Прочность бетона в МПа, таблица, классы, марки |
О бетоне уже написаны горы справочной литературы. Зарываться в нее обычному застройщику нет смысла, ему достаточно знать, что такое прочность бетона в МПа, таблицу конкретных значений этого показателя и как эти цифры можно использовать.
Итак, прочность бетона (ПБ) на сжатие — это самый главный показатель, которым характеризуется бетон.
Конкретное цифровое значение этого показателя называется Классом бетона (В). То есть под этим параметром понимают кубиковую прочность, которая способна выдержать прилагаемое давление в МПа с фиксированным процентом вероятности разрушение образца не более 5 экземпляров из сотни.
Это академическая формулировка.
Но на практике строитель обычно пользуется другими параметрами.
Существует также такой показатель ПБ, как марка (М). Этот предел прочности бетона измеряется в кгс/см2. Если свести все данные о прочности бетона в МПа и кгс/см2 в таблицу, то она будет иметь вот такой вид.
Как обычно проводятся испытания на прочность? Бетонный куб размерами 150x150x150 мм берется из заданной области бетонной смеси, крепится с металлической специальной форме и подвергается нагрузке. Отдельно следует сказать о том, что подобная операция производится, как правило, на 28-е сутки после укладки смеси.
Что дают застройщику числовые значения данных (выраженных в МПа или) этой таблицы прочности бетона?
Они помогают правильно определить область применения продукта.
Например, изделие В 15 идет на сооружение ж/б монолитных конструкций, рассчитанных под конкретную нагрузку. В 25 — на изготовление монолитных каркасов жилых зданий и т.д.
Какие факторы влияют на ПБ?
- Содержание цемента. Понятно, что ПБ будет тем выше (впрочем, только до известного предела), чем выше содержание цемента в смеси.
- Активность цемента. Здесь зависимость линейная и повышенная активность предпочтительней.
- Водоцементное отношение (В/Ц). С уменьшением В/Ц прочность увеличивается, с возрастанием, наоборот, уменьшается.
Как быть, если возникла необходимость перевести МПа в кгс/см2? Существует специальная формула.
0,098066 МПа = 1 кгс/см2.Или (если немного округлить) 10 МПа = 100 кгс/см2.
Далее следует воспользоваться данными таблицы прочности бетона и произвести нужные расчеты.
Egor11таблица на сжатие по классам в МПа, от чего зависит
Прочность – это техническая характеристика, по которой определяется способность выдерживать механические или химические воздействия. Для каждого этапа строительства требуются материалы с разными свойствами. Для заливки фундамента здания и возведения стен применяется бетон разных классов. Если использовать материал с низким прочностным показателем для строительства конструкций, которые будут подвергаться значительным нагрузкам, то это может привести к растрескиванию и разрушению всего объекта.
Оглавление:
- От чего зависит значение прочности?
- Способы проверки качества бетона
- График набора прочности
- Маркировка растворов
Как только в сухую смесь добавляется вода, в ней начинается химический процесс. Скорость его протекания может увеличиваться или уменьшаться из-за многих факторов, например, температуры или влажности.
Что влияет на прочность?
На показатель оказывают влияние следующие факторы:
- количество цемента;
- качество смешивания всех компонентов бетонного раствора;
- температура;
- активность цемента;
- влажность;
- пропорции цемента и воды;
- качество всех компонентов;
- плотность.
Также он зависит количества времени, которое прошло с момента заливки, и использовалось ли повторное вибрирование раствора.
Наибольшее влияние оказывает активность цемента: чем она выше, тем больше получится прочность.От количества цемента в смеси также зависит прочность. При повышенном содержании он позволяет увеличить ее. Если же использовать недостаточное количество цемента, то свойства конструкции заметно снижаются. Увеличивается этот показатель лишь до достижения определенного объема цемента. Если засыпать больше нормы, то бетон может стать слишком ползучим и дать сильную усадку.
В растворе не должно быть слишком много воды, так как это приводит к появлению в нем большого количества пор. От качества и свойств всех компонентов напрямую зависит прочность. Если для замешивания использовались мелкозернистые или глинистые наполнители, то она снизится. Поэтому рекомендуется подбирать компоненты с крупными фракциями, так как они значительно лучше скрепляются с цементом.
От однородности замешанной смеси и применения виброуплотнения зависит плотность бетона, а от нее – прочность. Чем он плотнее, тем лучше скрепились между собой частицы всех компонентов.
Способы определения прочности
По прочности на сжатие узнаются эксплуатационные характеристики сооружения и возможные на него нагрузки. Вычисляется этот показатель в лабораториях на специальном оборудовании. Используются контрольные образцы, сделанные из того же раствора, что и отстроенное сооружение.
Также вычисляют ее на территории строящегося объекта, узнать можно разрушаемым или неразрушаемым способами. В первом случае либо разрушается сделанная заранее контрольная проба в виде куба со сторонами 15 см, либо с помощью бура из конструкции берется образец в виде цилиндра. Бетон устанавливается в испытательный пресс, где на него оказывается постоянное и непрерывное давление. Его увеличивают до тех пор, пока проба не начнет разрушаться. Показатель, полученный во время критической нагрузки, применяется для определения прочности. Этот метод разрушения пробы является самым точным.
Для проверки бетона неразрушаемым способом используется специальное оборудование. В зависимости от типа приборов он делится на следующие:
- ультразвуковой;
- ударный;
- частичное разрушение.
При частичном разрушении на бетон оказывают механическое воздействие, из-за чего он частично повреждается. Провести проверку прочности в МПа этим методом можно несколькими способами:
- отрывом;
- скалыванием с отрывом;
- скалыванием.
В первом случае к бетону на клей крепится диск из металла, после чего его отрывают. То усилие, которое потребовалось для его отрыва, и используется для вычисления.
Метод скалывания – разрушение скользящим воздействием со стороны ребра всего сооружения. В момент разрушения регистрируется значение приложенного давления на конструкцию.
Второй способ – скалывание с отрывом – показывает наилучшую точность по сравнению с отрывом или скалыванием. Принцип действия: в бетоне закрепляются анкера, которые впоследствии отрываются от него.
Определение прочности бетона ударным методом возможно следующими путями:
- ударный импульс;
- отскок;
- пластическая деформация.
В первом случае фиксируется количество энергии, создаваемой в момент удара по плоскости. Во втором способе определяется величина отскока ударника. При вычислении методом пластической деформации используются приборы, на конце которых расположены штампы в виде шаров или дисков. Ими ударяют о бетон. По глубине вмятины вычисляются свойства поверхности.
Метод с помощью ультразвуковых волн не является точным, так как результат получается с большими погрешностями.
Набор прочности
Чем больше прошло времени после заливки раствора, тем выше стали его свойства. При оптимальных условиях бетон набирает прочность на 100 % на 28-ой день. На 7-ой день этот показатель составляет от 60 до 80 %, на 3-ий – 30 %.
Рассчитать приблизительное значение можно по формуле: Rb(n) = марочная прочность*(lg(n)/lg(28)), где:
- n – количество дней;
- Rb(n) – прочность на день n;
- число n не должно быть меньше трех.
Оптимальной температурой является +15-20°C. Если она значительно ниже, то для ускорения процесса затвердения необходимо использовать специальные добавки или дополнительный обогрев оборудованием. Нагревать выше +90°C нельзя.
Поверхность должна быть всегда влажной: если она высохнет, то перестает набираться прочность. Также нельзя допускать замерзания. После полива или нагрева бетон снова начнет повышать свои прочностные характеристики на сжатие.
График, показывающий, сколько времени требуется для достижения максимального значения при определенных условиях:
Марка по прочности на сжатие
Класс бетона показывает, какую максимальную нагрузку в МПа он выдерживает. Обозначается буквой В и цифрами, например, В 30 означает, что куб со сторонами 15 см в 95% случаев способен выдержать давление 25 МПа. Также прочностные свойства на сжатие разделяют по маркам – М и цифрами после нее (М100, М200 и так далее). Эта величина измеряется в кг/см2. Диапазон значений марки по прочности – от 50 до 800. Чаще всего в строительстве применяются растворы от 100 и до 500.
Таблица на сжатие по классам в МПа:
Класс (число после буквы – это прочность в МПа) | Марка | Средняя прочность, кг/см2 |
В 5 | М75 | 65 |
В 10 | М150 | 131 |
В 15 | М200 | 196 |
В 20 | М250 | 262 |
В 30 | М450 | 393 |
В 40 | М550 | 524 |
В 50 | М600 | 655 |
М50, М75, М100 подходят для строительства наименее нагружаемых конструкций. М150 обладает более высокими прочностными характеристиками на сжатие, поэтому может применяться для заливки бетонных стяжек пола и сооружения пешеходных дорог. М200 используется практически во всех типах строительных работ – фундаменты, площадки и так далее. М250 – то же самое, что и предыдущая марка, но еще выбирается для межэтажных перекрытий в зданиях с малым числом этажей.
М300 – для заливки монолитных оснований, изготовления плит перекрытий, лестниц и несущих стен. М350 – опорные балки, фундамент и плиты перекрытий для многоэтажных зданий. М400 – создание ЖБИ и зданий с повышенными нагрузками, М450 – плотины и метро. Марка меняется в зависимости от количества содержащегося в нем цемента: чем больше его, тем она выше.
Чтобы перевести марку в класс, используется следующая формула: В = М*0,787/10.
Перед сдачей в эксплуатацию любого здания или другого сооружения из бетона оно обязательно должно быть проверено на прочность.
Набор прочности бетона по суткам в зависимости от температуры и класса
Твердение бетона представляет собой сложный поэтапный процесс, время достижения требуемых характеристик определяется целым рядом факторов: от правильности подбора состава и пропорций компонентов до условий окружающей среды. Контроль за всеми стадиями бетонирования и ухода обязателен, нормы выдержки в сутках в каждом случае свои, особенно в зимнее время. Исключить риски помогают графики и таблицы прочности, отражающие изменения по часам и в сутках в зависимости от температуры воздуха и других внешних факторов.
Оглавление:
- Описание
- Устройство
- Принцип работы
Понятие прочности, стадии ее набора
Эта характеристика является самой важной, именно она определяет соответствие качеств конструкций ожидаемым условиям эксплуатации. Прочность задается марками (отражающим предельные нагрузки на сжатие в кг/см2) и классом (доверительной вероятностью обеспечения заявленных свойств в 95%). В нормальных условиях ее максимальное марочное значение достигается на 28 сутки после начала бетонирования, за этот промежуток раствор проходит все стадии гидратации цемента, а именно: схватывание и твердение.
youtube.com/embed/9E9WyoIUJSU» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Время первой стадии полностью зависит в первую очередь от состава и температурных условий и варьируется от 20 минут до 1 дня. На этом этапе начинается образование внутренних связей, но смесь еще сохраняет подвижность и поддается механическим воздействиям. На практике это означает возможность предотвращения появления крупных трещин в течение первых 1-2 часов после бетонирования путем виброобработки, выравнивания поверхности заливаемых монолитов и поправки формы изготавливаемых изделий.
В зимнее время сама стадия удлиняется на 15-20 часов и затягивается ее начало (в особо сложных условиях – до 10 ч), в жаркую погоду – наоборот. При необходимости ее продления (например, в ходе доставки или заливке большого объема) смесь перемешивают с целью сохранения подвижности и качества в полной мере.
Стадия твердения начинается по окончании схватывания и длится вплоть до 100% вывода из раствора влаги, в ряде случаев она занимает несколько лет. Интенсивность процесса экспоненциальная: максимальная скорость набора прочности наблюдается в первые 3 дня (до 30% от марочной), до 70 % – в течение 7-14 и до 100 % на 28 сутки. Далее он замедляется, но не останавливается никогда, искусственный камень относится к материалам с упрочняющейся со временем структурой. При расчетах и проектировании используются величины, соответствующие выдерживаемой нагрузке на сжатие на 28 день, на практике они могут быть выше на 20 и более %.
