Теплопроводность газосиликатного блока: Теплопроводность газосиликатных блоков

Автор

Содержание

Теплопроводность газосиликатных блоков

Расчет теплопроводности газосиликатных блоков

Рынок современных строительных материалов регулярно пополняется усовершенствованными новинками. При возведении малоэтажных домов растет спрос на газосиликатные блоки, которые имеют более низкий коэффициент теплопроводности по сравнению с бетоном, деревом или кирпичом. Теплопроводность газосиликатных блоков обусловлена пористой структурой, которая на 80-85% состоит из воздуха. Сырьем для производства газосиликата являются: вода, цемент, кварцевый песок, известь. В качестве добавки используется алюминиевая пудра. При взаимодействии всех компонентов происходит вспенивание массы в результате выделения водорода.

Показатели теплопроводности газосиликатных блоков

В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. Коэффициент теплопроводности газосиликатного блока (?) зависит от его плотности и определяется по маркировке: D300, D400, D500, D600, D700.

Каждая марка имеет оптимальные показатели в зависимости от назначения:

  1. Теплоизоляционный (D300, D400) — имеет минимальную прочность при максимальной пористости. Обладает самым низким показателем теплопроводности, используется только для теплоизоляции готовых стен.
  2. Конструкционно-теплоизоляционный (D500, D600) — имеет средние показатели плотности и прочности. Предназначен для межкомнатных перегородок и стеновых конструкций до 2-х этажей.
  3. Конструкционный (D700 и выше) — применяется для возведения несущих стен малоэтажных построек.

При выборе строительных блоков необходимо учесть эксплуатационную влажность, назначение, технологию изготовления материала.

Учет эксплуатационных показателей

Таблица теплопроводности газосиликатных блоков

Характеристики влажности D300 D400 D500 D600 D700
Теплопроводность ? (Вт/(м?°C)) в сухом виде 0,072 0,094 0,12 0,14 0,165
Теплопроводность ? (Вт/(м?°C)) влажность 4% 0,088 0,117 0,141 0,16 0,192

При сравнении теплопроводности газосиликатного материала и кирпича, показатели последнего уступают в 4 раза. Так, для обеспечения желаемого теплосбережения потребуется толщина стен из газосиликата 500 мм. Тогда как для соблюдения аналогичных параметров понадобилось бы возвести кирпичную кладку толщиной не менее 2000 мм.

Важность соблюдения теплосбережения блоков

Теплопроводность газосиликата зависит от ряда факторов:

  1. Габариты строительного блока. Чем большую толщину имеет стеновой блок, тем выше его теплоизолирующие свойства.
  2. Влажность окружающей среды. Материал, впитавший влагу, снижает способность хранить тепло.
  3. Структура и количество пор. Блоки, имеющие в своей структуре большое количество крупных воздушных ячеек, имеют повышенные теплоизоляционные показатели.
  4. Плотность бетонных перегородок. Стройматериалы повышенной плотности хуже сохраняют тепло.

Высокая степень влагонакопления газосиликата исключает его использование в помещениях повышенной влажности без обработки гидроизоляционным материалом.

Теплопроводность блоков в зависимости от плотности

Характеристика теплопроводности газосиликатных блоков пропорциональна плотности.  Чем выше показатель плотности, тем больше коэффициент теплопроводности, следовательно, увеличиваются энергозатраты на обогрев помещения. Во избежании лишних расходов на отопление потребуется дополнительная теплоизоляция стен минеральной ватой, пенополистиролом или другим изолирующим материалом.

Плотность блоков влияет на:

  • потребность в гидроизоляции;
  • строение конструкции в один или несколько слоев;
  • необходимость дополнительной теплоизоляции;
  • метод укладки блоков на специальную клеевую основу.

Таблица плотности и коэффициента теплопроводности

Оптимальным вариантом для малоэтажного строительства (до 2-х этажей) является газосиликат марки D500. Объемная плотность этого материала составляет 500 кг/м

3, что аналогично плотности деревянного бруса. Теплопроводность газосиликатного блока D500 в сухом состоянии равна 0,12 Вт/(м?°C), тогда как у кирпича она выше примерно в 4 раза (0,45 Вт/(м?°C)). Газосиликат D500 применяется для постройки несущих стеновых конструкций высотой до 2-х этажей, либо для возведения межкомнатных перегородок, оконных и дверных проемов, балок, ребер жесткости. Марка D500 максимально сочетает в себе конструкционные и теплосберегающие характеристики.

Вывод

На этапе планирования строительства необходимо точно рассчитать количество и конструкционные характеристики блоков различного назначения. От правильного выбора плотности и теплопроводности используемых материалов зависит не только сохранение температурного режима в доме, но и долговечность постройки. Гармоничное соотношение цены и качества газосиликата делают его одним из самых востребованных стройматериалов.

Теплопроводность газосиликатных блоков в сравнении с другими материалами

Способность к эффективному удержанию тепла внутри помещений играет ключевую роль при выборе материалов для возведения наружных стен зданий, характеристики, отражающие ее в количественном выражении, обязательно учитываются при проведении расчета их толщины. Неизменно высокие результаты показывают газосиликатные блоки и плиты, обеспечивающие низкую термопередачу при минимальной нагрузке на основание и достаточно хорошей прочности.

Определение и влияние на другие характеристики

В количественном выражении отражает способность газосиликата проводить тепло с учетом его постоянного агрегатного состояния и условий эксплуатации. По сути является аналогом электропроводимости: чем она выше, тем активнее происходит теплообмен. Существует прямая связь между толщиной строительных конструкций, удельным весом и структурой их основы и показателем термопередачи.

Пористые и удерживающие внутри воздух блоки или плиты в сухом виде имеют неизменно низкую теплопроводность, уплотненные разновидности – наоборот.

Обратная величина этой характеристики – способность к препятствованию прохождения тепла сквозь структуру: чем она выше, тем лучше элементы подходят для утепления или постройки энергосберегающих сооружений. По этой причине для организации отвода или теплопередачи используются элементы из стали или алюминия, имеющие крайне низкое термическое сопротивление, а при необходимости поддержки определенного режима внутри – стройматериалы с ячеистой или волокнистой структурой: дерево, минвата, газосиликат или пенобетон, поризованная или пустотелая керамика, пенопласт, ППУ, эковата.

Кладочные изделия представлены марками с разной плотностью, в пределах D300-D400 они относятся к теплоизоляционным, D500 и D600 – совмещают утепляющие и конструкционные способности, свыше D700 – не обладают энергосберегающими свойствами. D400 могут использоваться при возведении нагружаемых стен, но лишь при условии их надежного армирования и поддержки каркасом, при исключении мостиков холода в дополнительной защите от потерь тепла они не нуждаются. При повышении плотности марки скорость теплообмена между наружной и внутренней средой увеличивается, что приводит к необходимости утепления фасада.

Марка плотности D300 D400 D500 D600
Теплопроводность г в сухом состоянии, Вт/м·°C 0,08 0,096 0,12 0,14
Коэффициент паропроницаемости газосиликата, мг/м·ч·Па 0,26 0,23 0,2 0,16

Это значение подтверждается производителем опытным путем, для его определения в домашних условиях можно направить на блок горелку (или поставить его на плиту) и измерять изменение температуры в 3-4 см углублении на другой стороне с интервалом в 1 мин. После прекращения нагрева отслеживается динамика охлаждения. Такой опыт позволяет проверить не только изоляционные свойства, но и огнестойкость.

