакция при смешивании извести и алюминиевой пудры в цементном растворе происходит с выделением водорода. В процессе автоклавной сушки получают газобетон с равномерно распределенными открытыми ячейками неодинаковой формы. Пористая структура материала определяет его основные физические характеристики: небольшой вес при крупных размерах, паропроницаемость, изоляционные свойства. Низкая теплопроводность газобетона зависит от его плотности. Чем больше воздушных пор в объеме, тем медленнее предается тепловая энергия и дольше сохраняется комфортная атмосфера внутри помещения.

Оглавление:

  1. Блоки разных марок
  2. Сравнение кирпича и газобетона
  3. Теплоизолирующие параметры сооружений

Теплотехнические свойства газоблоков

Ограждающие конструкции являются источником теплопотерь во время отопительного сезона. Поэтому при строительстве и теплоизоляции частных коттеджей используют пористые материалы. Газобетон в зависимости от плотности, которую измеряют в кг/м3, производят различных марок:

  • D300–D400 применяют в качестве теплоизоляции;
  • D500–D900 используют, как утеплитель и при одноэтажном строительстве;
  • D1000–D1200 применяют в несущих конструкциях высотных зданий.

Марка D600 указывает, что в кубометре пористого бетона содержится 600 кг твердых компонентов, которые занимают примерно треть объема. Воздух в ячейках нагревается намного медленнее и является естественным препятствием для передачи тепла. Значит, чем меньше плотность монолита, тем лучше его изоляционные свойства. Теплопроводность газоблока в сравнении с другими материалами отличается низкими значениями:

Наименование Коэффициент теплопроводности, Вт/м °C
Плотность, кг/м3
D300 D400 D500 D600
Газобетон при влажности 0% 0,072 0,096 0,112 0,141
5% 0,088 0,117 0,147 0,183
Пенобетон при влажности 0% 0,081 0,102 0,131 0,151
5% 0,112 0,131 0,161 0,211
Дерево поперек волокон при влажности 0% 0,084 0,116 0,146 0,151
5% 0,147 0,181 0,183 0,218

Пеноблоки имеют сходную структуру с газобетоном, но отличаются замкнутыми ячейками и высокой плотностью. Вспененный бетон застывает в формах и имеет неточную геометрию по сравнению с другими стройматериалами. Поэтому как теплоизоляцию чаще используют газосиликатные блоки.

Дерево считается самым экологичным материалом для строительства комфортного, «дышащего» жилища с наиболее благоприятными условиями микроклимата. Но теплопроводность стен такого дома выше газобетонных. Ячеистые блоки обладают паропроницаемостью, огнеупорностью, биостойкостью и при надежной гидроизоляции с успехом заменяют древесину. Тщательнее всего необходимо оградить фундамент и цоколь, чтобы пористая структура не натягивала влагу из грунта. Для этого использую битум и рубероид.

Теплопроводность кирпича и газоблока

Традиционный строительный материал для возведения частных домов – кирпич отличается прочностью, морозостойкостью и долговечностью. Такие показатели возможны при высокой плотности искусственного камня. По сравнению с газоблоком кирпичные стены делают многослойными. Применение «сэндвич» технологии позволяет прокладывать теплоизоляцию между наружной и внутренней кладкой.

Наименование Средняя теплопроводность, Вт/м °C
Блок из газобетона 0,08-0,14
Кирпич керамический 0,36-0,42
– глиняный красный 0,57
– силикатный 0,71

Энергосберегающая способность

Теплоизолирующие свойства ограждений зависят от их толщины. Чем массивнее стены, тем медленнее будет охлаждаться внутреннее пространство дома. При проектировании толщины ограждения следует учитывать мостики холода – слой цементного раствора между элементами кладки. Блоки монтируют с помощью пазовых замков и специального клея. Такой способ позволяет сократить до минимума тепловые потери. Чтобы сэкономить средства на закупке стройматериалов, необходимо знать характеристики сборных конструкций стандартной толщины:

Наименование Толщина наружной стены
12 см 20 см 24 см 30 см 40 см
Теплопроводность, Вт/м °C
Кирпич белый 7,51 4,52 3,75 3,12 2,25
красный 6,75 4,05 3,37 2,71 2,02
Газоблок D600 1,16 0,72 0,58 0,46 0,35
D500 1,01 0,61 0,52 0,42 0,31
D400 0,82 0,51 0,41 0,32 0,25

Благодаря низкой теплопроводности в южных районах частные коттеджи строят из газобетона D400 толщиной 20 см, в средней полосе используют пористые элементы D400 с шириной 30 см или D500 – 40 см. В условиях севера возводят многослойные стены из конструкционных и изоляционных блоков. Благодаря хорошим теплотехническим характеристикам газобетоном утепляют дома из кирпича, железобетона, пеноблоков.