График набора прочности
Взаимосвязь между значением этой характеристики и условиями внешней среды отражена в таблице:
Время застывания, сутки | Процентное соотношение прочности в сравнении с нормативом, достигаемым на 28 день в зависимости от температуры окружающего воздуха, °С | ||||||
0 | +5 | +10 | +15 | +20 | +25 | +30 | |
1 | 20 | 23 | 27 | 30 | 34 | 37 | 39 |
2 | 26 | 30 | 34 | 39 | 43 | 47 | 50 |
3 | 30 | 35 | 41 | 45 | 50 | 52 | 56 |
4 | 34 | 40 | 46 | 50 | 55 | 58 | 63 |
5 | 39 | 44 | 51 | 55 | 60 | 63 | 68 |
6 | 42 | 48 | 54 | 59 | 64 | 68 | 72 |
7 | 45 | 52 | 58 | 63 | 68 | 72 | 76 |
10 | 53 | 60 | 67 | 72 | 77 | 82 | 85 |
14 | 60 | 68 | 74 | 81 | 86 | 690 | 95 |
21 | 70 | 76 | 83 | 91 | 97 | > 100 | > 100 |
28 | 75 | 83 | 90 | 100 | > 100 | > 100 | > 100 |
Набор прочности бетона в зависимости от температуры можно отследить визуально, по специальному графику, но табличными значениями пользоваться удобнее. Чаще всего эти данные используются с целью вычисления сроков выдерживания в опалубке и дозревания состава после ее демонтажа. Также они помогают отследить влияние изменений температуры на достигаемые характеристики.
Оптимальными условиями признаны +20° C, в этих пределах и с уровнем влажности не ниже нормы ЦПС набирает марочную прочность равномерно, без создания зон внутреннего напряжения и без растрескивания.
Факторы влияния и ускорения
К главным критериям относят:
- Внешние условия среды в ходе схватывания и застывания. Помимо температуры воздуха на величину итоговой прочности оказывает влияние влажность (чем она будет выше, тем лучше) и состояние основания (опалубка и грунт не должны быть холодными, зимой их рекомендуется предварительно подогревать).
- Бетонный состав: тип, доля и активность вяжущего, пропорции сухих компонентов, соотношение В/Ц. Качество заполнителей на скорость набора марочной прочности влияет слабо, но итоговое значение от этого фактора зависит напрямую.
- Степень уплотнения и однородность. Наличие сухих участков нарушает процессы гидратации; растворы, уложенные с применением виброоборудования, имеют лучшие показатели прочности и застывают точно по графику.
- Время от начала заливки. Игнорирование нормативно-безопасных и оптимальных сроков последующих строительных работ влияет на целостность заливаемых конструкций.
Лучшие результаты достигаются при выдержке при оптимальной температуре и влажности в пределах указанной временной нормы, но в ряде случаев набор прочности требуется ускорить. Чаще всего такая ситуация возникает зимой из-за риска замерзания воды. Среди принимаемых мер выделяют ввод ускорителей и противоморозных добавок, обгорев опалубки, грунта или самого бетона электрокабелем, установку тепловых пушек, снижение В/Ц соотношения без потерь пластичности.
График набора прочности бетона (СНИП)
Содержание- Этапы твердения раствора
- Что влияет на набор максимальной прочности
- Ускорение набора прочности
Ключевой этап проведения ремонтно-строительных работ – сушка бетона. Залитый состав отвердевает и набирает прочность несколько недель. Процесс проходит под наблюдением инженеров и требует постоянного контроля.
Специалисты обеспечивают выполнение нормативов и при необходимости вносят коррективы в график. Материал чувствителен к температурным колебаниям и имеет «коэффициент сезонности» – зимой бетонные работы проводят с использованием систем обогрева. Чтобы определить, сколько сохнет бетон, учитывают различные факторы.
Этапы твердения раствора
Бетонные работы – часть любого строительства, от дачно-коттеджного до промышленного и специального. Материал применяют на различных стадиях возведения объектов, для заливки фундамента и несущих конструкций, устройства перекрытий.
Строители успешно используют свойство цементно-песчаной смеси с добавлением щебня – способность принимать форму опалубки. Ценят прочность и долговечность материала, время высыхания которого составляет порядка 28 дней.
В зависимости от условий эксплуатации и качества состава расчетный срок службы объектов достигает 250 лет, а в среднем оценивается в 50-100. Для современного строительства это солидный период – технологии постоянно совершенствуются, появляются новые материалы и конструктивные решения.
Набору прочности по-прежнему уделяют особое внимание и контролируют каждый этап:
- Застывание. Происходит в первые часы «жизни» состава. К месту работ раствор доставляют в бетономешалке или подготавливают на месте для максимального сохранения необходимых свойств. Время застывания летом при температуре выше 20°С – около часа, в жару – 15-30 минут. При «ноле» – начинается через 6-10 часов после приготовления смеси и растягивается до 20 часов с момента заливки;
- Твердение. Основной этап занимает 7-14 дней. За этот период конструкция набирает до 70% расчетного значения, которое зависит от марки бетона;
- Контрольное значение по ГОСТ 18105-86. Стандартное время набора прочности – 28 дней. Специалисты сравнивают полученный результат с нормативами специальной таблицы.
Имеется прямая зависимость между затвердением раствора в различных условиях и достижением максимального значения.
Что влияет на набор максимальной прочности
Абсолютное большинство бетонных работ выполняют на открытом воздухе. Погодные условия и температурный график – ключевые параметры, которые определяют, сколько застывает раствор.
В теплое время года созревание смеси и постепенное отвердение происходит естественным образом. Процесс зависит от физико-химических свойств состава и имеет небольшие отличия, связанные с маркой бетона.
В осенне-зимний период набор прочности обеспечивают двумя способами:
- Противоморозные добавки. Используют для сохранения свойств приготовленного раствора. Специальные вещества не допускают замерзание воды и потерю качества, облегчают заливку конструкции, выравнивание поверхности;
- Электропрогрев. Выполняется несколькими методами с общей сутью – обеспечение равномерного прогрева толщи бетона в течение периода, необходимого для набора прочности.
При низких температурах применяют провода ПНСВ или «вживляют» в материал электроды, после чего подключают напряжение. Реже используют в качестве нагревательного элемента саму опалубку, покрывают поверхность специальными матами.
Работы требуют соблюдения правил электробезопасности и выполняются по СНиП 3.03.01-87. Если минимальная температура достигает 0°С, а средняя за сутки не превышает 5°С, бетонирование изначально планируют с прогревом залитой конструкции. При необходимости в раствор включают ПМД.
Ускорение набора прочности
Бетонные составы классифицируют в зависимости от показателя прочности на сжатие. Легкие растворы используют для вспомогательных работ или конструкций, которые не испытывают нагрузку.
Базовыми считаются бетоны М-200 – М-400. Составы применяют при сооружении большинства объектов гражданского строительства. Растворы класса выше М-500 предназначаются для специальных объектов и конструкций повышенной прочности.
Базовую скорость отвердения рассчитывают на основе марок М-200 – М-300. Показатели основаны на временном промежутке в четыре недели. На практике необходимый период сокращается при определенных условиях:
- Использование специальных добавок. Это вспомогательные компоненты, которые подмешивают в раствор при приготовлении. Применение сокращает время полного застывания до 14 дней. Такие работы проводят летом – антиморозные добавки не обладают подобным свойством;
- Увлажнение. При сухой жаркой погоде происходит быстрое испарение воды из высыхающего состава, что отрицательно влияет на график набора прочности и качество конструкции. Постоянное увлажнение способствует созданию условий, при которых достигают оптимальной динамики застывания.
После завершения расчетного периода проводят испытания бетона и контрольные замеры. Если показатели соответствуют нормативам, приступают к следующим этапам работ.
Чтобы строительство завершилось согласно планам, рекомендуется разработать детальную проектную документацию с учетом особенностей конструкции. В календарном графике бетонные работы по возможности планируют в наиболее благоприятный сезон.
Измерение прочности и марки бетона
Прочность бетона – определение класса и марки слоя бетона[]
Измерение прочности бетона[]
Прочность бетона, класс бетона, марка бетона, бетон на сжатие, прочность конструкций[]
Экспертом произведены измерения скорости распространения ультразвука в сборных железобетонных конструкциях перекрытий с целью определения средней прочности на сжатие, класса и марки бетона.
Измерения производились ультразвуковым тестером УК1401 (Сертификат об утверждении типа средств измерений RU.C.34.002.А № 10778), согласно ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности» . Число и расположение контролируемых участков на конструкциях установлены с учетом требований ГОСТ 18105-86 «Бетоны. Правила контроля прочности».
По выполненным измерениям произведен расчет средней прочности бетона, определена марка и класс по прочности бетона. Результаты занесены в таблицу №1.
Таблица №1
№ участка замеров | Скорость распространения ультразвука на участках конструкций | Ближайший класс бетона по прочности на сжатие | Марка бетона по прочности на сжатие |
Перекрытия | |||
3980 м/с | В27,5 | М350 | |
4030 м/с | В27,5 | М350 | |
3660 м/с | В25 | М350 | |
4020 м/с | В27,5 | М350 | |
3965 м/с | В27,5 | М350 | |
3970 м/с | В27,5 | М350 | |
4015 м/с | В27,5 | М350 | |
3650 м/с | В25 | М350 |
Экспертом зафиксирована прочность бетона класса по прочности на сжатие от В25 до В27,5 марки М350.
Согласно Техническим условиям БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ
Приложение 1
Соотношение между классами бетона по прочности на сжатие и растяжение и марками
Таблица 6
Класс бетона по прочности | Средняя прочность бетона | Ближайшая марка бетона по прочности, М | Отклонение ближайшей марки бетона от средней прочности класса, % |
__________________ * Средняя прочность бетона рассчитана при коэффициенте вариации V, равном 13,5%, и обеспеченности 95% для всех видов бетонов, а для массивных гидротехнических конструкций при коэффициенте вариации V, равном 17%, и обеспеченности 90%. | |||
Сжатие | |||
В3,5 | 45,8 | M50 | +9,2 |
B5 | 65,5 | M75 | +14,5 |
B7,5 | 98,2 | M100 | +1,8 |
B10 | 131,0 | M150 | +14,5 |
B12,5 | 163,7 | M150 | -8,4 |
B15 | 196,5 | M200 | +1,8 |
B20 | 261,9 | M250 | -4,5 |
B22,5 | 294,7 | M300 | +1,8 |
B25 | 327,4 | M350 | +6,9 |
B27,5 | 360,2 | M350 | -2,8 |
B30 | 392,9 | M400 | +1,8 |
B35 | 458,4 | M450 | -1,8 |
B40 | 523,9 | M550 | +5,0 |
B45 | 589,4 | M600 | +1,8 |
B50 | 654,8 | M700 | +6,9 |
B55 | 720,3 | M700 | -2,8 |
B60 | 785,8 | M800 | +1,8 |
B65 | 851,3 | M900 | +5,7 |
B70 | 916,8 | M900 | -1,8 |
B75 | 982,3 | M1000 | +1,8 |
B80 | 1047,7 | M1000 | -4,6 |
Несущая способность железобетонных перекрытий выполняется.
Обнажения арматуры ультразвуковым тестером УК1401 не выявлено, защитный слой бетона 27 – 32 мм обеспечивается.