Сравнения коэффициентов теплопроводности газоблоков и других материалов

Большинство современных строительных конструкций, разделяющих зоны с разными температурами, являются многослойными. Их величина термического сопротивления суммируется с учетом толщины каждой прослойки в метрах и термопроводности при стандартных условиях (нормальной влажности и температуре). Усредненные нормативные значения последней приведены в таблице ниже:

Вид Средний диапазон плотности, кг/м3 Коэффициент теплопроводности в сухом состоянии, Вт/м·°C
Мелкоштучные кладочные изделия и блоки из искусственного камня
Кирпич красный плотный 1700-2100 0,67
То же, пористый 1500 0,44
Силикат 1000-2200 0,5-1,3
Керамический поризованный камень 810-840 0,14-0,185
Многопустотные камни из легкого бетона 500-1200 0,29-0,6
Дерево
Дуб 700 0,23
Клен 620-750 0,19
Лиственница 670 0,13
Липа 320-650 0,15
Сосна 500 0,18
Береза 510-770 0,15
Блоки и плиты из ячеистых видов бетона
Пенобетон 300-1250 0,12-0,35
Автоклавные газосиликатные и газобетонные 280-1000 0,07-0,21
Строительные плиты из пористого бетона 500-800 0,22-0,29
Утеплители
Пенополистирол 40 0,038
Маты из минеральной ваты 50-125 0,048-0,056
Эковата 35-60 0,032-0,041

Несложно заметить, что из всех видов кладочных материалов автоклавные газосиликатные блоки в разы выигрывают в сопротивлении теплопередаче. На практике это означает возможность уменьшения толщины стен при равном теплообмене и отсутствии необходимости их наружного утепления. В этом плане они уступают лишь дереву, для сравнения: равную теплопроводность имеют 140 мм сухого бруса, 250 – кладки из газосиликата, 500 – керамзитобетона и 650 – монолитной стены из кирпича. У продукции, используемой при утеплении, такая же низкая эффективность теплообмена наблюдается у плиты ППУ толщиной в 25 мм, полистирола в 60, пробки в 70 и минеральной ваты в 80.

Высокая способность к удержанию тепла допускает использование как конструкционных изделий, так и в качестве изолятора. Марки D500 и D600 совмещают оба свойства, но при превышении плотности свыше 700 кг/м

3 сопротивление теплопередаче снижается и возникает потребность либо в наружном утеплении, либо в увеличении толщины кладки, и как следствие – росту затрат. С целью исключения ошибок этот параметр определяет расчет, проводимый на стадии проектирования и учитывающий климатические условия региона, требуемую температуру внутри здания и точную теплопроводность.


 

сравнительная характеристика газобетонных блоков d400, d500 и d600

Теплопроводность газобетонаГазобетон представляет собой разновидность ячеистого бетона. Этот строительный материал содержит равномерно распределенные по всему периметру поры, которые не сообщаются между собой. Особенности производства позволяют добиться хорошей теплопроводности газобетона, небольшого веса и итоговой низкой стоимости. Именно по этим причинам материал становится все более популярным.

Преимущества газобетона

Несмотря на то что материал был изобретен в 1924 году, активное использование газобетона в строительстве началось в 80-х годах. На сегодняшний день самой распространенной сферой применения является утепление дома. Благодаря своей низкой теплопроводности и небольшой толщине, газобетон позволяет в несколько раз увеличить энергосбережение и экономит средства владельцев, проживающих в холодных регионах. Общие преимущества материала выглядят следующим образом:

  1. Теплоизоляционные свойства. Утепленные газобетоном стены удерживают тепло в несколько раз лучше, в сравнении с обычным бетоном. Такой эффект достигается за счет многочисленных пор, которые имеют сферическую форму и не сообщаются между собой. Материал хорошо удерживает тепло, не позволяя ему выходить наружу. Очень низкий коэффициент теплопроводности газосиликатных блоков обусловлен большим количеством пор с воздухом, который известен отличными теплоизоляционными свойствами.
  2. Небольшой вес. Блоки в несколько раз легче большинства конкурентных материалов. Это существенно облегчает монтаж, перевозку и установку. Благодаря этому удается сократить время строительных работ, сэкономить значительную сумму. Например, для строительства жилого или нежилого помещения нет необходимости создавать прочный и большой фундамент.
  3. Преимущества газобетонаГазобетонные блоки при утеплении здания можно монтировать при помощи клея.
  4. Паропроницаемость. Этот показатель может быть важен в определенных помещениях, где нужно добиться постоянного уровня влажности, а также поддерживать температуру в узком диапазоне. Коэффициент теплопроводности газоблока зависит от плотности, но параметр практически не влияет на возможность пара выходить наружу.
  5. Относительно высокая прочность. Важно понимать, что допустимые нагрузки на материал зависят от марки и технологии производства. Одной из самых прочных моделей газобетона является марка D 500. Блоки предназначены для строительства целого дома высотой до 3 этажей. Но при монтаже возникает необходимость дополнительного использования железобетонного армированного пояса или кирпичной кладки. Такие материалы хуже удерживают тепло, поэтому строение может нуждаться в дополнительном утеплении.
  6. Хорошая шумоизоляция. Показатель зависит от толщины стен и марки газобетона, но материал успешно применяется в жилых домах. Коэффициент шума соответствует требованию ГОСТ.
  7. Стоимость газобетонаОгнеупорность является еще одним преимуществом. Свойства материала позволяют применять газобетон в помещениях с повышенными требованиями пожарной безопасности.
  8. Экологичность. В процессе производства используются кварцевый песок, цемент и специализированные газообразователи. Отсутствие токсичных веществ гарантирует безопасность для здоровья людей.
  9. Низкая стоимость. Цена блоков может быть в несколько раз ниже конструкций из бетона или кирпича. Важно понимать, что дополнительная экономия связана с небольшими временными и финансовыми затратами при строительстве.

На сегодняшний день существует несколько видов газосиликатных блоков. При их производстве используются разные технологии, позволяющие получить материалы, которые будут обладать повышенными теплоизоляционными, конструкционными свойствами или отличаться хорошей плотностью и прочностью.

Область применения каждой марки обуславливается техническими требованиями.

Недостатки материала

Как и любой другой строительный материал, газобетон не лишен отрицательных сторон. Первым важным моментом, который стоит учитывать при приобретении блоков, является разделение на виды. Каждая марка предназначена для узкого направления работы. В зависимости от плотности газобетон может быть:

  • Характеристики газобетонаТеплоизоляционным. Такие изделия характеризуются хорошим удержанием тепла, но крайне низкой плотностью. Использовать блоки при возведении строения недопустимо, т. к. никаких существенных нагрузок стена выдержать не сможет. Зато теплоизоляционные блоки хорошо подходят для наружного утепления зданий.
  • Конструкционно-теплоизоляционным. Числовые параметры плотности могут варьироваться от 400 до 800 единиц. Такие блоки используются при возведении небольших стен или перегородок. С увеличением плотности возрастает и коэффициент теплопроводности, следовательно, материал хуже удерживает тепло.
  • Конструкционным. Марки такого газобетона являются самыми прочными. Показатель плотности может достигать 900−1200 единиц. Блоки предназначены для возведения перегородок, стен и целых зданий. Способность выдерживать большие нагрузки обусловлена низким содержанием воздушных пор. Но такое свойство влияет на теплопроводность газобетона 500 или 600. Сооружения требуют дополнительного наружного утепления.