Дополнительное утепление стен из газобетона не требуется при устройстве навесного вентилируемого фасада. Обрешетку блоков выполняют при помощи дерева или металлического профиля. Такая конструкция не дает атмосферным осадкам проникать под облицовку, но пропускает воздух и позволяет влаге испаряться с поверхности. В качестве отделочных плит используют виниловый или бетонный сайдинг.

stroitel-list.ru

характеристики и сравнение по маркам — АлтайСтройМаш

В условиях постоянного роста количества населения все больше внимания уделяется совершенствованию технологий строительства. Газобетонные блоки отличаются внушительными габаритами, легким монтажом и улучшенными техническими характеристиками. Например, теплопроводность газоблока значительно ниже, чем у кирпича. Это делает материал экономичным при покупке и возведении зданий любого типа за счет сокращения количества сырья при сохранении должного уровня теплопроводности.

Алтайский завод строительного машиностроения проектирует и производит оборудование для производства газобетонных блоков. Станки собираются в России, поставляются на территорию Казахстана, Узбекистана, а также в любую другую точку мира. Помимо того, что газоблок способствует оперативному сооружению зданий, он долговечен, способен переносить до 150 циклов заморозки и разморозки.

Коэффициент теплопроводности газобетона по марке

На производственных линиях компании АлтайСтройМаш выпускаются газоблоки любых марок: D400, D500, D600 и т.д. Каждая марка газобетонных блоков служит определенной цели в работах по возведению зданий:


  • D400 применяется для строительства временных малогабаритных построек жилого типа. Сырье требует дополнительной отделки или облицовки. Цифра «400» говорит о том, что в 1 куб.м. газобетона содержится 400 кг твердого материала; остальное пространство занимают пузырьки воздуха.


  • D500 подходит для построек бытового и сельскохозяйственного назначения. Блоки немного прочнее, чем марка D400, однако еще не способны выдерживать нагрузку тяжелой кровли. 


  • Блоки D600 и выше применяются при малоэтажном строительстве, обычно при возведении частных одноуровневых домов. 

Пористая структура газобетонных блоков препятствует выдуванию тепла из внутренней части здания. Это позволяет экономить на теплоизоляционных материалах при дальнейших отделочных работах.

Таблица теплопроводности газобетона





Уровень влажности, %


Марка D400


Марка D500


Марка D600 


0


0.096


0.112


0.141


5


0.117


0.147


0.183

Коэффициент теплопроводности измеряется в Вт/м*°С. Приведенные характеристики отражают низкий уровень выдувания тепла. Показатель достигается ввиду того фактора, что пузырьки воздуха, находящиеся внутри блока, медленно меняют свою температуру. 

Теплопроводность газобетона: сравнение с деревом и кирпичом


  • Средневзвешенные показатели теплопроводности для газоблоков составляют 0,08-0,14 Вт/м*°С. 


  • Для декоративного керамического кирпича, который используется при внешней облицовке стен здания, уровень теплоотдачи указывается в диапазоне от 0,36 до 0,42 Вт/м*°С. 


  • Стены из обычного глиняного кирпича, уложенного в один ряд, соответствуют показателю 0,56 Вт/м*°С. 


  • Самый дорогой силикатный кирпич также служит декоративным целям и не сохраняет тепло в здании из-за показателя в 0,71 Вт/м*°С. 


  • Теплопроводность древесины зависит от сорта дерева и влажности окружающей среды. Ее характеристики находятся в диапазоне от 0,09 до 0,218 Вт/м*°С. 



При просмотре нашего каталога товаров вы найдете объекты строительного машиностроения для производства блоков из газобетона. Материал для возведения и облицовки стен обладает хорошими перспективами и будет распространяться на новые сферы промышленности. 

asm.ru

Какая теплопроводность газобетона — определяем толщину стены

Теплопроводность – свойство материала проводить(удерживать) тепло. Чем теплопроводность ниже, тем лучше материал сохраняет тепло. Газобетон в плане теплоэффективности обладает отличными показателями, которые во много раз лучше, чем у кирпича.