Согласно ГОСТ 11024-84 «Государственный Стандарт Союза ССР»:
Номинальную толщину защитного слоя бетона до арматуры, устанавливаемой в проектной документации, следует принимать не менее значений, указанных в табл. :
Для определения технического состояния кирпичной кладки экспертом выполнены вскрытия штукатурного слоя внутренней поверхности межкомнатных перегородок и несущих стен. При вскрытии определено: незаполнения растворных швов, растрескивания кирпича, сколов не зафиксировано. Толщина штукатурного слоя в местах вскрытия соответствует 25-27 мм. Несущая способность обеспечивается.
Протечек, нарушений в сопряжении трубопроводов инженерных сетей, не выявлено, запорная арматура находится в исправном состоянии.
Диагностика внутренней электропроводки зафиксировала ее исправность и выполнение в соответствии с Правилами устройства электроустановок (ПУЭ). Электропроводки (Издание седьмое).
Асфальтовая отмостка выполнена, что не дает возможности атмосферной влаге беспрепятственно проникать к конструкциям цокольного этажа и фундамента.
Таблица прочности бетона при твердении
Набор бетоном прочности
.
Схватывание и твердение
Прочность бетона считается его основным свойством и отражает качество монолитной конструкции, так как напрямую связана со структурой бетонного камня. Твердение бетона – сложный физико-химический процесс, при котором взаимодействуют цемент и вода. В результате гидратации цемента образуются новые соединения, и формируется бетонный камень.
При твердении бетон набирает прочность, но происходит это не одномоментно, а в течение длительного периода времени. Набор прочности бетона происходит постепенно – в течение многих месяцев.
Набор прочности условно делят на два этапа:
1. Стадия первая — схватывание бетона
Схватывание происходит в первые сутки с момента приготовления бетонной смеси. Время схватывания бетонной смеси напрямую зависит от температуры окружающего воздуха. При температуре 20 °С процесс схватывания занимает всего 1 час: цемент начинает схватываться примерно через 2 часа с момента затворения цементного раствора, а окончание схватывания происходит примерно через 3 часа. С понижением температуры начало этой стадии отодвигается, а длительность значительно увеличивается. Так, при температуре воздуха около 0 °С период схватывания бетона начинается через 6-10 часов после затворения бетонной смеси и растягивается до 15-20 часов. При повышенных температурах период схватывания бетонной смеси сокращается и может достигать 10-20 минут.
В течение периода схватывания бетонная смесь остается подвижной и на неё можно воздействовать. Благодаря механизму тиксотропии (уменьшение вязкости субстанции при механическом воздействии) при перемешивании несхватившегося до конца бетона, он остается в стадии схватывания, а не переходит в стадию твердения. Именно это свойство бетонной смеси используют при её доставке на бетоносмесителях: смесь постоянно перемешивается в миксере, чтобы сохранить её основные свойства. Во вращающемся миксере автобетоновоза бетон не твердеет в течение длительного времени, но при этом с ним происходят необратимые последствия (говорят бетон «сваривается»), что в дальнейшем значительно снижает его качества. Особенно быстро бетонная смесь сваривается летом.
2. Стадия вторая — твердение бетона
Твердение бетона наступает сразу после схватывания цемента. Процесс твердения и набор прочности продолжается в течение нескольких лет. При этом марка бетона определяется в возрасте 28 суток. Процесс набора прочности и график набора прочности описаны ниже.
.
Как и сколько бетон твердеет и набирает прочность
Класс бетона по прочности оценивают в возрасте 28 суток. Для испытаний берут образцы в форме стандартного куба со стороной 15 см, испытуемый образец при этом выдерживают при температуре 20±3°С и относительной влажности воздуха 95±5%. Эти параметры хранения бетонной смеси и есть нормальные условия твердения бетона, а сама камера для хранения испытуемых образцов называется камерой нормального хранения (НХ).
При отклонении температуры твердения в большую сторону от «нормальной» получают твердение бетона при повышенной температуре, а при отклонении в меньшую – твердение при пониженной температуре.
В таблице приведена информация о наборе прочности бетона марок М200 — М300 на портландцементе М-400, М-500 в первые 28 суток в зависимости от среднесуточной температуры:
График набора прочности при различных температурах твердения приведен ниже (за 100% берется набор марочной прочности в первые 28 суток):
Для справки: данными вышеприведенной таблицы и графика можно воспользоваться для определения срока распалубки монолитной железобетонной конструкции, который в соответствии с нормативными документами наступает с того момента, когда бетонная смесь наберет 50-80% от своей марочной прочности (подробнее в статьях «Когда снимать опалубку» и «Уход за бетоном»).
Для твердения бетона характерны следующие особенности:
- чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
- при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
- при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
- в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
- при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.
Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7—14 дней бетон набирает 60—70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.
.
От чего зависит набор прочности и твердение
На набор прочности бетона влияют множество факторов, среди них можно выделить следующие:
- тип цемента, используемого при производстве бетонной смеси;
- температура, при которой происходит твердение бетона;
- водоцеметное отношение;
- степень уплотнения бетонной смеси.
Влияние каждого из вышеперечисленных факторов на твердение и набор прочности приведено ниже в виде таблицы и графиков.
Зависимость от типа цемента и температуры твердения:
Ниже приведены данные по набору тяжелым бетоном относительной прочности в зависимости от вышеуказанных двух параметров (типа цемента и температуры твердения).
Время твердения, суток | Тип цемента | Относительная прочность бетона при различных температурах твердения | |||
30 оС | 20 оС | 10 оС | 5 оС | ||
1 | Б | 0,45 | 0,42 | 0,26 | 0,16 |
Н | 0,37 | 0,34 | 0,21 | 0,12 | |
М | 0,23 | 0,19 | 0,11 | 0,06 | |
2 | Б | 0,58 | 0,58 | 0,37 | 0,22 |
Н | 0,52 | 0,5 | 0,32 | 0,19 | |
М | 0,38 | 0,34 | 0,21 | 0,12 | |
3 | Б | 0,65 | 0,66 | 0,43 | 0,26 |
Н | 0,6 | 0,6 | 0,38 | 0,23 | |
М | 0,47 | 0,45 | 0,28 | 0,17 | |
7 | Б | 0,78 | 0,82 | 0,54 | 0,33 |
Н | 0,75 | 0,78 | 0,51 | 0,31 | |
М | 0,67 | 0,68 | 0,44 | 0,27 | |
14 | Б | 0,87 | 0,92 | 0,61 | 0,38 |
Н | 0,85 | 0,9 | 0,6 | 0,37 | |
М | 0,81 | 0,85 | 0,56 | 0,34 | |
28 | Б | 0,93 | 1,0 | 0,71 | 0,45 |
Н | 0,93 | 1,0 | 0,7 | 0,43 | |
М | 0,93 | 1,0 | 0,67 | 0,41 | |
56 | Б | 0,98 | 1,06 | 0,8 | 0,51 |
Н | 1,0 | 1,08 | 0,79 | 0,49 | |
М | 1,0 | 1,12 | 0,76 | 0,47 |
М – медленнотвердеющий портландцемент; Н – нормальнотвердеющий портландцемент;
Б – быстротвердеющий портландцемент.
Промежуточные значения – определяются интерполяцией;
1 (единица) относительной прочности – прочность бетона через 28 суток при температуре твердения 20 оС. При включении в состав бетонной смеси добавок, способных повлиять на динамику процесса твердения, – скорость набора прочности изменяется.
Зависимость прочности бетона от уплотнения и водоцеметного отношения:
podomostroim.ru
Набор прочности бетона — температура, влажность, гидратация
Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.
В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.
Содержание
В чем суть процесса?
Условно, он делится на 2 этапа:
- Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
- Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.
Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.
В сухом материале присутствуют 4 основных элемента:
- аллит;
- белит;
- трехкальциевый алюминат;
- четырехкальциевый аллюмоферрит.
Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.
Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени
Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.
Что влияет на вызревание фундамента
Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:
- температурные условия окружающей среды;
- уровень влажности в месте, где производится заливка основы;
- марка цемента;
- время.
Температурные условия
Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.
Скорость набора прочности бетона в зависимости от температуры
При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».
Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.
Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.
Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается
Но даже в этом случае не стоит «пережаривать» бетон – пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.
За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой – это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.
При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.
Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.
График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.
График набора прочности по марке цемента
Время
С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.
Марка цемента | Среднесуточная t цементной основы, °С | Срок затвердевания по суткам | ||||||
1 | 2 | 3 | 5 | 7 | 14 | 28 | ||
Показатели твердости бетонной массы на сжатие (% от заявленной) | ||||||||
М200-300, замешанный на портландцементе марки 400-500 | 2 | 3 | 6 | 8 | 12 | 15 | 20 | 25 |
0 | 5 | 12 | 18 | 28 | 35 | 50 | 65 | |
+5 | 9 | 19 | 27 | 38 | 48 | 62 | 77 | |
+10 | 12 | 25 | 37 | 50 | 58 | 72 | 85 | |
+20 | 23 | 40 | 50 | 65 | 75 | 90 | 100 | |
+30 | 35 | 55 | 65 | 80 | 90 | 100 | — |
В том случае, если нормативно-безопасный срок установлен на отметке в 50%, то самым оптимальным сроком старта строительных работ будет 72-80% от заявленных марочных показателей.
Показатели влажности
Сниженные показатели влажности окружающей среды негативно отражаются на процессе твердения фундаментной базы. При полнейшем отсутствии влаги процесс гидратации практически не происходит, и набор твердости неизбежно останавливается. Именно поэтому очень важно следить за влажностью заливаемого фундамента.
Если в помещении или на улице, где осуществляется заливка или кладка фундамент, повышенная влажность (70-90°), то скорость нарастания прочностных показателей возрастает.
Прогрев до такого высокого температурного режима при минимальных значениях влажности обязательно приведет к засыханию залитой поверхности и снизит скорость твердения. Чтоб избежать таких последствий, необходимо регулярно производить увлажнение. При таких обстоятельствах в жаркую погоду твердение будет происходить очень быстро.
ВИДЕО: Сколько твердеет бетон
Состав и эксплуатационные данные цемента
Если цемент обладает способностью тепловыделения и сразу после заливки он быстро твердеет, то после замерзания в цементной массе воды процесс твердения неизменно остановится. По этой причине во время строительных работ холодное время года лучше отдавать предпочтение смесям, приготовленным на основе противоморозных добавок.
Так, к примеру, глиноземистая масса после заливки выделяет в 7 раз больше теплоэнергии, нежели обычный портландцемент. Благодаря этому замешанная на основе такого цемента строительная смесь способна быстро набирать прочность даже при температуре ниже 0°С. что, собственно, и обусловлено его популярностью использования в холодное время года.
Стоит отметить и то, что марка цемента также влияет на скорость твердения заливки или кладки. Представленная дальше таблица наглядно демонстрирует эти данные.
Марка цемента | Показатели критической твердости (% от заявленной), минимум |
Для предварительно напряженных поверхностей | 70 |
М15-150 | 50 |
М200-300 | 40 |
М400-500 | 30 |
Вот, собственно, и все, что нужно знать о затвердевании фундамента. Надеемся, эта информация будет использована вами на практике и поможет достичь поставленной задачи наилучшим образом!
ВИДЕО: Как ускорить затвердевание бетона
nagdak.ru
Дача и Дом
Уход за бетоном
Стоп-халтура! Очень и очень многие дачные строители думают, что следующая важная операция после окончания укладки бетона в опалубку – это распалубка и наслаждение результатами своего труда. На самом деле это не так. После окончания укладки бетона в опалубку начинается следующий серьезный строительный технологический процесс – уход за бетоном. С помощью создания оптимальных условий для гидратации в процессе ухода за бетоном достигается планируемая марочная прочность бетонного камня. Отсутствие этапа ухода за бетоном может привести к деформациям, возникновению трещин и уменьшению скорости набора прочности бетоном.