Можно выделить еще несколько недостатков, связанных с техническими особенностями:

  • высокая хрупкость;
  • высокие параметры гигроскопичности, что может отражаться на теплоизоляционных свойствах во влажных регионах;
  • низкая морозостойкость, например, распространенная марка D 500 рекомендована для климатических условий, где температура не опускается ниже -18 оС.

Плюсы и минусы газобетона

Все недостатки являются условными, т. к. при правильном использовании в рекомендуемом температурном режиме материал имеет множество конкурентных преимуществ.

Сравнительный анализ марок

Газобетон не представляет собой универсальный материал. Это можно рассматривать как неудобство, которое требует повышенного внимания при его приобретении, но сочетание нескольких видов позволит добиться отличных эксплуатационных качеств. Например, высокая плотность марки D 600 позволяет без труда возвести небольшое строение, которое будет отличаться высокой прочностью. Дополнительный наружный слой небольшой толщины из марки D 400 решит проблему с влажностью и теплом. Сравнительная таблица позволит лучше оценить параметры всех популярных марок.

Таблица 1 — Коэффициент теплопроводности в зависимости от марки и параметра влажности

Марка газобетонаD300D400D500D600
Коэффициент теплопроводности при сухом состоянии0,0720,0960,120,14
Уровень теплопроводности при влажности не более 4%0,0840,1130,1410,160
Уровень теплопроводности при влажности не более 5%0,0880,1170,1470,183

Меньшее количество воздушных пор обеспечивает большую плотность и прочность, но существенно повышает показатель теплопроводности. Более высокий числовой параметр указывает на худшую способность материала удерживать тепло. Создать уникальную марку газобетона, которая сочетала бы в себе показатели теплопроводности модели D 300 и плотность марки D 600, невозможно, поэтому единственным вариантом остается сочетать несколько видов для возведения и последующего утепления сооружения.

Способы утепления

Использовать газосиликатные блоки для утепления можно для сооружений из большинства известных материалов. Это обычные бетонные дома, сооружения из кирпича и строения из газобетона с высоким коэффициентом теплопроводности. Но в процессе строительных работ важно учитывать некоторые особенности. Использовать утепление можно для внутренней или наружной стороны строения. Эксперты рекомендуют отдавать предпочтение второму способу по нескольким причинам:

  • Способы утепления домаПервая причина очевидна: внутреннее пространство в помещении существенно уменьшится за счет слоя утеплителя. Толщина необходимого слоя газобетона является небольшой, но 40 сантиметров дополнительного слоя на каждой стене значительно сократят полезную площадь.
  • Вторая причина связана с физическими процессами. В холодное время года стены прогреваются очень медленно, а внешняя сторона остывает быстро. В этом случае между слоем утеплителя и основным материалом сооружения будет образовываться конденсат, который при замерзании превращается в лед. Такой процесс негативно отражается не только на температуре, но и на прочности всего строения.
  • Третий фактор связан с особенностями структуры газобетона. При отсутствии вентиляции между стеной и слоем утеплителя будет образовываться грибок или плесень. Такой процесс особенно опасен для деревянных строений.

Использование технологии внешнего утепления позволяет достичь улучшения звукоизоляции и защитить основной материал стен от разрушительного действия влаги. Кроме того, газосиликатные блоки на завершающем этапе строительства можно отделать в любом стиле. Это гарантирует отличный внешний вид.

Использование штукатурки

Несмотря на то что стоимость газосиликатных блоков невысока, многие строители хотят добиться еще большей экономии. Решить задачу по утеплению строения при самых низких материальных затратах можно только при использовании пенопласта.

Но такой подход имеет множество недостатков. Пенопласт практически не пропускает воздух, из-за чего вероятность образования плесени или грибка увеличивается в несколько раз. Большинство экспертов, при отсутствии возможности воспользоваться газобетонными блоками, рекомендуют сделать выбор в пользу теплой штукатурки. Первым важным преимуществом является невысокая стоимость материалов и работы. Цена отделки сопоставима с газобетонными блоками, а уровень теплоизоляции, в сравнении с обычной штукатуркой, в 4 раза выше.

Самой популярной является система крепления, которая состоит из 3-ех слоев. Схема работы выглядит следующим образом:

  • Использование штукатуркиПервый слой, который рекомендуется укладывать с внешней стороны стены, должен быть изготовлен из материала с очень низким коэффициентом теплопроводности. Лучше всего использовать минеральную вату, т. к. материал крайне легок и обладает отличной паропроницаемостью. Установка производится легко, справиться с работой можно самостоятельно, без опыта в строительно-монтажных работах. Кроме того, большинство производителей гарантирует минимальный срок эксплуатации в течение 70 лет. Для сравнения, пенопласт требует замены через 20−25 лет.
  • Второй слой является базовым и выполняется из штукатурно-клеевой смеси. Для обеспечения большей прочности стоит дополнительно укрепить слой армированной стекловолоконной сеткой.
  • Основная задача третьего слоя — обеспечение эстетичного внешнего вида. В качестве материала можно выбрать любую декоративную штукатурку, которой существует много: акриловую, силикатную, силоксановую. Если цвет материалов не подходит, можно использовать любые краски.

Хорошие характеристики теплопроводности газобетонных блоков не должны вводить в заблуждение владельцев домов, которые выбрали этот материал в качестве основного при возведении строения. Проживание в условиях средней полосы предполагает обязательное утепление сооружений из газосиликатных блоков. Это связано не только с риском очень низких температур в зимнее время, но и с повышенной влажностью в течение всего года.

Газобетон 400 мм нужно ли утеплять или нет: марки D500

Газоблоки – сами по себе являются эффективным утеплителем. Материал, из которого они сделаны – ячеистый бетон, изначально разрабатывался как теплоизолятор. Однако вскоре, благодаря отличным прочностным характеристикам, ГОСТ включил его в группу конструкционных стройматериалов, но оставил при этом характеристику «теплоизоляционные».

Сегодня существует 5 марок газосиликата, подпадающих под эту категорию. Все они используются в строительстве для возведения стен, однако каждая марка обладает индивидуальной способностью удерживать тепло в помещении. В зависимости от плотности, одни газоблоки нуждаются в утеплении при определенных условиях, другие – сами являются отличными теплоизоляторами.

У застройщиков часто возникает вопрос: если для строительства дома использовали газобетон 400 мм, нужно ли утеплять стены? Чтобы ответить на него, следует сначала выяснить:

  • в каком регионе строится дом,
  • газоблоки какой марки при этом используются,
  • будет ли помещение эксплуатироваться непрерывно,
  • какую температуру в комнатах мы будем поддерживать.

Если ориентироваться на возможности газобетона относительно других материалов, то можно прийти к выводу, что утеплять стены толщиной 400 не нужно.

Рассмотрим простой пример: газобетон сопротивляется теплопередаче в шесть раз лучше, чем красный кирпич. Т.е., чтобы получить стену с такими же изолирующими свойствами, как у газобетона, кирпича нужно потратить больше в 6 раз.

При этом возникает вопрос: если дома из кирпича эксплуатируются без утепления, зачем же утеплять газобетон? Ведь его характеристика и так гораздо лучше?