Если углубится в сам процесс передачи тепла, то тепловая энергия очень хорошо передается через плотные материалы, и намного медленнее передается через воздух. В газобетонных блоках очень много воздуха, чему способствуют многочисленные поры в его составе. Каждая отдельная пора представляет из себя преграду на пути продвижения тепла, и соответственно, тепло лучше сохраняется.

Газобетон бывает различной плотности, от D300 до D700. Чем плотность ниже, тем больше в нем воздуха, и ниже теплопроводность, то есть тепло лучше сохраняется. В более плотном газобетоне воздуха меньше, и тепло он сохраняет хуже.

Плотность и прочность газобетона связаны напрямую, то есть, легкие газобетоны имеют меньшую прочность на сжатие.

Теперь перейдем непосредственно к цифрам, а точнее к таблице теплопроводности газобетона и других материалов.

Влияние влаги на теплопроводность газобетона

Если внимательно разобраться в столбцах таблицы, то можно заметить небольшие различия в теплопроводности между сухим и влажным состоянием газобетона. Мокрый газобетон быстрее проводит тепло, то есть, хуже удерживает тепло. Чем блоки влажнее, тем больше у них теплопроводность.

Стоит отметить, что свежий автоклавный газобетон привозят на стройплощадку очень влажным, и чтобы он про сох до равновесной влажности, которая составляет 5%, ему необходимо просохнуть около года. Тогда его теплопроводность уменьшится, и он будет лучше удерживать тепло. Этап просушки является очень важным, и в этот период не стоит заниматься отделкой стен, они должны просыхать, иначе будет плесень.

Теплопроводность и тепловое сопротивление

Теплопроводность — это некоторый коэффициент материала, и чем он ниже, тем лучше сохраняется тепло.

Тепловое сопротивление, это расчетное значение стены, которое определяется по простой формуле — толщину газобетона (в метрах) делим на коэффициент теплопроводности материала.

Пример! Имеем стену из газобетона марки D400 толщиной 375 мм, и нужно определить тепловое сопротивление. По таблице смотрим тепловодность газобетона D400 — (0.11).

Тепловое сопротивление = 0.375/0.11 = 3.4 м2·°C/Вт.

Чем значение теплового сопротивления больше, тем лучше сохраняется тепло. Как вы понимаете, стена толщиной 400 мм будет удерживать тепло в два раза лучше, чем стена 200 мм.

С теплопроводностью самого газобетона разобрались, но как дела обстоят в кладке, ведь она включает в себя еще и швы. Так как швы между блоками состоят из клея или раствора, то они представляют из себя небольшие мостики холода, которые ухудшают общее тепловое сопротивление стены. Поэтому, кладку газобетона осуществляют только на специальный тонкошовный клей.

Толщина шва при кладке должна быть 2-3 мм, что сведет к минимуму мостики холода. Газобетонные блоки нельзя укладывать на обычный раствор, исключением является только первый ряд блоков по гидроизоляции фундамента.

stroy-gazobeton.ru

Теплопроводность газосиликатных блоков

Рынок современных строительных материалов регулярно пополняется усовершенствованными новинками. При возведении малоэтажных домов растет спрос на газосиликатные блоки, которые имеют более низкий коэффициент теплопроводности по сравнению с бетоном, деревом или кирпичом. Теплопроводность газосиликатных блоков обусловлена пористой структурой, которая на 80-85% состоит из воздуха. Сырьем для производства газосиликата являются: вода, цемент, кварцевый песок, известь. В качестве добавки используется алюминиевая пудра. При взаимодействии всех компонентов происходит вспенивание массы в результате выделения водорода.

Показатели теплопроводности газосиликатных блоков

В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. Коэффициент теплопроводности газосиликатного блока (?) зависит от его плотности и определяется по маркировке: D300, D400, D500, D600, D700.

Каждая марка имеет оптимальные показатели в зависимости от назначения:

  1. Теплоизоляционный (D300, D400) — имеет минимальную прочность при максимальной пористости. Обладает самым низким показателем теплопроводности, используется только для теплоизоляции готовых стен.
  2. Конструкционно-теплоизоляционный (D500, D600) — имеет средние показатели плотности и прочности. Предназначен для межкомнатных перегородок и стеновых конструкций до 2-х этажей.
  3. Конструкционный (D700 и выше) — применяется для возведения несущих стен малоэтажных построек.

При выборе строительных блоков необходимо учесть эксплуатационную влажность, назначение, технологию изготовления материала.