Уход за бетоном – это комплекс мероприятий по созданию оптимальных условий для выдерживания бетона до набора установленной марочной прочности. Основные цели ухода за бетоном:- Минимизировать пластическую усадку бетонной смеси;
- Обеспечить достаточную прочность и долговечность бетона;
- Предохранить бетон от перепадов температур;
- Предохранить бетон от преждевременного высыхания;
- Предохранить бетон от механического или химического повреждения.
Уход за свежеуложенным бетоном начинается сразу же после окончания укладки бетонной смеси и продолжается до достижения 70 % проектной прочности [пункт 2.66 СНиП 3.03.01-87] или иного обоснованного срока распалубки. По окончании бетонирования необходимо осмотреть опалубку на предмет сохранения заданных геометрических размеров, течей и поломок. Все выявленные дефекты следует устранить до начала схватывания бетона (1-2 часа от укладки бетонной смеси). Твердеющий бетон необходимо предохранять от ударов, сотрясений и любых других механических воздействий. В начальный период ухода за бетоном, сразу же после окончания его укладки во избежание размыва и порчи его поверхности, бетон следует укрыть полиэтиленовой пленкой, брезентом или мешковиной. Особенно тщательно следует сохранять температурный и влажностный режим твердения бетона. Нормальная влажность для твердения это 90-100% в условии избытка воды. Как показано выше в таблице № 52 набор прочности в условиях влажности существенно увеличивает итоговую прочность цементного камня.
При преждевременном обезвоживании (которое также может произойти при утечке цементного молока из негидроизолированной опалубки) бетон получает недостаточную прочность поверхностей, склонность к отслаиванию песка от бетона, увеличенное водопоглощение, сниженную устойчивость против атмосферных и химических воздействий. Также при преждевременном обезвоживании возникают ранние усадочные трещины, и возникает опасность последующего образования поздних усадочных трещин. Преждевременные усадочные трещины образуются в первую очередь вследствие быстрого уменьшения объема свежеуложенного бетона на открытых участках поверхности за счет испарения и выветривания воды. При высыхании бетона он уменьшается в объеме и дает усадку. В результате этой деформации возникают структурные и внутренние напряжения, которые могут привести к трещинам. Усадочные трещины появляются сначала на поверхности бетона, а затем могут проникать вглубь. Поэтому необходимо позаботиться об отсроченном высыхании бетона. Оно должно начаться только тогда, когда бетон наберет достаточную прочность, чтобы выдерживать усадочное напряжение без образования трещин. При образовании ранних трещин, когда бетон еще остается пластичным, образующиеся усадочные трещины можно закрыть с помощью поверхностной вибрации.
Высыхание бетона ускоряется на ветру, при пониженной влажности и при температуре воздуха ниже, чем температура твердеющего бетона. Поэтому поверхность бетона надо предохранять от высыхания в период ухода за бетоном. После того как бетон наберет прочность 1,5 МПа (примерно 8 часов твердения) нужно регулярно увлажнять поверхность бетона водой путем рассеянного полива (не струей!). Можно укрыть поверхность мешковиной, брезентом или опилками и смачивать их водой, укрывая сверху полиэтиленовой пленкой, создавая условия по типу влажно-высыхающего компресса. Увлажнение бетона не проводится при среднесуточных температурах ниже +5°С. При угрозе промерзания бетон можно укрыть дополнительно теплоизолирующими материалами (пенопластом, минеральной ватой, ветошью, сеном, опилками и т.п.). Даже если постоянное увлажнение бетона водой невозможно, бетон следует укрыть полимерной пленкой толщиной не менее 0,2 мм (200 микрон). Полотнища пленки должны быть уложены максимально возможными цельными кусками с минимум швов. Соединяют полотнища пленки внахлест с перекрытием в 30 см с проклейкой клейкой лентой. Кромки пленки должны плотно прилегать к бетону, чтобы минимизировать испарение воды из-под пленки. Во избежание повреждения свежеуложенного бетона движущими грунтовыми водами необходимо оградить его от размывания до достижения прочности не ниже 25% (1-5 суток в зависимости от условий при положительной температуре). Срок окончания ухода за бетоном совпадает со сроком его безопасной распалубки.Таблица №69. Относительная прочность бетона на сжатие при различных температурах твердения
-3 | 0 | +5 | +10 | +20 | +30 | ||
прочность бетона на сжатие % от 28-суточной | |||||||
М200 — М300 на портландцементе М-400, М-500 | 1 | 3 | 5 | 9 | 12 | 23 | 35 |
2 | 6 | 12 | 19 | 25 | 40 | 55* | |
3 | 8 | 18 | 27 | 37 | 50 | 65 | |
5 | 12 | 28 | 38 | 50 | 65 | 80 | |
7 | 15 | 35 | 48 | 58 | 75 | 90 | |
14 | 20 | 50 | 62 | 72 | 90 | 100 | |
28 | 25 | 65 | 77 | 85 | 100 | — |
*Условно безопасный строк начала работ на фундаменте.
Уход за бетоном и температурный режим Температура свежеприготовленной бетонной смеси не должна превышать 30 °C. При бетонировании при среднесуточной температуре воздуха от + 5°C до — 3°C, температура бетонной смеси при массе цемента более 240 кг /м3 (марка бетона М200 и выше) должна быть не менее +5°C, а при меньшем количестве цемента не менее +10°C.
Безопасное бетонирование при температуре воздуха менее — 3°C и однократное замораживание бетона и его оттаивание возможно только тогда, когда температуру бетонной смеси как минимум в течение 3 дней поддерживалась на уровне не ниже + 10 °C.
Бетонирование при холодной погоде При холодной погоде наблюдается замедление схватывания и нарастания прочности бетона. При среднесуточной температуре + 5 °C требуется в два раза больше времени, чтобы бетон достиг такой же прочности, как при температуре +20 °C. При температуре, близкой к температуре замерзания, набор прочности бетона практически прекращается. Если свежий бетон замерзает, то его структура может разрушиться. Неиспользованная при гидратации цемента избыточная вода образует в твердеющем бетоне систему капиллярных пор. При воздействии мороза вода, находящаяся в порах, полностью или частично замерзает, а образуемый в результате замерзания лед оказывает давление на стенки пор, которые могут привести к разрушению их структуры. Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это происходит из-за разрыва кристаллами льда связей между поверхностью зернистого заполнителя и цементным клеем (цементным камнем).
Устойчивости свежеуложенного бетона к замерзанию можно добиться специальным составом бетонной смеси и требуемыми сроками твердения бетона при положительной температуре.
Таблица №70. Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию (директива RILEM*)
Класс прочности цемента | 5 °C | 12 °C | 20 °C |
Необходимое время твердения (дни) для достижения устойчивости к замерзанию бетона с водоцементным отношением 0,60 | |||
М400 Д20 32,5Н (32,5N) | 5 | 3 ½ | 2 |
32,5R (быстротвердеющий) | 2 | 1 ½ | 1 |
42,5N | 2 | 1 ½ | 1 |
45,5R (быстротвердеющий) | ¾ | ½ | ½ |
*Международный союз лабораторий и экспертов в области строительных материалов, систем и конструкций.
Таблица № 71 Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию *
+5°C | +10°C | ||
В7,5-В10 (М100) | 50 | 14 | 10 |
В12,5-В25 (M150 – М350) | 40 | 9 | 6 |
В30 (М400) и выше | 30 | 6 | 4 |
Бетон в водонасыщенным состоянии с попеременными циклами замораживания | 70 | 25 | 20 |
Бетон с противоморозными добавками, рассчитанными на определенную температуру | 20 | 4 | 3 |
*Адаптировано с упрощением из таблицы №6 СНиП 3.03.01-87 К эффективным мерам для производства работ по бетонированию в зимнее время относятся:
- использование цемента с быстрым набором прочности (литера “R” в классе прочности),
- повышение содержания цемента в бетонной смеси,
- снижение водоцементного отношения,
- предварительный подогрев заполнителей (до + 35°C) и воды (до + 70°C) для бетонной смеси [таблица 6 СНиП 3.03.01-87] ,
- использование противоморозных и воздухововлекающих добавок.
При применении подогрева бетона нельзя нагревать его до температур выше +30°C. При применении горячей воды с температурой до + 70°C ее предварительно следует смешать с зернистым заполнителем (до введения цемента в бетонную смесь), чтобы не «запарить» цемент. Для этого соблюдают следующую очередность загрузки материалов в бетоносмеситель:
- одновременно с заполнителем подают основную часть нагретой воды,
- после нескольких оборотов подают цемент и заливают остальную часть воды,
- продолжительность перемешивания увеличивают в 1,25 -1,5 раза по сравнению с летними нормами для получения более однородной смеси (минимум 1,5 — 2 минуты),
- продолжительность вибрирования бетонной смеси увеличивают в 1,25 раза.
При предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание (песчаную подушку) или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания [пункт 2.56 СНиП 3.03.01-87]. После укладки бетона и вибрирования, его необходимо укрыть полимерной пленкой и теплоизолирующими материалами (в том числе возможно использование снега), чтобы сохранить выделяющееся тепло при гидратации цемента (на протяжении 3-7 суток в нормальных условиях). При морозах следует построить над фундаментом парник и подогревать его.
Для самодеятельных дачных строителей без опыта можно рекомендовать придерживаться следующего правила: производить бетонные работы при ожидаемых среднесуточных температурах в пределах 28 суток от момента заливки фундамента ниже +5°C не рекомендуется.
Также следует помнить, что не допускается оставлять малозаглубленные (незаглубленные) фундаменты незагруженными на зимний период. Если это условие по каким-либо обстоятельствам оказывается невыполнимым, вокруг фундаментов следует устраивать временно теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы и других материалов, предохраняющих грунт от промерзания [пункт 6.6 ВСН 29-85]. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.Бетонирование при жаркой погоде Повышение температуры бетона активизирует взаимодействие воды и цемента и ускоряет твердение бетона. С другой стороны, избыточный нагрев бетонной смеси приводит к расширению, которое фиксируется при схватывании бетона и твердении цементного камня. В дальнейшем, при охлаждении бетон сжимается, однако возникшая структура препятствует этому, и в бетоне возникают остаточные напряжения и деформации. Обычно бетон сильнее нагревается с поверхности, поэтому и избыточное напряжение в первую очередь возникает у его поверхности, где могут образовываться трещины. Критический период времени, когда образуются усадочные трещины, часто начинается через час после приготовления бетонной смеси и может продолжаться от 4 до 16 часов. При прогнозируемой среднесуточной температуре воздуха выше + 25°C и относительной влажности воздуха менее 50% для бетонирования рекомендуется использовать быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок [пункт 2.63 СНиП 3.03.01-87]. Либо использовать добавки, замедляющие сроки твердения бетона. Также разумным может быть укладка бетона в утреннее, вечернее или ночное время при падении температуры воздуха и исключения воздействия на бетонную смесь солнечных лучей. При бетонировании температура поверхности бетона не должна превышать + 30 +35°C. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания укладки. В особых случаях для охлаждения бетона можно использовать чешуйчатый лед. Свежеуложенную бетонную смесь надо защищать от обезвоживания из-за воздействия температуры воздуха, солнечных лучей и ветра. После набора бетоном прочности 0,5 МПа, уход за бетоном должен заключаться в обеспечении постоянного влажного состояния поверхности путем устройства влагоемкого покрытия и его постоянного увлажнения, выдерживания открытых поверхностей бетона под слоем воды или непрерывного распыления влаги над поверхностью конструкций с помощью распылителя для газонов или перфорированного шланга. При этом только периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается. Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать отражающей (фольгированной) полимерной пленкой или бумагой в комбинации с теплоизолирующими материалами. При использовании деревянной опалубки, ее также нужно постоянно поливать водой.