Однако есть точные параметры микроклимата, который должен быть в помещении. Один из них – средняя температура в комнате. Наиболее комфортной считается температура 22°С. А теперь попробуем ответить на вопрос: во многих ли домах в лютые морозы поддерживается температура 22°С?

Виталий Кудряшов Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Очевидно одно: чтобы создать такие условия в кирпичных зданиях, потребуется огромное количество тепловой энергии. А в газобетонном доме такое возможно: средняя температура 22°С в комнатах может быть создана при среднем расходе газа. или электричества.

Однако мы уже выяснили, что теплопроводность зависит от марки блока. Следовательно, нужно конкретизировать наименование газобетона и выбрать блок какой-то одной плотности.

Остановимся на d500: эта марка сегодня наиболее популярна. Итак, уточняем задание для анализа: - нужно ли утеплять стены из газобетона марки D500, толщина которых 400 мм?

Чтобы ответить на этот вопрос, следует сделать теплотехнический расчет стены, выложенной из газобетона данной марки. Имеем задачку в три действия:

  1. сначала нужно определить – с какой силой стена сопротивляется утечкам тепла;
  2. необходимо выяснить – каким коэффициентом теплоизоляции должна обладать стена, чтобы обеспечить комфортную температуру проживания на протяжении зимы;
  3. требуется сравнить оба значения и сделать вывод о необходимости утепления.

Попытаемся решить эту задачку.

Виталий Кудряшов

Значения коэффициентов теплопроводности и методология теплотехнического расчета изложены в Своде правил СП 50.13330.2012.

Суть удельного коэффициента теплопроводности такова: эта величина характеризует – сколько ватт энергии тратится на тепло, уходящее сквозь стену площадью 1 кв. метр, в течение 1-й секунды.

Расчетная теплопроводность стены зависит от многих факторов, но основные – это тип материала, из которого выполнены швы.

Если кладка уложена на клей, коэффициент теплопроводности стены из газобетонных блоков равен 0,14 Вт/(м² * °С).

Виталий Кудряшов Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Важно: Цементный раствор повышает удельную теплопроводность газоблоков на треть.

  • Коэффициент сопротивления теплопередаче – это величина, обратная проводимости и учитывающая толщину стены.
  • Для нашей стены сечением 400 мм коэффициент сопротивления теплопередаче составит 2,86 м² (м² *°C²) / Вт.
  • Чтобы точнее рассчитать индекс теплосопротивления стены следует учесть параметры внутренней и наружной штукатурки – 0,097 и 0,027 соответственно.

Итак:

  • Результат 1-го действия:
  • Суммарное значение коэффициента равно 2,98 (м² *°C²) / Вт.
  • Результат 2-го действия:
  • Нормативное значение минимального индекса теплосопротивления для Московской области равно 3,15 (м² *°C²) / Вт.
  • Результат 3-го действия:
  • Расчетное сопротивление нашей стены меньше, чем требуется по нормативу.
Виталий Кудряшов Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Вывод: газобетонную стену сечением 400 мм, выложенную из блоков марки D500 надо утеплять.

Преимущества и недостатки утепляющих материалов будем оценивать по следующим критериям:

  • паропроницаемость;
  • теплоизолирующая способность;
  • степень влагопоглощения и его влияние на потерю утепляющих свойств;
  • горючесть;
  • легкость монтажа.

Пару слов надо сказать о паропроницаемости: для газобетона это определяющий фактор. Ячеистая структура блоков отлично проводит пар. Если каналы закупорить, то влага будет застаиваться в порах, а это вредно:

  • во-первых, вода будет закисать, появится плесень;
  • во-вторых, повысится теплопроводность, стены перестанут удерживать тепло.

Минвата – расплав силикатных масс, доменных шлаков. Форма продажи – пласты или рулоны. Пластичный материал, удобен в перевозке, использовании.

  • Паропроницаемость в 3 раза выше, чем у газоблоков.
  • Тепло удерживает – в 3 раза лучше.
  • Малогорюч: при очень высоких температурах могут воспламеняться клеящие вещества, волокна не поддаются огню.
  • Легко монтируется: вату можно просто приклеить к стене.

Все перечисленное – плюсы.

Минус – высокое водопоглощение. Причем, если доля воды возрастает до 20% от веса, вата теряет 50% изолирующих свойств.

Расплав горных минералов. Продается в виде мягких панелей определенных размеров – напоминает спортивные маты или обычные матрацы.

  • Паропроницаем, отличный теплоизолятор – по этим параметрам базальтовая вата втрое превосходит газобетон.
  • Негорюч.
  • Гидрофобен – не намокает, отталкивает воду.

Особенность:

  • монтируется на обрешетку,
  • требует укрытия панельными отделочными или штукатурными материалами.

Монтаж требует вложений – хоть и относительно небольших, но все же…

Сыпучий материал. Это та же штукатурная смесь, дополненная поризоваными гранулами – крошкой пенопласта и т. п.

  • Ограниченно паропроницаем.
  • Теплоизолирующая способность – на уровне газоблоков.
  • Смесь негорюча.
  • Не намокает.
  • Монтируется традиционным способом – наносится кельмой или мастерком, разравнивается гладилкой.

Минус: нецелесообразно накладывать слой более 20 мм толщиной.

Материал предназначен скорее не для утепления, а затем, чтобы защитить наружную поверхность газобетона от воздействия вредных факторов – влаги, пыли.

Полимерные пористые или ячеистые плиты – достаточно жесткие, твердые.

  • Степень паропроницаемости – 0. Это огромный минус, который в случае с газобетоном сводит на «нет» все плюсы. Может монтироваться на каркас – по технологии вентилируемого фасада.
  • Горюч, при плавлении выделяет ОВ.
  • Влагопоглощение – минимальное, не сопровождается потерей полезных свойств.
  • Монтируется элементарно просто: плиты усаживаются на клей и закрепляются дюбелями зонтичной формы. Сверху шпаклюются по сетке и окрашиваются.

Поставляется в виде пены. Чтобы нанести материал на стену, нужно специализированное оборудование. По остальным свойствам повторяет пенополистирол.

При выборе утепляющих материалов следует руководствоваться экономической целесообразностью применительно к конкретным, имеющимся на данный момент условиям.

  • Если средства позволяют есть резон установить базальтовый утеплитель: это наиболее функциональный материал – долговечный и удобный в эксплуатации.
  • Такими же, примерно, свойствами обладает минвата. Если ее поставить в вентилируемый фасад, она будет служить ничуть не хуже базальтовой.
  • В качестве локального утеплителя подойдет пенополистирол. Его же можно использовать для изоляции помещений изнутри. В некоторых архитектурных конструкциях, особенно мансардного типа, утепление изнутри – наилучший, а то и единственно возможный вариант.
  • Подобными характеристиками обладает и пенополиуретан. Мансардный этаж требует утепления по обрешетке на стропилах: в этом случае сложно найти замену этому материалу.

Цена различных материалов, на первый взгляд, существенно различаются. Например, кубометр базальтовой ваты может стоить в три раза дороже, чем кубометр полистирола.

Однако, чтобы утеплить стены, кроме основных материалов требуются еще и вспомогательные. Цены на них могут варьироваться в противоположных пропорциях.