Таблица теплопроводности газосиликатных блоков

Характеристики влажности D300 D400 D500 D600 D700
Теплопроводность ? (Вт/(м?°C)) в сухом виде 0,072 0,094 0,12 0,14 0,165
Теплопроводность ? (Вт/(м?°C)) влажность 4% 0,088 0,117 0,141 0,16 0,192

При сравнении теплопроводности газосиликатного материала и кирпича, показатели последнего уступают в 4 раза. Так, для обеспечения желаемого теплосбережения потребуется толщина стен из газосиликата 500 мм. Тогда как для соблюдения аналогичных параметров понадобилось бы возвести кирпичную кладку толщиной не менее 2000 мм.

Теплопроводность газосиликата зависит от ряда факторов:

  1. Габариты строительного блока. Чем большую толщину имеет стеновой блок, тем выше его теплоизолирующие свойства.
  2. Влажность окружающей среды. Материал, впитавший влагу, снижает способность хранить тепло.
  3. Структура и количество пор. Блоки, имеющие в своей структуре большое количество крупных воздушных ячеек, имеют повышенные теплоизоляционные показатели.
  4. Плотность бетонных перегородок. Стройматериалы повышенной плотности хуже сохраняют тепло.

Высокая степень влагонакопления газосиликата исключает его использование в помещениях повышенной влажности без обработки гидроизоляционным материалом.

Теплопроводность блоков в зависимости от плотности

Характеристика теплопроводности газосиликатных блоков пропорциональна плотности.  Чем выше показатель плотности, тем больше коэффициент теплопроводности, следовательно, увеличиваются энергозатраты на обогрев помещения. Во избежании лишних расходов на отопление потребуется дополнительная теплоизоляция стен минеральной ватой, пенополистиролом или другим изолирующим материалом.

Плотность блоков влияет на:

  • потребность в гидроизоляции;
  • строение конструкции в один или несколько слоев;
  • необходимость дополнительной теплоизоляции;
  • метод укладки блоков на специальную клеевую основу.

Оптимальным вариантом для малоэтажного строительства (до 2-х этажей) является газосиликат марки D500. Объемная плотность этого материала составляет 500 кг/м3, что аналогично плотности деревянного бруса. Теплопроводность газосиликатного блока D500 в сухом состоянии равна 0,12 Вт/(м?°C), тогда как у кирпича она выше примерно в 4 раза (0,45 Вт/(м?°C)). Газосиликат D500 применяется для постройки несущих стеновых конструкций высотой до 2-х этажей, либо для возведения межкомнатных перегородок, оконных и дверных проемов, балок, ребер жесткости. Марка D500 максимально сочетает в себе конструкционные и теплосберегающие характеристики.

Вывод

На этапе планирования строительства необходимо точно рассчитать количество и конструкционные характеристики блоков различного назначения. От правильного выбора плотности и теплопроводности используемых материалов зависит не только сохранение температурного режима в доме, но и долговечность постройки. Гармоничное соотношение цены и качества газосиликата делают его одним из самых востребованных стройматериалов.

betonov.com

сравнительная характеристика газобетонных блоков d400, d500 и d600

Газобетон представляет собой разновидность ячеистого бетона. Этот строительный материал содержит равномерно распределенные по всему периметру поры, которые не сообщаются между собой. Особенности производства позволяют добиться хорошей теплопроводности газобетона, небольшого веса и итоговой низкой стоимости. Именно по этим причинам материал становится все более популярным.

Преимущества газобетона

Несмотря на то что материал был изобретен в 1924 году, активное использование газобетона в строительстве началось в 80-х годах. На сегодняшний день самой распространенной сферой применения является утепление дома. Благодаря своей низкой теплопроводности и небольшой толщине, газобетон позволяет в несколько раз увеличить энергосбережение и экономит средства владельцев, проживающих в холодных регионах. Общие преимущества материала выглядят следующим образом:

  1. Теплоизоляционные свойства. Утепленные газобетоном стены удерживают тепло в несколько раз лучше, в сравнении с обычным бетоном. Такой эффект достигается за счет многочисленных пор, которые имеют сферическую форму и не сообщаются между собой. Материал хорошо удерживает тепло, не позволяя ему выходить наружу. Очень низкий коэффициент теплопроводности газосиликатных блоков обусловлен большим количеством пор с воздухом, который известен отличными теплоизоляционными свойствами.
  2. Небольшой вес. Блоки в несколько раз легче большинства конкурентных материалов. Это существенно облегчает монтаж, перевозку и установку. Благодаря этому удается сократить время строительных работ, сэкономить значительную сумму. Например, для строительства жилого или нежилого помещения нет необходимости создавать прочный и большой фундамент.
  3. Газобетонные блоки при утеплении здания можно монтировать при помощи клея.
  4. Паропроницаемость. Этот показатель может быть важен в определенных помещениях, где нужно добиться постоянного уровня влажности, а также поддерживать температуру в узком диапазоне. Коэффициент теплопроводности газоблока зависит от плотности, но параметр практически не влияет на возможность пара выходить наружу.
  5. Относительно высокая прочность. Важно понимать, что допустимые нагрузки на материал зависят от марки и технологии производства. Одной из самых прочных моделей газобетона является марка D 500. Блоки предназначены для строительства целого дома высотой до 3 этажей. Но при монтаже возникает необходимость дополнительного использования железобетонного армированного пояса или кирпичной кладки. Такие материалы хуже удерживают тепло, поэтому строение может нуждаться в дополнительном утеплении.
  6. Хорошая шумоизоляция. Показатель зависит от толщины стен и марки газобетона, но материал успешно применяется в жилых домах. Коэффициент шума соответствует требованию ГОСТ.
  7. Огнеупорность является еще одним преимуществом. Свойства материала позволяют применять газобетон в помещениях с повышенными требованиями пожарной безопасности.
  8. Экологичность. В процессе производства используются кварцевый песок, цемент и специализированные газообразователи. Отсутствие токсичных веществ гарантирует безопасность для здоровья людей.
  9. Низкая стоимость. Цена блоков может быть в несколько раз ниже конструкций из бетона или кирпича. Важно понимать, что дополнительная экономия связана с небольшими временными и финансовыми затратами при строительстве.

На сегодняшний день существует несколько видов газосиликатных блоков. При их производстве используются разные технологии, позволяющие получить материалы, которые будут обладать повышенными теплоизоляционными, конструкционными свойствами или отличаться хорошей плотностью и прочностью.

Область применения каждой марки обуславливается техническими требованиями.

Недостатки материала

Как и любой другой строительный материал, газобетон не лишен отрицательных сторон. Первым важным моментом, который стоит учитывать при приобретении блоков, является разделение на виды. Каждая марка предназначена для узкого направления работы. В зависимости от плотности газобетон может быть:

  • Теплоизоляционным. Такие изделия характеризуются хорошим удержанием тепла, но крайне низкой плотностью. Использовать блоки при возведении строения недопустимо, т. к. никаких существенных нагрузок стена выдержать не сможет. Зато теплоизоляционные блоки хорошо подходят для наружного утепления зданий.
  • Конструкционно-теплоизоляционным. Числовые параметры плотности могут варьироваться от 400 до 800 единиц. Такие блоки используются при возведении небольших стен или перегородок. С увеличением плотности возрастает и коэффициент теплопроводности, следовательно, материал хуже удерживает тепло.
  • Конструкционным. Марки такого газобетона являются самыми прочными. Показатель плотности может достигать 900−1200 единиц. Блоки предназначены для возведения перегородок, стен и целых зданий. Способность выдерживать большие нагрузки обусловлена низким содержанием воздушных пор. Но такое свойство влияет на теплопроводность газобетона 500 или 600. Сооружения требуют дополнительного наружного утепления.

Можно выделить еще несколько недостатков, связанных с техническими особенностями:

  • высокая хрупкость;
  • высокие параметры гигроскопичности, что может отражаться на теплоизоляционных свойствах во влажных регионах;
  • низкая морозостойкость, например, распространенная марка D 500 рекомендована для климатических условий, где температура не опускается ниже -18 оС.

Все недостатки являются условными, т. к. при правильном использовании в рекомендуемом температурном режиме материал имеет множество конкурентных преимуществ.

Сравнительный анализ марок

Газобетон не представляет собой универсальный материал. Это можно рассматривать как неудобство, которое требует повышенного внимания при его приобретении, но сочетание нескольких видов позволит добиться отличных эксплуатационных качеств. Например, высокая плотность марки D 600 позволяет без труда возвести небольшое строение, которое будет отличаться высокой прочностью. Дополнительный наружный слой небольшой толщины из марки D 400 решит проблему с влажностью и теплом. Сравнительная таблица позволит лучше оценить параметры всех популярных марок.