Особенно актуальны меры по охлаждению твердеющего бетона при минимальном размере сечения фундаментной ленты 80 см и более. В этом случае при гидратации выделяется слишком много тепла и перегрев бетона и последующее образование трещин возможно даже при обычных температурных условиях.
Таблица №72. Мероприятия по уходу за бетоном в зависимости от температуры воздуха.
от -3°C до +5°C | от +5°C до +10°C | от +10°C до +15°C | от +15°C до +25°C | > +25°C | ||
Накрыть пленкой, увлажнять поверхность, увлажнять опалубку, покрыть бетон влагосохраняющим материалом | Да при сильном ветре | Да | ||||
Накрыть пленкой, увлажнять поверхность. | Да | Да | Да | |||
Накрыть пленкой, положить теплоизоляцию | Да | |||||
Накрыть пленкой, положить теплоизоляцию, устроить парник, подогревать 3 дня до T +10°C | Да | |||||
Постоянно поддерживать тонкий слой воды на поверхности бетона | Да | Да | Да | Да |
dom.dacha-dom.ru
Бетон — время схватывания и набора прочности
Подавляющее большинство самодеятельных строителей считают по не совсем понятным причинам, что за окончанием укладки в опалубку либо завершением работ по выравниванию стяжки процесс бетонирования законченным. Между тем, время схватывания бетона значительно больше, чем время на его укладку. Бетонная смесь – живой организм, в котором по окончании укладочных работ происходят сложные и протяженные по времени физико-химические процессы, связанные с превращением раствора в надежную основу строительных конструкций.
Прежде чем производить распалубку и наслаждаться результатами приложенных усилий, нужно создать максимально комфортные условия для созревания и оптимальной гидратации бетона, без которой невозможно достижение требуемой марочной прочности монолита. Строительные нормы и правила содержат выверенные данные, которые приведены в таблицах времени схватывания бетона.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 14 | 28 | |
Прочность бетона, % | |||||||||
0 | 20 | 26 | 31 | 35 | 39 | 43 | 46 | 61 | 77 |
10 | 27 | 35 | 42 | 48 | 51 | 55 | 59 | 75 | 91 |
15 | 30 | 39 | 45 | 52 | 55 | 60 | 64 | 81 | 100 |
20 | 34 | 43 | 50 | 56 | 60 | 65 | 69 | 87 | — |
30 | 39 | 51 | 57 | 64 | 68 | 73 | 76 | 95 | — |
40 | 48 | 57 | 64 | 70 | 75 | 80 | 85 | — | — |
50 | 49 | 62 | 70 | 78 | 84 | 90 | 95 | — | — |
60 | 54 | 68 | 78 | 86 | 92 | 98 | — | — | — |
70 | 60 | 73 | 84 | 96 | — | — | — | — | — |
80 | 65 | 80 | 92 | — | — | — | — | — | — |
Содержащиеся в официальных таблицах данные, конечно, должны служить ориентиром при самостоятельном обустройстве бетонных или железобетонных конструкций. Но применение таких данных должно происходить в плотной практической привязке к реальным условиям строительства.
Уход за бетоном после заливки: основные цели и методы
Процессы, связанные с проведением мероприятий, которые предшествуют распалубке, содержат несколько технологических приемов. Цель выполнения таких мероприятий одна – создание железобетонной конструкции, максимально соответствующей по своим физико-техническим свойствам параметрам, которые заложены в проект. Основополагающим мероприятием, безусловно, является уход за уложенной бетонной смесью.
Уход заключается в выполнении комплекса мероприятий, которые призваны создать условия, оптимально соответствующие происходящим в смеси физико-химическим преобразованиям, во время набора прочности бетона. Неукоснительное следование предписанным технологией ухода требованиям позволяет:
- свести к минимальным значениям усадочные явления в бетонном составе пластического происхождения;
- обеспечить прочностные и временные значения бетонного сооружения в параметрах, предусмотренных проектом;
- предохранить бетонную смесь от температурных дисфункций;
- препятствовать прелиминарному отвердению уложенной бетонной смеси;
- предохранить сооружение от различного происхождения воздействий механического или химического генеза.
Процедуры ухода за свежеобустроенной железобетонной конструкцией следует начинать непосредственно по окончании укладки смеси и продолжаться до тех пор, пока ей не будет достигнуто 70 % прочности, предусмотренной проектом. Это предусматривается требованиями, изложенными в пункте 2.66 СНиПа 3.03.01. Распалубку можно провести и в более ранние сроки, если это обосновано сложившимися параметрическими обстоятельствами.
После окончания укладки бетонной смеси следует провести осмотр опалубочной конструкции. Цель такого осмотра – выяснение сохранения геометрических параметров, выявление протечек жидкой составляющей смеси и механических повреждений элементов опалубки. С учетом того, сколько времени застывает бетон, точнее сказать – с учетом времени его схватывания, проявившиеся дефекты необходимо устранить. Среднее время, за которое может схватиться свежеуложенная бетонная смесь, составляет около 2-х часов, в зависимости от температурных параметров и марки портландцемента. Конструкцию необходимо предохранять от любого механического воздействия в виде ударов, сотрясений, вибрационных проявлений столько, сколько времени сохнет бетон.
Стадии набора прочности бетонной конструкцией
Бетонная смесь любого состава имеет свойство схватываться и получать необходимые прочностные характеристики при прохождении двух стадий. Соблюдение оптимального соотношения временных, температурных параметров и значений приведенной влажности имеет определяющее значение для получения монолитной конструкции с запланированными свойствами.
Стадийные характеристики процесса заключаются в:
- схватывании бетонного состава. Время предварительного схватывания не велико и составляет ориентировочно 24 часа при средней температуре +20 Со. Начальные процессы схватывания происходят в течение первых двух часов по затворении смеси водой. Окончательное схватывание происходит, как правило, в течение 3–4 часов. Применение специализированных полимерных добавок позволяет, при определенных условиях, период начального схватывания смеси сократить до нескольких десятков минут, но целесообразность такого экстремального метода бывает оправданной по большей части при поточном производстве железобетонных элементов промышленных конструкций;
- отвердевании бетона. Бетон набирает прочность, когда в его массе протекает процесс гидратации, иными словами – удаление воды из бетонной смеси. Часть воды при прохождении этого процесса удаляется при ее испарении, другая часть связывается на молекулярном уровне с составляющими смесь химическими соединениями. Гидратация может происходить при неукоснительном соблюдении температурно-влажностного режима отвердевания. Нарушение условий приводит к сбоям в прохождении физико-химических процессов гидратации и, соответственно, к ухудшению качества железобетонной конструкции.
Зависимость времени набора прочности от марки бетонной смеси
Логически понятно, что применение для приготовления бетонных составов разных марок портландцемента приводит к изменению времени твердения бетона. Чем выше марка портландцемента, тем меньше время для набора прочности требуется смеси. Но при использовании любой марки, будь это марка 300 либо 400, не следует прикладывать к железобетонной конструкции значительные механического характера нагрузки раньше, чем по истечении 28 дней. Хотя время схватывания бетона по таблицам, приведенным в строительных правилах, может быть и меньше. Особенно это касается бетонов, приготовленных с применением портландцемента марки 400.
за 14 суток | за 28 суток | |||||||
100 | 150 | 100 | 150 | 200 | 250 | 300 | 400 | |
300 | 0.65 | 0.6 | 0.75 | 0.65 | 0.55 | 0.5 | 0.4 | — |
400 | 0.75 | 0.65 | 0.85 | 0.75 | 0.63 | 0.56 | 0.5 | 0.4 |
500 | 0.85 | 0.75 | — | 0.85 | 0.71 | 0.64 | 0.6 | 0.46 |
600 | 0.9 | 0.8 | — | 0.95 | 0.75 | 0.68 | 0.63 | 0.5 |
Проектирование, строительство и окончательное обустройство любых построек с применением железобетонных компонентов требует внимательного отношения ко всем стадиям возведения. Но от тщательности изготовления бетонных составляющих, в особенности фундаментов, в значительной степени зависит долговечность и надежность всего сооружения. Соблюдение сроков, за какое время схватываются бетонные смеси и составы, можно с уверенностью назвать основой успеха в любом строительном процессе.
betonshchik.ru
Набор прочности бетона: время затвердевания бетона, таблица
Набор прочности бетона — Время затвердевания бетона на 100%. По ГОСТу оно составляет 28 суток с момента заливки бетонной смеси. Но при оптимальной температуре, уже в первую неделю смесь застывает более интенсивно и набирает около 75% прочности. После 28 дней процесс набора прочности не останавливается, и свойство материала может измениться спустя 200-300 суток даже в два раза. Так, например, бетон М200-М250 через несколько лет может набрать прочность, соответствующую бетону М300- М350.
Бетон — надежный строительный материал и имеет широкий спектр применения, как в индивидуальном, так и в промышленном строительстве. В зависимости от пропорций и качества его состава меняется прочность конечного материала. Именно от этого параметра зависит назначение марки и класса бетона. Чем выше обозначение, тем выше прочность.
Таблица прочности бетона
Как увеличить скорость застывания бетонной смеси
Чтобы набор прочности бетона, происходил быстрее, в процессе приготовления в бетон добавляют специальные химические элементы. Под воздействием химических добавок, необходимые свойства приобретаются за 14 суток. Дозы средства рассчитываются исходя из количества цемента в составе бетона. В зимнее время заливки, так же применяют противоморозные добавки, чтобы поддержать плюсовую температуру бетона на период схватывания. В течение нескольких недель залитая бетонная смесь отвердевает под наблюдением инженеров, которые контролируют каждый этап.
Залитый состав отвердевает и набирает прочность несколько недель. При прочих равных, чем выше марка бетона, тем меньше времени нужно для его затвердевания. Процесс проходит под наблюдением инженеров, поскольку каждый этап набора прочности требует постоянного контроля специалистов.
Этапы застывания бетона
- Этап застывания. Время начального схватывания бетонной массы сразу после заливки. Для максимального сохранения свойств материала, готовый раствор подвозят в бетоносмесителе либо подготавливают смесь на месте. На данном этапе осматривается опалубка на предмет протечек и деформаций. Среднее время первичного застывания 1 час, с учетом теплого времени года (выше 20 градусов), в более низкие температуры время варьируется от 6 до 20 часов;
- Основной этап твердения. Время, когда материал набирает до 70% прочности, составляет от 7 до 14 дней и зависит от марки бетона. Именно на этом этапе рекомендуется снимать опалубку конструкции;
- Контрольный этап. Официально принятый период по стандарту ГОСТ (18105-86) составляет 28 дней. Именно столько нужно времени, чтобы полностью прошел процесс гидратации, когда выходит влага из бетонной смеси. На данном этапе специалисты сопоставляют полученные данные с нормами в специальной документации.
До окончания всех стадий застывания бетонной смеси, строго избегается любое механическое воздействие на конструкции, а так же тщательно контролируется температурный режим.
В готовой бетонной смеси, как вовремя, так и после укладки происходят сложные и долгие химические процессы, которые необходимо учитывать при строительном расчете. Чем лучше условия превращения раствора в крепкий бетонный материал, тем качественнее и надежнее будет результат.
Прочность бетонных кубов на сжатие
Общая прочность конструкции, такая как сопротивление изгибу и истиранию, напрямую зависит от прочности бетона на сжатие.
Согласно Википедии, Прочность бетона на сжатие определяется как характеристическая прочность бетонных кубов размером 150 мм, испытанных в течение 28 дней.
Почему мы проводим тестирование через 7, 14 и 28 дней?
Бетон представляет собой макрокомпонент с песком, цементом и крупнозернистым заполнителем в качестве микрокомпонентов (соотношение смеси) и со временем набирает 100% прочность в затвердевшем состоянии.