Например, вы отказались от строительства каркаса для вентилируемого фасада и сэкономили втрое при покупке жестких пенополистирольных панелей. Но следом придется покупать фиксирующие дюбели для газобетона. Стоимость комплекта зонтиков в пересчете на 1 кв. метр превышает цену пенопласта в 2 раза. В итоге, экономия обернулась в 0.

Вывод: стоимость материалов утепления лучше рассчитывать еще на этапе проектирования: так можно с максимальной эффективностью оптимизировать собственные затраты.

Теплопроводность газобетона и газобетонных блоков
Теплопроводность газобетона

На протяжении долгих лет строители отдавали предпочтение кирпичу как долговечному, прочному материалу, устойчивому к износу. Современный рынок предлагает ряд альтернативных материалов, среди которых ячеистые бетоны, обладающие большим количеством преимуществ. Одним из важных плюсов газобетона является теплопроводность, которая подразумевает способность материала сохранять тепло внутри помещения.

Способность строительного материала к удержанию тепла зависит от многих факторов, среди которых плотность, характеристика взаимодействия с влагой, расположенность к теплоусвоению и паропроходимость.

Теплопроводность газобетона обусловлена его структурой. Любой ячеистый бетон на 85% состоит из пузырьков воздуха, который создает своеобразную прослойку при взведении стен здания и оказывается отличным утеплителем. В сравнении с пенобетоном газоблок оказывается более подвержен воздействию влаги, что сказывается на его теплопроводности. Поэтому при проведении строительных работ необходимо осуществить гидроизоляцию используемых изделий и будущей постройки.


От чего зависит теплопроводность газобетонных блоков?

sravnenie_effektivnosti_materialov.jpg

На теплопроводность газобетона влияет влажность воздуха. В сухом климате его показатели будут более располагающими, но в иных условиях способность ячеистых бетонов к пропусканию тепла практически схожи с теми, которые демонстрирует кирпич. Каждый регион имеет индивидуальные климатические и погодные особенности, которые предполагают использование тех или иных материалов. В случае с областями, где наблюдается высокая влажность воздуха, прибегают к эксплуатации изделий с большей толщиной, а любое строительство требует проведения предварительных расчетов для того, чтобы полученная в финале теплопроводность газобетона не сказалась на пригодности дома к эксплуатации и комфорте проживания в нем.

Осуществление расчетов предполагает учет толщины газоблоков, возможность их эффективного утепления и обустройство потенциальной системы отопления.

graphic-3.jpg

Теплопроводность газобетона, используемого при возведении стен, может зависеть от качества клеевого раствора, так как места смыкания блоков являются возможными причинами проникания холода. Также сказывается и наличие армопоясов. Использование обычного бетона приведет к тому, что дом будет сильно промерзать, поэтому строители используют железобетонные армированные пояса для увеличения теплопроводности газобетонных блоков. Необходимость использования этих деталей сказывается на финансовых затратах на строительство.


Зависимость теплопроводности от плотности

2_1.gif

Коэффициент теплопроводности газобетона напрямую зависит от плотности материала. Чем плотнее его структура, тем выше способность к удержанию тепла. При этом наблюдается специфичная зависимость теплоизоляции от прочности материала: чем менее прочен газобетон, тем лучше он удерживает тепло. Выбирая марку материала, стоит ориентироваться и на эту особенность, и при строительстве дома выбирать газобетон марки D500- D600.


Преимущества теплопроводности газобетона

Низкий коэффициент теплопроводности материала позволяет серьезно сэкономить на системе отопления и электроэнергии, затрачиваемой на поддержание комфортной температуре в помещении. Стены дома из газобетона помогают поддерживать приятный микроклимат, сохраняя тепло зимой, а жарким летом создавая приятную прохладу благодаря тому, что они не пропускают тепло извне.

Экономичность в использовании газобетона заключается еще в том, что нет необходимости в затратах на дополнительную теплоизоляцию. В случае необходимости повышения теплоизоляции можно облицевать фасады здания кирпичом, сделав более привлекательным его внешний вид и увеличив его способность к сохранению тепла.

Купить газобетонные блоки высокого качества и по выгодным ценам можно на сайте компании «УниверсалСнаб».

Теплопроводность газосиликатных блоков

Теплопроводность газосиликатных блоковГазосиликатные блоки получают в результате сложных химических реакций порообразования. Основными компонентами для образования данного материала являются газообразователь (алюминиевая пудра или суспензия) и цементная смесь. Поры в газосиликатных блоках образуются в результате сложной реакции извести и алюминия – выделяется водород, который и образовывает пузырьки.

На теплопроводность газосиликатного блока влияет множество факторов. В первую очередь это качество исходных материалов и однородность структуры строительного материала. Некоторые производители, для снижения себестоимости газосиликатных блоков добавляют в основной состав золу, шлак или гипс, но эти материалы ухудшают качество продукции.

После твердения монолитного газобетона из него делают газосиликатные блоки, используя специальные струнные линии для высокоточной резки. После этого уже готовые блоки укладывают в автоклавы, в которых при высоких температурах происходит окончательное твердение блоков. Такая технология получения данного материала позволяет приобрести блокам их уникальные характеристики, основной из которых есть низкая теплопроводность.

Теплопроводность газосиликатных блоков зависит от средней плотности (от 300 до 700 кг/м³). При минимальной плотности газосиликат используют в качестве теплоизолирующего материала, так как прочность его достаточно мала. Марка блока Д500 характеризуется коэффициентом теплопроводности в 0,12 Вт/м, а  марка Д400 имеет  коэффициент теплопроводности 0,9 Вт/м.

Если использовать газосиликатные блоки для утепления здания, то лучше эту работу производить с наружной стороны, чтобы оставить полезную площадь здания без изменений. Для достижения оптимального результата следует использовать облицовочный кирпич. В таком случае между стеной из газосиликатных блоков и стеной из кирпича оставляют воздушную прослойку в несколько сантиметров. Блоки укладывают при помощи специального клея, это экономит раствор и позволяет уменьшить влияние мостиков холода, ведь клей сам по себе обладает морозостойкими качествами. Обычно данный материал не нуждается в утеплении. В результате неправильного монтажа слоя утеплителя на поверхность газосиликатных блоков на поверхности стены может скапливаться влага, которая уменьшит долговечность конструкции. 

от чего зависит, сравнение с другими материалами

Одна из характеристик, по которой выбирают газобетонные блоки – это теплопроводность. По ее показателю определяют, насколько хорошо материал способен удерживать тепло внутри здания. Один из самых низких коэффициентов теплопроводности имеет воздух. Именно благодаря его наличию в структуре блоков газобетона, они хорошо теплоизолирует стены. Воздух, находящийся в порах, замедляет процесс теплообмена между частицами материалов. Поэтому блоки имеют низкий коэффициент теплопропускаемости, более лучший, чем у кирпича, дерева или пеноблоков.

От чего зависит теплопроводность газоблока?

Газобетон состоит из пористой структуры. Появляются поры в результате выделения газа во время химической реакции раствора с алюминиевой пудрой. Занимают они около 80-85% всего его объема. Но в отличие от пенобетона, из-за такого способа производства создаются открытые, а не закрытые ячейки. По этой причине газобетон быстрее впитывает влагу по сравнению с пеноблоком. Прочность же зависит от толщины перегородок между ячейками.

Производится трех видов:

  • теплоизоляционный;
  • конструкционный;
  • конструкционно-теплоизоляционный.