Таблица 1 — Коэффициент теплопроводности в зависимости от марки и параметра влажности

Марка газобетона D300 D400 D500 D600
Коэффициент теплопроводности при сухом состоянии 0,072 0,096 0,12 0,14
Уровень теплопроводности при влажности не более 4% 0,084 0,113 0,141 0,160
Уровень теплопроводности при влажности не более 5% 0,088 0,117 0,147 0,183

Меньшее количество воздушных пор обеспечивает большую плотность и прочность, но существенно повышает показатель теплопроводности. Более высокий числовой параметр указывает на худшую способность материала удерживать тепло. Создать уникальную марку газобетона, которая сочетала бы в себе показатели теплопроводности модели D 300 и плотность марки D 600, невозможно, поэтому единственным вариантом остается сочетать несколько видов для возведения и последующего утепления сооружения.

Способы утепления

Использовать газосиликатные блоки для утепления можно для сооружений из большинства известных материалов. Это обычные бетонные дома, сооружения из кирпича и строения из газобетона с высоким коэффициентом теплопроводности. Но в процессе строительных работ важно учитывать некоторые особенности. Использовать утепление можно для внутренней или наружной стороны строения. Эксперты рекомендуют отдавать предпочтение второму способу по нескольким причинам:

  • Первая причина очевидна: внутреннее пространство в помещении существенно уменьшится за счет слоя утеплителя. Толщина необходимого слоя газобетона является небольшой, но 40 сантиметров дополнительного слоя на каждой стене значительно сократят полезную площадь.
  • Вторая причина связана с физическими процессами. В холодное время года стены прогреваются очень медленно, а внешняя сторона остывает быстро. В этом случае между слоем утеплителя и основным материалом сооружения будет образовываться конденсат, который при замерзании превращается в лед. Такой процесс негативно отражается не только на температуре, но и на прочности всего строения.
  • Третий фактор связан с особенностями структуры газобетона. При отсутствии вентиляции между стеной и слоем утеплителя будет образовываться грибок или плесень. Такой процесс особенно опасен для деревянных строений.

Использование технологии внешнего утепления позволяет достичь улучшения звукоизоляции и защитить основной материал стен от разрушительного действия влаги. Кроме того, газосиликатные блоки на завершающем этапе строительства можно отделать в любом стиле. Это гарантирует отличный внешний вид.

Использование штукатурки

Несмотря на то что стоимость газосиликатных блоков невысока, многие строители хотят добиться еще большей экономии. Решить задачу по утеплению строения при самых низких материальных затратах можно только при использовании пенопласта.

Но такой подход имеет множество недостатков. Пенопласт практически не пропускает воздух, из-за чего вероятность образования плесени или грибка увеличивается в несколько раз. Большинство экспертов, при отсутствии возможности воспользоваться газобетонными блоками, рекомендуют сделать выбор в пользу теплой штукатурки. Первым важным преимуществом является невысокая стоимость материалов и работы. Цена отделки сопоставима с газобетонными блоками, а уровень теплоизоляции, в сравнении с обычной штукатуркой, в 4 раза выше.

Самой популярной является система крепления, которая состоит из 3-ех слоев. Схема работы выглядит следующим образом:

  • Первый слой, который рекомендуется укладывать с внешней стороны стены, должен быть изготовлен из материала с очень низким коэффициентом теплопроводности. Лучше всего использовать минеральную вату, т. к. материал крайне легок и обладает отличной паропроницаемостью. Установка производится легко, справиться с работой можно самостоятельно, без опыта в строительно-монтажных работах. Кроме того, большинство производителей гарантирует минимальный срок эксплуатации в течение 70 лет. Для сравнения, пенопласт требует замены через 20−25 лет.
  • Второй слой является базовым и выполняется из штукатурно-клеевой смеси. Для обеспечения большей прочности стоит дополнительно укрепить слой армированной стекловолоконной сеткой.
  • Основная задача третьего слоя — обеспечение эстетичного внешнего вида. В качестве материала можно выбрать любую декоративную штукатурку, которой существует много: акриловую, силикатную, силоксановую. Если цвет материалов не подходит, можно использовать любые краски.

Хорошие характеристики теплопроводности газобетонных блоков не должны вводить в заблуждение владельцев домов, которые выбрали этот материал в качестве основного при возведении строения. Проживание в условиях средней полосы предполагает обязательное утепление сооружений из газосиликатных блоков. Это связано не только с риском очень низких температур в зимнее время, но и с повышенной влажностью в течение всего года.

tvoidvor.com

Отправить ответ

avatar
  Подписаться  
Уведомление о