Взгляните на приведенную ниже таблицу.
Прочность бетона сверхурочно
Дней после литья | Прирост силы |
День 1 | 16% |
3 день | 40% |
День 7 | 65% |
День 14 | 90% |
28 день | 99% |
Как видите, бетон быстро набирает прочность до 7 и 14 дней.Затем постепенно увеличивается оттуда. Таким образом, мы не можем предсказать прочность, пока бетон не придет в это стабильное состояние.
Как только он достигнет определенной силы через 7 дней, тогда мы знаем (согласно таблице) только 9% силы будет увеличиваться. Поэтому на объектах мы обычно тестируем бетон с этим интервалом. Если бетон выйдет из строя через 14 дней, мы откажемся от замеса.
Таблица прочности на сжатие бетона через 7 и 28 дней
Марка бетона | Минимальная прочность на сжатие Н / мм2 через 7 дней | Нормативная прочность на сжатие (Н / мм2) через 28 суток |
M15 | 10 | 15 |
M20 | 13.5 | 20 |
M25 | 17 | 25 |
M30 | 20 | 30 |
M35 | 23,5 | 35 |
M40 | 27 | 40 |
M45 | 30 | 45 |
Лабораторные испытания бетона на прочность при сжатии
Объектив
Найти значение прочности бетонных кубов на сжатие.
Необходимое оборудование и аппаратура
- Форма для кубов 150 мм (с маркировкой IS)
- Электронные весы
- Лист G.I (для изготовления бетона)
- Вибрирующая игла и другие инструменты
- Машина для испытания на сжатие
Процедура
Отливка куба
- Измерьте сухую пропорцию ингредиентов (цемент, песок и крупный заполнитель) в соответствии с проектными требованиями.Ингредиентов должно хватить для отливки тестовых кубиков
- Тщательно перемешайте сухие ингредиенты для получения однородной смеси
- Добавьте расчетное количество воды к сухой пропорции (водоцементное соотношение) и хорошо перемешайте, чтобы получить однородную текстуру
- Залить бетон в форму с помощью вибратора для тщательного уплотнения
- Обработайте верхнюю часть бетона шпателем и хорошо постучите до тех пор, пока цементный раствор не достигнет вершины кубиков.
Лечение
- Через некоторое время форму следует накрыть красным мешком и поставить в покое на 24 часа при температуре 27 ° C ± 2
- Через 24 часа выньте образец из формы.
- Держите образец погруженным в пресную воду с температурой 27 ° Цельсия. Образец следует хранить 7 или 28 дней. Каждые 7 дней воду следует обновлять.
- Образец следует вынуть из воды за 30 минут до испытания.
- Перед проведением испытания образец должен быть в сухом состоянии.
- Вес куба не должен быть меньше 8,1 кг
Тестирование
- Теперь поместите бетонные кубики в испытательную машину. (централизованно)
- Кубики должны быть правильно размещены на плите машины (проверьте отметки кружков на машине). Тщательно совместите образец со сферической пластиной.
- Нагрузка будет приложена к образцу в осевом направлении.
- Теперь медленно прилагайте нагрузку со скоростью 140 кг / см 2 в минуту, пока куб не рухнет.
- Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.
Расчет
Прочность бетона на сжатие = максимальная сжимающая нагрузка / площадь поперечного сечения
Площадь поперечного сечения = 150 мм X 150 мм = 22500 мм2 или 225 см 2
Предположим, что сжимающая нагрузка составляет 450 кН,
Прочность на сжатие = (450000 Н / 225) / 9.81 = 204 кг / см 2
Примечание — 1 кг равен 9,81 N
Результат наблюдения (лабораторный отчет)
Детали | Образцы | ||
Образец 1 | Образец 2 | Образец 3 | |
Сжимающая нагрузка (кН) | 375 кН | 425 кН | 435 кН |
Прочность на сжатие (кг / см2) | (375000/225) / 9.81 = 170 кг / см 2 | (425000/225) / 9,81 = 192,5 кг / см 2 | (435000/225) / 9,81 = 197,0 кг / см 2 |
Средняя прочность на сжатие | = (170 + 192,5 + 197) / 3 = 186,5 кг / см 2 |
Банкноты
- Указанный выше эксперимент следует проводить при температуре 27 ° C ± 2 °.
- Согласно IS 516 индивидуальное изменение сжимающей нагрузки не должно превышать плюс минус 15% от среднего значения.
Частота отбора проб
Согласно IS 456: 2000, минимальная частота отбора проб бетона
Количество бетона в работе (м3) | Количество образцов |
1-5 | 1 |
6-15 | 2 |
16-30 | 3 |
31-50 | 4 |
51 и выше | 4 плюс одна дополнительная проба на каждые дополнительные 50 м3 |
Видео эксперимента
Надеюсь, вам понравился контент.Поддержите нас, поделившись.
Счастливого обучения 🙂
Результаты испытаний бетона на прочность | Скачать таблицу
Бетон — самый популярный строительный материал в Бангладеш. Его можно производить из местных материалов, что снижает стоимость продукта по сравнению с другими. Дизайн бетонной смеси является важным фактором для определения свойств бетона; тем не менее, было проведено очень мало исследований, чтобы подготовить руководство по проектированию бетонной смеси с использованием местных материалов страны.Существуют некоторые преобладающие методы проектирования бетонных смесей, например ACI 211 и BS 812, которые используются инженерами-строителями для выполнения строительных работ, но последующие градации заполнителя (например, ASTM C33 и BS 882) могут быть недоступны из-за возможных вариации совокупных характеристик этого географического региона. Следовательно, Ашраф (2012) предложил одно руководство по проектированию смеси с использованием агрегированных полос градации местных материалов, в которых прочность на сжатие и удобоукладываемость рассматривались как требуемые параметры.Это исследование было проведено с целью составить полное руководство по проектированию смеси для Бангладеш, включающее прочность, удобоукладываемость, долговечность и прокачиваемость. Цементом, использованным в этом исследовании, был CEM I. Поскольку в этом исследовании использовались материалы, доступные на местном уровне, вместо обычных градаций (ASTM C33 и BS 882) были использованы две полосы (5-10-14-18 и 5-10-18- 22) комбинированных градаций заполнителя, которые были разработаны Ашрафом (2012), были использованы для производства бетонных смесей. Три водоцементных отношения (0.4, 0,5 и 0,6), а диапазон содержания цемента поддерживается от 350 до 500 кг / м3. Для прочности были проведены испытания на сульфатную атаку, карбонизацию и быструю проницаемость для хлоридов (RCPT). Из этих трех результатов RCPT дала отчетливые и воспроизводимые результаты, поэтому это было рассмотрено как параметр дизайна смеси. Поскольку прочность рассматривалась как параметр конструкции смеси, зола рисовой шелухи (RHA) использовалась в качестве 10% и 20% замены цемента. RHA обладает пуццолановым свойством, которое снижает проницаемость затвердевшего бетона, что увеличивает его долговечность.Он легко доступен в стране-производителе риса, такой как Бангладеш, и его утилизация в последнее время вызывает озабоченность. Включение RHA также приводит к увеличению прочности. Было обнаружено, что при замене цемента на 20% RHA был получен бетон, прочность на сжатие на 10% выше, чем у контрольного бетона, и проницаемость на 59% ниже по значениям RCPT. RHA снижает значения осадки, например, замена RHA на 20% дает снижение осадки до 70%. Таким образом, правильный состав смеси может привести к получению бетона с необходимыми свойствами.Путем анализа результатов пятидесяти четырех миксов этой работы был сформирован процесс создания миксов. Были созданы различные диаграммы и графики. 28-дневная прочность на сжатие, результаты RCPT, такие как долговечность и оседание, были использованы в качестве параметров конструкции смеси. Приведен график, с помощью которого можно проверить прокачиваемость смеси по результатам испытаний на осадки и сброс давления. Наконец, четыре смеси были приготовлены в соответствии с недавно предложенными рекомендациями по составлению смеси, и результаты были сопоставлены с целевыми значениями.Все смеси показали большую прочность и более низкие значения проницаемости, чем целевые значения.
Экспериментальное исследование прочности на сжатие бетона с большой подвижностью с помощью метода неразрушающего контроля
Завершено экспериментальное исследование кубиков бетона с большой подвижностью C20, C25, C30, C40 и C50, поступивших из лаборатории и на строительную площадку. Неразрушающий контроль (NDT) проводился с использованием методов ударного отбойного молотка (IRH), чтобы установить корреляцию между прочностью на сжатие и числом отскока.Построена локальная кривая для измерения силы метода регрессии и доказана его эффективность. Представленный метод отскока прост, быстр и надежен и охватывает широкий диапазон прочности бетона. Метод отскока может быть легко применен к бетонным образцам, а также к существующим бетонным конструкциям. Окончательные результаты сравнивались с предыдущими из литературы, а также с фактическими результатами, полученными на образцах, извлеченных из существующих структур.
1. Введение
Прямое определение прочности бетона подразумевает, что образцы бетона должны быть нагружены до разрушения.Следовательно, определение прочности бетона требует отбора, отправки и испытания специальных образцов в лабораториях. Эта процедура может привести к фактической прочности бетона, но может вызвать проблемы и задержку в оценке существующих конструкций. По этой причине были разработаны специальные методы, в которых были предприняты попытки измерить некоторые свойства бетона, отличные от прочности, а затем связать их с прочностью, долговечностью или любым другим свойством. Некоторые из этих свойств — твердость, число отскока, устойчивость к проникновению или ударам, резонансная частота и способность пропускать ультразвуковые импульсы через бетон.Однако термин «неразрушающий» [1–3] применяется к любому тесту, который не повреждает и не влияет на структурное поведение элементов, а также оставляет структуру в приемлемом для клиента состоянии. Однако успешным неразрушающим испытанием является тот, который может применяться к бетонным конструкциям в полевых условиях, быть портативным и легко управляемым с наименьшими затратами.
Среди доступных неразрушающих методов отбойный молоток является наиболее часто используемым на практике.Испытание отбойного молотка описано в ASTM C805 [4] и BS 1881: Часть 202 [5]. Испытание классифицируется как испытание на твердость и основано на том принципе, что отскок упругой массы зависит от твердости поверхности, на которую упирается груз. Энергия, поглощаемая бетоном, зависит от его прочности [6]. Несмотря на кажущуюся простоту, испытание отбойным молотком связано со сложными проблемами удара и связанного с ним распространения волны напряжения.
Не существует однозначной связи между твердостью и прочностью бетона, но зависимости экспериментальных данных могут быть получены для данного бетона.Однако это соотношение зависит от факторов, влияющих на поверхность бетона, таких как степень насыщения, карбонизация, температура, подготовка поверхности и расположение, а также тип отделки поверхности [7]. На результат также влияют тип заполнителя, пропорции смеси и наклон молота. Следует избегать участков с сотами, чешуйками, шероховатой текстурой или высокой пористостью. Бетон должен быть примерно одного возраста, влажности и степени карбонизации (обратите внимание, что карбонизированные поверхности дают более высокие показатели отскока).Тогда ясно, что число отскока отражает только поверхность бетона. Из-за сложности получения соответствующих данных корреляции в данный момент отбойный молоток наиболее полезен для быстрого обследования больших площадей однотипных бетонов в рассматриваемой конструкции. Невилл [8] представил преимущества использования отбойного молотка в бетоне и заявил, что испытание само по себе не является испытанием на прочность и не следует принимать преувеличенные заявления о его использовании в качестве замены испытания на сжатие.
Одним из последних достижений в бетонной промышленности стало использование летучей золы и порошкообразного известняка в качестве частичной замены портландцемента при производстве бетонной смеси. Этот новый бетон широко используется в Китае для строительства мостов и морских сооружений. Анализ прочности на сжатие и затрат показал, что производитель бетона может добиться важной экономии кремнезема в бетонной смеси.