Каждый из них имеет разный коэффициент теплопропускаемости, и, соответственно, сферу применения. Первый тип используется только в качестве теплоизоляции уже отстроенных стен зданий, маркируется D400. Второй и третий вид применяются для возведения домов и перегородок.

На теплопроводность газобетона влияют следующие факторы:

  • плотность;
  • влажность;
  • толщина;
  • пористость и структура пор.

Теплоизоляционные блоки имеют наибольшее количество ячеек в своей структуре, причем крупного размера. Из-за этого утепляющий газобетон имеет наименьшую плотность и низкую прочность. Так как для его изготовления использовалось небольшое количество цемента. В итоге перегородки между порами получились недостаточно прочными. Этот тип газоблоков нельзя применять для возведения несущих конструкций. Но зато они обладают наилучшими теплоизолирующими свойствами, благодаря большому количеству воздуха внутри.

Конструкционные газобетонные блоки имеют повышенную плотность, из-за чего их ячейки очень маленькие и их количество меньше, чем в теплоизоляционных, поэтому они хуже удерживают тепло. Этот тип материала используется для строительства оснований и несущих конструкций.

На теплопроводность также влияет влажность. Чем больше воды впитали газоблоки, тем меньше сухого воздуха осталось в ячейках, а значит, тем больше тепла сможет проходить через них. От толщины также меняется способность удерживать нагретый воздух, так, например, блоки шириной 30 см имеют более высокую теплосберегаемость, чем 20 см.

Сравнение газобетона с другими стройматериалами

Теплопроводность газоблока в сравнении с другими материалами заметно отличается. Она меняется в зависимости от структуры и плотности стройматериала. Коэффициент теплопропускаемости полнотелого силикатного кирпича (1800 кг/м3) составляет 0,87 Вт/м·К, пустотелого глиняного – 0,44 Вт/м·К, дерева (500 кг/м3) – 0,18 Вт/м·К, газоблоков D500 – 0,14 Вт/м·К. Чтобы стены одинаково удерживали тепло, то из кирпича потребуется построить сооружение толщиной 210 см, а из газобетона шириной чуть больше 40.

Различается теплопроводность кирпича и газоблока и других материалов с изменением влажности. При показателе 0% газобетон марки D600 имеет коэффициент 0,141 Вт/м·К, D500 – 0,0112 Вт/м·К, D400 – 0,096 Вт/м·К, пенобетон D600 – 0,151 Вт/м·К. Если влажность достигла 5%, то теплопропускаемость заметно ухудшается. У газобетона D500 составляет 0,147 Вт/м·К, D400 – 0,117 Вт/м·К, у пенобетона D600 – 0,211 Вт/м·К. На стены из дерева влага влияет еще значительнее. При плотности 500 кг/м3 и 0% влажности коэффициент теплопроводности – 0,146 Вт/м·К, при 5% – 0,183 Вт/м·К.

Толщину стен из газоблоков определяют в зависимости от климатического региона. Если это северные, то для наилучшей теплоизоляции дома потребуется дополнительное утепление. Иначе здание будет слишком быстро терять тепло. Стена шириной 20 см из D600 имеет показатель теплосберегаемости 0,72 Вт/м·К, 30 см – 0,46, 40 см – 0,35. Если конструкция построена из D400: 20 см – 0,51 Вт/м·К, 30 см – 0,32, 40 см – 0,25.

Чтобы не снижать утепляющие характеристики газоблоков, рекомендуется укладывать их на специальный клей. Тогда швы будут получаться минимальной ширины. Так как именно из-за толстых швов из цементно-песчаных растворов в кладке теряется больше тепла.

Для утепления стен из газобетона и пенобетона рекомендуется использовать влагопроницаемые утепляющие материалы, чтобы между теплоизоляцией и конструкций не образовывался конденсат. Из-за избыточной влажности не только повышается теплопроводность блоков, но и ухудшается микроклимат в доме. Наилучшим вариантом считается теплоизоляция из минеральной ваты. Ее толщина подбирается в зависимости от климатической зоны. Отделка газобетона гидроизоляционным слоем обязательна.

Коэффициенты преобразования теплопроводности

Теплопроводность - k - указывает на способность материалов проводить тепло.

Умножить на
Преобразовать из Преобразовать в
Btu фут / (h ft 2 o F) Btu in / (h ft 2 o F) Btu in / sec ft2 o F) Кал / (см с o C) Ккал / (см с o C)
Btu фут / (ч фут 2 o F) 1 12 0.0033 0,0041 4,134 10 -6
Btu in / (h ft 2 o F) 0.0833 1 0.000278 0.00035 3.45 10 - 7
Btu in / (sec ft 2 o F) 300 3600 1 1,24 0,0012
кал / (см с o ) В) 241.9 2903 0.806 1 0,001
Ккал / (см с o C) 2,42 10 5 2,9 10 6 806,3 1000 1
Ккал / (м.ч. o C) 0,672 8.06 0,0022 0,00278 2.778 10 -6
эрг / (см с o В) 5.78 10 6 6.93 10 -5 1.92 10 -8 2.39 10 -8 2.389 10 -11
Дж / м / ч o C ) 1,61 10 -4 0,00193 5,35 10 -7 6,64 10 -7 6,635 10 -10
Вт / (фут o C ) 1.89 22,8 0,0078 0,0078 7,84 10 -6
Вт / (м К) 0,58 6,94 0,00193 0,0024 2,39 10 9006 2,39 10 2,39 10 9006 2,39 10
Умножить на
Преобразовать из Преобразовать в
Ккал / (мч o C) Эрг / (см с o C) Дж / м / ч o C) Ватт / (фут o C) Вт / (м К)
Btu фут / (ч фут 2) или F) 1.49 173076 6230 0,527 1,73
Btu in / (h ft 2 o F) 0,124 14423 519 0,044 0,14
Btu in / (sec ft 2 o F) 446.5 5.19 10 7 1.87 10 6 158.2 519
кал / (см с или С) 360 4.19 10 7 1,51 10 6 127,6 418
Ккал / (см с o C) 360000 4.19 10 10 1,51 10 9 1.276 10 5 4.18 10 5
Ккал / (мч o C) 1 116300 4187 0,354 1.16
Эрг / (см с o C) 8,6 10 -6 1 0,036 3.05 10 -6 1 10 -5
Дж / м / ч o C) 0.00024 27.78 1 8.47 10 -5 2.78 10 -4
Вт / (фут o C ) 2.82 328123 11811 1 3.28
Вт / (м К) 0.86 1 10 5 3600 0,305 1
.

Метан - теплопроводность

Теплопроводность - это свойство материала, которое описывает способность проводить тепло . Теплопроводность может быть определена как

« количество тепла, передаваемого через единицу толщины материала - в направлении, перпендикулярном поверхности единицы площади - из-за градиента температуры единицы в условиях установившегося состояния».

Наиболее распространенными единицами теплопроводности являются W / (м К) в системе СИ и Btu / (ч футы F) в системе Imperial.

Табличные значения и единицы измерения теплопроводности приведены ниже рисунков.

Онлайн-калькулятор теплопроводности метана

Приведенный ниже калькулятор можно использовать для оценки теплопроводности газообразного метана при заданных температурах и 1 бар.
Выходная проводимость дана в мВт / (м К), БТЕ (IT) / (ч фут (F) в), (БТЕ (IT) дюйм) / (ч фут 2 ° F) и ккал (IT) / ( хм к).