В этой работе автор использовал отбойный молоток, чтобы получить подходящую, надежную простую диаграмму для оценки прочности бетона с большой подвижностью.В этой статье представлено экспериментальное исследование применения методов отбойного молотка в составе бетона с высокой подвижностью C15, C20, C30, C40 и C50 в соответствии со Стандартом для метода испытаний механических свойств на обычном бетоне, GBT50081-2002. [9] и Технические условия для проверки прочности бетона на сжатие методом отскока, JGJ / T 23-2001 [10].
2. Экспериментальная программа
2.1. Материалы и пропорции смеси
В этом исследовании все образцы были изготовлены из местных материалов, которые включали следующее: Китайский стандарт (GB175-2007) [11] Использовался портландцемент.Мелкие заполнители представляли собой природный речной песок (модуль крупности 2,6) и крупный заполнитель из местных природных источников или твердый известняк (диаметр от 5 до 20 мм). Пропорции смеси и основные параметры, перечисленные в таблице 1, должны были быть приняты.
|
2.2. Испытательные образцы и программы испытаний
Были подготовлены пять наборов больших подвижных бетонных кубиков C20, C25, C30, C40 и C50 (150 мм × 150 мм × 150 мм). Каждый набор состоял из 21 экземпляра. Образцы были отлиты в стальные формы, уплотнены внешней вибрацией и извлечены из формы через 24 часа. Все образцы выдерживались при температуре 20 ± 3 ° C и относительной влажности 95% в течение 27 дней.
Метод испытания начинается с тщательного выбора и подготовки бетонной поверхности для испытания.После того, как поверхность выбрана, ее следует обработать абразивным камнем, чтобы испытательная поверхность была гладкой. Затем прикладывают фиксированное количество энергии, прижимая молоток к испытательной поверхности. Плунжер должен ударяться перпендикулярно поверхности. Угол наклона молотка влияет на результат. После удара следует записать число отскока. В соответствии с JGJ / T 23-2001 необходимо снять не менее 16 показаний с каждой тестируемой зоны. На рисунке 1 показан образец бетона на испытательной машине.
2.3. Программа исследований
Фактическое состояние участков показывает, что полученные материалы сильно различаются. К ним относятся различия в качестве бетона и качества изготовления, в некоторых случаях отсутствие технологии, неправильные измерения объемов используемых в смесях количеств, периодический надзор и неправильные методы производства бетона, обычно заканчивающиеся низкой или средней степенью контроля качества [ 12]. Следовательно, было необходимо разработать программу исследований, которая не зависит от предыдущей истории испытуемого образца, и следовать ей.
Целью исследования было получить простую кривую отскока между числом отскока через бетон и прочностью на сжатие бетона с большой подвижностью. Кривая отскока должна быть максимально простой, чтобы ее могли легко использовать инженеры, работающие на месте. Также диаграмма была использована позже для оценки прочности некоторых образцов бетона. Процедура, которой следовали во время экспериментов, состояла из следующих шагов: (1) Из различных бетонных смесей были приготовлены стандартные кубики со стороной 150 мм.(2) Бетонные кубики, изготовленные в условиях стройплощадки, были доставлены с разных площадок для испытаний. (3) Каждая из двух противоположных граней куба была подготовлена для испытания отбойным молотком. (4) Кубики были помещены в испытательную машину и была приложена небольшая нагрузка (30 ~ 80 кН). Число отскока было получено путем измерения двух граней куба. Отбойный молоток был горизонтальным во всех измерениях. Результаты теста числа отскоков оценивались в соответствии с правилами JGJ / T 23-2001.(5) После завершения неразрушающего контроля каждого куба куб был загружен до отказа и была записана максимальная нагрузка. (6) Результаты были нанесены, как показано на рисунках 2 и 3. Были получены новые образцы, которые были протестированы таким же образом. для проверки результатов, полученных по кривой. (7) Из конструкций было взято шесть образцов, была получена эквивалентная кубическая прочность для каждого образца, и результаты были представлены в таблице 3.
3. Результаты и обсуждения
Калибровочные кривые для каждого метода отскока построены с использованием регрессионного анализа.Влияние степени карбонизации было представлено построением средних значений числа отскока в зависимости от прочности на сжатие. В таблице 2 приведены различные модели регрессии кривой отскока между числом отскока бетона с большой подвижностью и прочностью на сжатие бетона с большой подвижностью в соответствии с экспериментальными данными.
|
|
3.1. Графическое представление
Как показано в Таблице 2, наиболее подходящая кривая, которая представляет соотношение между числом отскока и прочностью бетона на сжатие, представляет собой кривую, которая имеет следующее уравнение: где — прочность на сжатие, — число отскока, — глубина карбонизации. Значение коэффициента корреляции оказалось равным 0,852. Относительная стандартная ошибка составила SE = 13,75%.
3.2. Обсуждение
Очевидно, что кривая наилучшего соответствия IRH показала лучшую корреляцию.Модель регрессии, полученная с использованием IRH, более точна и дает результаты, более близкие к экспериментальным, чем результаты, полученные из JGJ / T 23-2001.
4. Инженерный пример
Торговая площадка A — это бетонные каркасные конструкции, и расчетная прочность бетона на сжатие в колонне составляет C30. Дата отливки 08.04.2006, дата испытаний методом отскока 22.12.2006, дата испытаний методом корончатого сверления 23.12.2006. Применение метода к 6 образцам, взятым из существующих конструкций, представлено в таблице 3.В таблице 3 также показано сравнение результатов, полученных с использованием следующего: (a) использование (1), (b) использование графика, приведенного в DBJ14-026-2004 [12], и (c) прочность на сжатие при раздавливании конкретный. Из таблицы 3 видно, что прогнозируемые значения близки к наблюдаемым значениям прочности на сжатие при раздавливании (после корректировки значений для оценки прочности куба).
Расхождение между фактическими результатами и прогнозируемыми результатами может быть связано с тем фактом, что образцы из существующих конструкций являются кернами, а прочность куба на сжатие при раздавливании была получена с использованием различных поправок, внесенных в спецификации.
5. Заключение
Разработка кривых для адаптации методов испытаний на отскок для требуемых бетонных смесей с большой подвижностью позволила выявить следующие моменты: (1) Использование отбойного молотка подходит для оценки и прогнозирования прочности бетона с большой подвижностью, что делает инженерное решение довольно легко. Использование методов отскока молотка дает более надежные результаты, близкие к фактической прочности. (2) Нет необходимости знать водоцементное соотношение в бетоне, поскольку для конкретного бетона каждое значение вода / цемент дает только одно значение. силы, которая связана только с одним значением числа отскока.(3) Метод числа отскока кажется более эффективным для прогнозирования прочности бетона при определенных условиях и даже в этих условиях. Никогда не следует пытаться использовать ударный отбойный молоток для оценки прочности монолитного бетона, если нет специальной калибровочной таблицы, и тогда рекомендуется использование только этого метода. (4) Использование метода числа отскока дает результаты, которые надежны и близки к истинным значениям. Кроме того, был достигнут приемлемый уровень точности оценки прочности бетона.Следовательно, полученная регрессионная модель для оценки прочности может быть безопасно использована для оценки прочности бетона для инженерного исследования бетона. (5) Лучшие результаты прогнозирования прочности получены для расчетной прочности куба на раздавливание. Метод может быть расширен для тестирования существующих конструкций путем проведения прямых измерений на бетонных элементах.
Благодарности
Эта исследовательская работа была совместно поддержана Научным фондом творческих исследовательских групп Национального фонда естественных наук Китая (грант №51121005), Национальный фонд естественных наук Китая (гранты № 51208273, 51222806), проект Программы высшего образования и технологий провинции Шаньдун (грант № J12LG07) и Программа для выдающихся талантов нового века в университетах (грант № . NCET-10-0287).
Взаимосвязь между семидневными и 28-дневными сильными сторонами | Журнал Concrete Construction
- Вопрос: Перед укладкой бетона для последней опоры фундамента с пробуренной опорой бригадир решил долить воду в автобетоносмеситель.Инспектору не понравился вид разводненного бетона, и он взял испытательные цилиндры, которые представляли тот самый пирс. Спецификации требуют 28-дневной силы 3000 фунтов на квадратный дюйм. После того, как лаборатория сломала семидневные цилиндры, цилиндр от пирса с добавленной водой сломался при давлении 1980 фунтов на квадратный дюйм. В других семидневных цилиндрах давление достигало 2620 фунтов на квадратный дюйм. Инженер обеспокоен тем, что бетон не будет соответствовать указанной прочности. Я понимаю, что добавление воды было неправильным решением, но я не хочу удалять пирс, если он достаточно прочен.Достигнет ли он указанных 3000 фунтов на квадратный дюйм?
Ответ: Как показывает этот случай, часто бывает полезно экстраполировать 28-дневную силу из семидневной силы. Конечно, количество прироста силы варьируется между семидневными и 28-дневными тестами. Тип цемента и условия отверждения — это два фактора, которые влияют на ожидаемый прирост прочности. Concrete, разработанная Mindness and Young, дает общее правило: отношение 28-дневной к 7-дневной силе составляет от 1,3 до 1,7 и, как правило, меньше единицы.5, или семидневная сила обычно составляет от 60% до 75% от 28-дневной силы и обычно превышает 65%. Цилиндр, который сломался при 1980 фунтах на квадратный дюйм, составляет 66% от указанных 3000 фунтов на квадратный дюйм. Согласно правилу Mindness and Young, он должен достичь указанной силы через 28 дней. Скорее всего, смесь была рассчитана не на 3000 фунтов на квадратный дюйм, а на более высокую прочность на сжатие, чтобы учесть изменчивость. Добавляя дополнительную воду в смесь, вы увеличиваете водоцементное соотношение, что, в свою очередь, снижает прочность. Опоры, установленные до добавления воды, вероятно, будут иметь прочность выше указанных 3000 фунтов на квадратный дюйм.Однако рассматриваемый пирс, скорее всего, будет соответствовать указанной прочности. Если по прошествии 28 дней цилиндры по-прежнему не соответствуют указанной прочности, возьмите стержни для проверки прочности перед выполнением дорогостоящего удаления сваи.
бетон c30 прочность на сжатие
Прочность на сжатие бетонного куба Испытание, процедура …
Характеристики бетона в соответствии с … — engipedia
Прочностные и деформационные характеристики бетона в соответствии с Еврокодом 1992-1-1 Бетон C8 / 10 C12 / 15 C16 / 20 C20 / 25 C25 / 30 C28 / 35 C30 / 37 C32 / 40 C35 / 45 C40 / 50 C45 / 55 C50 / 60 C55 / 67 C60 / 75 C70 / 85 C80 / 95 C90 / 105 C100 / 115
Сорта бетона на основе различных международных кодов
24 октября 2018 Сорта бетона обычно обозначаются как M30 или C30 или C30 / 37 и так далее в зависимости от кода.Буквы «M» или «c» обозначают ее как «бетонную смесь», а число, которое следует за ней, указывает характеристическую прочность этой смеси в МПа на 28 дней.
Прочность на сжатие с сердечником бетона Мир конструкций
28 ноября 2019 г. Если бетон классифицируется по прочности на сжатие, следует использовать Таблицу 7 стандарта BS EN 206. В качестве классификации можно использовать характеристическую прочность на сжатие через 28 дней диаметра 150 мм для цилиндров 300 мм или куба 150 мм. Чтобы преобразовать прочность на сжатие f c ’в значение f cu, обратитесь к Таблице 7 стандарта BS EN 206, как указано в таблице…
Прочность бетонных кубов на сжатие Что …
Dec 08, 2017 Прочность на сжатие согласно американским нормам. В случае американских норм прочность на сжатие определяется как прочность цилиндра fc ’. Здесь прочность на сжатие бетона при 28-дневном выдерживании получена для стандартного цилиндрического образца диаметром 150 мм и высотой 300 мм, нагруженного в продольном направлении до разрушения при одноосной сжимающей нагрузке.