См. Также другие свойства Метан при при различных температурах и давлениях : плотность и удельный вес, динамическая и кинематическая вязкость, число Прандтля и удельная теплоемкость (теплоемкость), а также теплофизические свойства при стандартных условиях,
, а также Теплопроводность воздуха, аммиака, бутана, углекислого газа, этана, этилена, водорода, азота, пропана и воды.

См. Также Калькулятор кондуктивной теплопередачи


Вернуться к началу
Теплопроводность метана при заданных температурах и давлениях:

Для полной таблицы с теплопроводностью - поверните экран!


фаза 900 900
Состояние Температура Давление Теплопроводность
[K] [° C] [0004] [МПа] [бара] [фунтов / кв. Дюйм] [мВт / м К] [ккал (ИТ) / (чм К)] [ Btu (IT) / (h ft ° F)] [Btu (IT) in / (h ft2 ° F)]
Жидкость 100 -173 -280 0.1 1 14,5 199,7 0,1717 0,1154 1,385
111,5 -161,6 -259,0 0,1 1 14,5 184,1 0,14 9004 1,276
Газ 111,5 -161,6 -259,0 0,1 1 14,5 11,43 0.009828 0.006604 0.07925
140 -133 -208 0.1 1 14.5 14.65 0.01260 0.008465 0.1016
-136 0,1 1 14,5 19,32 0,01661 0,01116 0,1340
200 -73.2 -99.7 0.1 1 14.5 21.94 0.01887 0.01268 0.1521
220 -53.2 -63.7 0.1 1 14.5 23.99 0.02063 0.01386 0.1663
240 -33.2 -27.7 0.1 1 14.5 26.39 0,02269 0,01525 0,1830
260 -13,2 8,3 0,1 1 14,5 28,88 0,02483 0,01669 0 9002 9007 6,9 44,3 0,1 1 14,5 31,47 0,02706 0,01818 0,2182
300 26.9 80,3 0,1 1 14,5 34,19 0,02940 0,01975 0,2371
320 46,9 116 0,1 1 14,5 37,0 0,03185 0,02140 0,2568
340 66,9 152 0,1 1 14,5 40.03 0,03442 0,02313 0,2775
360 86,9 188 0,1 1 14,5 43,15 0,03710 0,02493 0,2992 0,2992 9009 260 0,1 1 14,5 49,80 0,04282 0,02877 0,3453
500 227 440 0.1 1 14,5 68,34 0,05876 0,03949 0,4738
600 327 620 0,1 1 14,5 88,80 0,057 3531 5772 0,072 0,051 0,6157
700 427 800 0,1 1 14,5 110,4 0,0949 0.06379 0.7655
800 527 980 0.1 1 14.5 132.5 0.1139 0.07656 0.9187
627 06279 1 14,5 154,7 0,1330 0,08938 1,073
1000 727 1340 0.1 1 14,5 176,7 0,1519 0,10210 1,225
Жидкость 100 -173 -280 1 10 145 200,6 0,1725 0,1159 1,319
149,1 -124,0 -191,2 1 10 145 130.7 0,1123 0,07549 0,9059
Газ 149,1 -124,0 -191,2 1 10 145 18,17 577 0,01562 0,01050 0,010 0,015050 0,0150 0 05050 0

7 160 -113 -172 1 10 145 18,79 0,01616 0,01086 0.1303
180 -93.2 -136 1 10 145 20.65 0.01776 0.01193 0.1432
200 -73.2 -73.2 1 10 145 22,74 0,01955 0,01314 0,1577
220 -53,2 -53,7 1 10 145 24.90 0,02141 0,01439 0,1726
240 -33,2 -27,7 1 10 145 27,19 0,02338 0,01571 0,1885 0,1885 -13,2 8,3 1 10 145 29.60 0,02545 0,01710 0,2052
280 6.9 44,3 1 10 145 32.12 0,02762 0,01856 0,2227
300 26,9 80,3 1 10 145 34,79 0,02991 0,02010 0,2412
320 46,9 116 1 10 145 37.59 0,03232 0,02172 0,2606
340 66,9 152 1 10 145 40,54 0,03486 0,02342 9008 36072 5972 188 1 10 145 43.64 0.03752 0.02521 0.3026
400 127 260 1 10 145 50.23 0,04319 0,02902 0,3483
500 227 440 1 10 145 68,68 0,05905 0,03968 9007 620 1 10 145 89.08 0.07660 0.05147 0.6176
Жидкость 100 -173 -280 5 50 725 204.5 0.1758 0.1181 1.418
Сверхкритическая
фаза
-73.2 -99.7 5 50 725 40.61 0.03492 034348 0,03492 0,03492 0,03492 0,03492 0,03492
300 26,9 80,3 5 50 725 38,48 0,03309 0,02223 0.2668
400 127 260 5 50 725 52.69 0.04531 0.03045 0.3653
500 227 4 407 5072 725 70,51 0,06063 0,04074 0,4889
600 327 620 5 50 725 90.50 0,07781 0,05229 0,6275
Жидкость 100 -173 -280 10 100 1450 209,1 0,1798 0,1798 0,1508
Сверхкритическая фаза
200 -73,2 -100 10 100 1450 84.23 0.07243 0.04867 0.5840
240 -33.2 -27.7 10 100 1450 49.74 0.04277 0.02874 -13,2 8,3 10 100 1450 44,85 0,03856 0,02591 0,3110
280 6.9 44,3 10 100 1450 43,81 0,03767 0,02531 0,3038
300 26,9 80,3 10 100 1450 4472 7,37 0,03815 0,02564 0,3076
320 46,9 116 10 100 1450 45.79 0.03937 0.02646 0.3175
340 66.9 152 10 100 1450 47.75 0.04106 0.02759 188 10 100 1450 50.09 0.04307 0.02894 0.3473
400 127 260 10 100 1450 55.61 0.04782 0.03213 0.3856
500 227 440 10 100 1450 72.78 0.06258 0.04205 0.5046 9002
200 -73,2 -100 100 1000 14500 188,1 0.1617 0.1087 1.304
300 26.9 80.3 100 1000 14500 137.7 0.1184 0.07955 0.9546
100 1000 14500 120.4 0.1035 0.06955 0.8347
500 227 440 100 1000 14500 120.9 0,1039 0,06984 0,8381
600 327 620 100 1000 14500 130,4 0,1121 0,07532 0,9039

Вернуться к началу

Преобразование единиц теплопроводности:

Преобразователь единиц теплопроводности

британская тепловая единица (международная) / (фут-час градус Фаренгейта) [Btu (IT) / (фут-ч ° F], британская тепловая единица (международная) / (дюйм-градус Фаренгейта) [Btu (IT) / (в h ° F], британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(Btu (IT) in) / (фут² ч ° F)], килокалория / (метр часовой градус Цельсия) [ккал / (мч ° C)], джоул / (сантиметр второй градус Кельвина) [Дж / (см с К)], Вт / (метр градус Кельвина) [W / (м ° C)],

  • 1 Btu (IT) / (футы ° F) = 1/12 Btu (IT) / (в h ° F) = 0.08333 Btu (IT) / (в h ° F) = 12 Btu (IT) дюйм / (фут 2 h ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см с K) = 1,731 Вт / (м К)
  • 1 БТЕ (IT) / (в h ° F) = 12 БТЕ (IT) / (футы ° F) = 144 БТЕ (IT) в / (фут 2 h ° F) = 17,858 ккал / (м-ч ° C) = 0,20769 Дж / (см-с К) = 20,769 Вт / (м К)
  • 1 (Btu (IT) дюйм) / (фут² ч ° F) = 0,08333 Btu (IT) / ( фут h ° F) = 0,00694 Btu (IT) / (в h ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см с K) = 0,1442 Вт / (м К)
  • 1 Дж / ( см с K) = 100 Вт / (м К) = 57,789 Btu (IT) / (фут ч ° F) = 4.8149 Btu (IT) / (в h ° F) = 693,35 (Btu (IT) in) / (фут² h ° F) = 85,984 ккал / (мч ° C)
  • 1 ккал / (мч ° C) = 0,6720 Btu (IT) / (футы ° F) = 0,05600 БТЕ (IT) / (в h ° F) = 8,0636 (Btu (IT) дюйм) / (футы 2 h ° F) = 0,01163 Дж / (см с K ) = 1,163 Вт / (м К)
  • 1 Вт / (м К) = 0,01 Дж / (см с К) = 0,5779 БТЕ (IT) / (фут ч ° F) = 0,04815 БТЕ (IT) / (в часах) ° F) = 6,9335 (Btu (IT) in) / (фут² ч ° F) = 0,85984 ккал / (мГн ° C)

Вернуться к началу

.
Теплопроводность - Простая английская Википедия, бесплатная энциклопедия

Теплопроводность - это способность материала проводить тепло. Металлы хороши в теплопроводности, как и газы. Теплопроводность материала является определяющим свойством, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности может быть определено путем измерения скорости, с которой тепло может проходить через материал.

Тепловое сопротивление является противоположностью теплопроводности.Это значит не проводить много тепла. Материалы с высоким удельным сопротивлением называются «теплоизоляторами» и используются в одежде, термосах, домашней изоляции и автомобилях, чтобы согреть людей, или в холодильниках, морозильных камерах и термосах, чтобы держать вещи в холоде.

Теплопроводность часто обозначается греческой буквой "каппа", κ {\ displaystyle \ kappa} , Единицами теплопроводности являются ватты на метр-кельвин. Ватты - это мера мощности, метры - это мера длины, а Кельвины - это мера температуры.Из единиц мы можем видеть, что теплопроводность является мерой того, сколько энергии перемещается на расстояние из-за разницы температур.

Вот некоторые замечательные теплоизоляторы: Вакуум, Аэрогель, Полиуретан

Некоторые великие теплопроводники: Серебро, Медь, Бриллиант

Серебро является одним из наиболее теплопроводящих материалов (и является относительно распространенным), и из-за этого есть несколько интересных экспериментов с серебром, которые очень хорошо показывают, как работает теплопроводность.

Один из примеров - когда вы кладете 2 ложки в кипящую воду, одна ложка - сталь, а другая - серебро. Когда вы вынимаете ложки из кипящей воды, серебряная ложка горячее стальной ложки. Причина в том, что серебро проводит тепло лучше, чем сталь. Из-за этого серебряная ложка также остынет быстрее, так как она лучше выделяет тепло.

Другим примером теплопроводности серебра является нанесение различных материалов на кубики льда. Железная шайба будет просто сидеть на льду и постепенно станет холоднее.Медная копейка растает через кубик льда и станет холоднее быстрее. Серебряная монета, ложка или кольцо на кубике льда утонет в нем почти так же, как если бы кубик льда был сделан из густого сиропа, а серебро почти мгновенно станет ледяным. Опять же, это потому, что серебро действительно хорошо отбирает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так сильно, как серебро.

,

Кондуктивный теплообмен

Проводимость как теплообмен происходит при наличии градиента температуры в твердой или стационарной текучей среде.

С энергией проводимости переходит от более энергичных к менее энергичным молекулам, когда соседние молекулы сталкиваются. Тепловые потоки в направлении снижения температуры, так как более высокие температуры связаны с более высокой молекулярной энергией.

Heat transfer through a surface or wall

Кондуктивный перенос тепла можно выразить с помощью " закона Фурье "

q = (к / с) A dT

= UA dT (1)

, где

q = теплопередача (Вт, Дж / с, БТЕ / час)

k = Теплопроводность материала (Вт / м К или Вт / м o С, БТЕ / (ч o Ф фут 2 / фут))

с = толщина материала (м, футы)

А = площадь теплопередачи (м 2 , фут 2 )

U = к / с

= Коэффициент теплопередачи (Вт / (м 2 К), БТЕ / (фут 2 ч o F)

dT = t 1 - т 2

= градиент температуры - разница - по материалу ( o C, o 9003 3 F)

Conductive heat transfer
Пример - Кондуктивный теплообмен

Плоская стенка изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o С. Толщина стенки 50 мм , длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой стороны.

Кондуктивный теплообмен через стену можно рассчитать

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) - (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор кондуктивного теплопередачи.

Этот калькулятор можно использовать для расчета проводящего теплообмена через стену. Калькулятор является общим и может использоваться как для метрических, так и для имперских единиц, если используется единица измерения.

к - теплопроводность (Вт / (мК), БТЕ / (ч o F ft 2 / фут))

A - площадь 2 , футы 2 )

т 1 - температура 1 ( o C, o F)

т 2 - температура 2 ( o C, o F)

с - толщина материала (м, футы)

Проводящий теплообмен через плоскую поверхность или стену со слоями в серии

Тепло, проходящее через стену со слоями в Термоконтакт можно рассчитать как

q = dT A / ((с 1 / k 1 ) + (с 2 / k 2 ) +... + (с n / k n )) (2)

, где

dT = t 1 - т 2

= разница температур между внутренней и наружной стенами ( o C, o F)

Обратите внимание, что теплостойкость, обусловленная конвекцией поверхности и излучением, не включена в это уравнение ,Конвекция и излучение в целом оказывают существенное влияние на общие коэффициенты теплопередачи.

Пример - Кондуктивный теплообмен через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя толщиной 1,2 см из нержавеющей стали , покрытого 5 см наружным изоляционным слоем изоляционной плиты. Температура внутренней поверхности стали составляет 800 K , а температура наружной поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м К) .

Проводящий перенос тепла через слоистую стену можно рассчитать как

q = [(800 K) - (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м К) )] + [(0,05 м) / (0,7 Вт / (м К))] )

= 6245 (Ш)

= 625 кВт

Единицы теплопроводности

  • БТЕ / (h ft 2 o Ф / фут)
  • БТЕ / (h ft 2 o F / in)
  • БТЕ / (футы 2 o фут / фут)
  • БТЕ в) / (фут ² ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o С / см)
  • Вт / (в 2 o Ф / дюйм)
  • кДж / (мм 2 К / м)
  • Дж / (см 2 o C / m)
  • ккал / (hm 2 o C / m)
  • кал / (s см 2 o C / см)
  • 9043 4
    • 1 Вт / (м К) = 1 Вт / (м o С) = 0.85984 ккал / (мм o C) = 0,5779 БТЕ / (футов o F) = 0,048 БТЕ / (в часах o F) = 6,935 (БТЕ в) / (фут² ч ° F)
    .

Отправить ответ

avatar
  Подписаться  
Уведомление о