Прогноз на 3 дня — прочность бетона на сжатие…
Сентябрь 01, 2011 Как я могу предсказать прочность на сжатие бетона C30, используя кубы в 3 дня и 7 дней? Спасибо . RE: 3-дневный прогноз — Прочность бетона на сжатие Рон (Конструкция) 1 сен 11, 09:25. Я не знаю, где вы находитесь, поэтому предполагаю, что ваш микс «C30» — микс 30 мПа.
Испытание бетонного куба на сжатие, процедура …
18 мая 2018 г. Бетон, являющийся основным расходным материалом после воды, делает его весьма любознательным по своей природе. Прочность бетона в основном зависит от заполнителей, а цемент и песок способствуют связыванию и удобоукладываемости наряду с текучестью по отношению к бетону.. Это подробная статья о прочности бетона на сжатие.
Различные типы бетона и их применение Основа …
Бетонные смеси определяются в порядке возрастания 5, начиная с 10, и показывают прочность бетона на сжатие через 28 дней. Например, C10 имеет силу 10 ньютонов, C15 имеет силу 15 ньютонов, C20 имеет силу 20 ньютонов и так далее.
Прочность бетона на сжатие Определение, важность …
Прочность бетона на сжатие составляет около 4000 фунтов на квадратный дюйм.Определение. Прочность бетона на сжатие — это прочность затвердевшего бетона, измеренная при испытании на сжатие. Прочность бетона на сжатие — это мера способности бетона противостоять нагрузкам, которые стремятся его сжать.
Стандарты результатов 7-дневных и 28-дневных испытаний на прочность
В соответствии с разделом 19.2.1.3 ACI 318-19 указанная прочность на сжатие должна основываться на результатах 28-дневных испытаний, если иное не указано в документации на строительство. Результаты 3- или 7-дневных испытаний используются для контроля раннего набора прочности, особенно при использовании бетона с высокой ранней прочностью.
Коэффициент прироста прочности бетона Прочность выше …
Прочность можно определить как способность противостоять изменениям. Одно из самых ценных свойств бетона — его прочность. Прочность — самый важный параметр, который дает представление об общем качестве бетона. Прочность бетона обычно напрямую связана с цементным тестом. Многие факторы влияют на скорость увеличения прочности бетона после смешивания.
Почему мы проверяем прочность бетона на сжатие через 28 дней?
Почему мы проверяем прочность бетона на сжатие через 28 дней? Бетон со временем набирает прочность после заливки.Чтобы бетон набрал 100% прочность, требуется много времени, и время для этого пока неизвестно. Скорость увеличения прочности бетона на сжатие увеличивается в течение первых 28 дней после заливки, а затем увеличивается.
Прочность бетонных кубов на сжатие — лабораторные испытания
Согласно Википедии, прочность на сжатие бетона определяется как характеристическая прочность бетона размером 150 мм. кубики проверены через 28 дней. Почему мы проводим тестирование в 7, 14 28 дней? Бетон представляет собой макрокомпонент с песком, цементом, крупнозернистым заполнителем в качестве микрокомпонентов (соотношение смеси) и со временем приобретает 100% прочность в затвердевшем состоянии.
Различные марки бетона, их прочность и выбор …
Какая марка бетона? Марка бетона определяется как минимальная прочность, которой бетон должен обладать после 28 дней строительства при надлежащем контроле качества. Марка бетона обозначается приставкой M к желаемой прочности в МПа. Например, для марки бетона прочностью 20 МПа она будет обозначаться как M20, где M означает Mix.
Обычное соотношение бетонной смеси марок с20-с25-с30 Кремнезем…
Бетон делится на несколько классов прочности в зависимости от прочности, а степень прочности бетона сильно разделяется на сжатие. По прочности бетон делится на двенадцать классов, таких как C7,5, C10, C15, C20, C25, C30, C35, C40, C45, C50, C55 и C60.
[PDF]Глава 4 — Приближение прочности — EUCON
4. Приближение прочности 59 4. ПРИБЛИЖЕНИЕ ПРОЧНОСТИ 4.1 Европейский стандарт EN 206 и аспекты прочности Согласно EN 206 [12], затвердевший бетон классифицируется по его сжатию. прочность по таблице 4.1.1 (для нормального и тяжелого бетона; для легкого бетона см. [12]).
Прогноз изменения температуры и сжатия …
В результате уравнение прочности и зрелости бетона C30 может быть установлено в формуле. . (17) f = 35,734 e — 1122,62 М. Между тем, была измерена прочность на сжатие бетона, выдержанного в холодильнике при -5 ° C в возрасте 1, 2, 3, 7, 14 и 28 дней, и результаты показаны. в таблице 5. Развитие прочности при низких температурах составляет…
Различные типы бетона и их применение Основа …
Бетонные смеси определяются в порядке возрастания 5, начиная с 10, и показывают прочность бетона на сжатие через 28 дней. Например, C10 имеет силу 10 ньютонов, C15 имеет силу 15 ньютонов, C20 имеет силу 20 ньютонов и так далее.
Что такое бетон класса c30 в фунтах на квадратный дюйм? — Ответы
Число относится к прочности на сжатие куба бетона при испытании (т.е. 30 Н / мм2 или 40 Н / мм2) Чем выше число, тем выше прочность бетона.
Испытание бетона на растяжение — процедура [Civil Planets]
Испытание бетона на растяжение. Прочность бетона на растяжение является важным свойством, когда он будет использоваться для изготовления предварительно напряженных бетонных конструкций, дорог и взлетно-посадочных полос, это испытание должно проводиться в соответствии с IS Code 5816. Прочность на растяжение бетона обычно находится в диапазоне 10%. до 12% от его прочности на сжатие.
Прочность бетона на сжатие Определение, важность …
Прочность бетона на сжатие составляет около 4000 фунтов на квадратный дюйм. Определение. Прочность бетона на сжатие — это прочность затвердевшего бетона, измеренная при испытании на сжатие. Прочность бетона на сжатие — это мера способности бетона противостоять нагрузкам, которые стремятся его сжать.
Результаты испытаний бетона на прочность за 3, 7 и 28 дней и …
Испытания на прочность за 28 дней. Результаты испытаний бетона за 28 дней принимаются в качестве стандартных значений прочности на сжатие.Допустимая прочность на сжатие определяется 26.12.3.1 ACI 318-14 как: Среднее значение трех результатов испытаний на сжатие должно быть равно или больше указанной прочности.
Стандарты результатов 7-дневных и 28-дневных испытаний на прочность
В соответствии с разделом 19.2.1.3 ACI 318-19 указанная прочность на сжатие должна основываться на результатах 28-дневных испытаний, если иное не указано в документации на строительство. Результаты 3- или 7-дневных испытаний используются для контроля раннего набора прочности, особенно при использовании бетона с высокой ранней прочностью.
Коэффициент прироста прочности бетона Прочность выше …
Прочность можно определить как способность противостоять изменениям. Одно из самых ценных свойств бетона — его прочность. Прочность — самый важный параметр, который дает представление об общем качестве бетона. Прочность бетона обычно напрямую связана с цементным тестом. Многие факторы влияют на скорость увеличения прочности бетона после смешивания.
Бетон различных марок, их прочность и выбор…
Какая марка бетона? Марка бетона определяется как минимальная прочность, которой бетон должен обладать после 28 дней строительства при надлежащем контроле качества. Марка бетона обозначается приставкой M к желаемой прочности в МПа. Например, для марки бетона прочностью 20 МПа она будет обозначаться как M20, где M означает Mix.
Почему мы проверяем прочность бетона на сжатие через 28 дней?
Почему мы проверяем прочность бетона на сжатие через 28 дней? Бетон со временем набирает прочность после заливки.Чтобы бетон набрал 100% прочность, требуется много времени, и время для этого пока неизвестно. Скорость увеличения прочности бетона на сжатие увеличивается в течение первых 28 дней заливки, а затем она
Стандартный метод испытаний на прочность на сжатие …
5.1 Следует проявлять осторожность при интерпретации значимости определений прочности на сжатие с помощью этот метод испытаний, поскольку прочность не является фундаментальным или внутренним свойством бетона, изготовленного из данных материалов.Полученные значения будут зависеть от размера и формы образца, замеса, процедур смешивания, методов отбора проб, формования и изготовления, а также возраста
Что такое марка бетона C30? — Ответы
Число относится к прочности на сжатие куба бетона при испытании (т.е. 30 Н / мм2 или 40 Н / мм2). Чем выше число, тем выше прочность бетона.
Статистический анализ прочности бетона на сжатие …
бетон, обозначенный как C30, характеристическая прочность на сжатие была выше требований.КЛЮЧЕВЫЕ СЛОВА: бетон, качество, статистический анализ, прочность на сжатие.
Бетон — Свойства
Связанные темы. Свойства материала — свойства материалов для газов, жидкостей и твердых тел — плотности, удельная теплоемкость, вязкость и многое другое; Связанные документы . ACI — Американский институт бетона — Американский институт бетона; Кирпичи — Количество и расход раствора — Расчет необходимого количества кирпича и раствора; Фундаменты зданий — Нагрузки — Типовые нагрузки на фундамент зданий
Решено: Таблица 1: 40 Данные по прочности бетона.1 1 2 3 4 5 …
- математика
- статистика и вероятность
- статистика и вероятность вопросы и ответы
- Таблица 1: 40 данных прочности бетона. 1 1 2 3 4 5 6 7 8 9 10 60,5 60,9 59,8 53,4 56,9 67,3 …
Показать текст изображения в расшифровке
Ответ эксперта
В приведенных данных 40 наблюдений за конкретными образцами в МПа. Мы должны найти для первого n (указанного) — a) для n = 5, выборочное среднее. Первые 5 наблюдений — 60.5, 60.9, 59.8, 53.4, посмотреть полный ответ Предыдущий вопрос Следующий вопросТаблица 1: 40 данных прочности бетона. 1 1 2 3 4 5 6 7 8 9 10 60,5 60,9 59,8 53,4 56,9 67,3 68,9 49,9 57,8 60,9 X; [МПа] 1 11 12 13 14 15 16 17 18 19 20 61,9 67,2 64,9 63,4 60,5 68,1 68,3 65,7 61,5 60 x; [МПа] | 21 22 23 24 25 26 27 28 29 30 Xi [МПа] 59,6 60,5 59,8 56,7 57,9 60,2 55,8 53,2 61,1 50,7 31 32 33 34 35 36 37 38 39 40 xi [МПа] 59 63,3 52,5 54,6 56,3 64,9 69,5 58,9 54,4 58,8 2. В таблице 1 приведены измеренные значения прочности 40 образцов бетона в МПа.Предположим, что эти значения получены из нормального распределения с неизвестным средним u и дисперсией o2. Далее вы включите в свой анализ первые n данных (где значение n будет указано ниже). а) Каково среднее значение выборки для n = 5? б) Какова дисперсия выборки для n = 5? c) Что такое точечная оценка û среднего u при n = 5? Что такое точечная оценка стандартной ошибки û? г) Чтобы построить доверительный интервал для u, используйте соответствующую модель, учитывая небольшое количество выборок и неизвестную дисперсию.Для n = 5 постройте Cl для u с достоверностью 95%. e) Предположим теперь, что, несмотря на небольшое количество выборок n = 5, мы предполагаем, что оценка имеет нормальное распределение. Каков 95% доверительный интервал для u при этом предположении? Объясните в нескольких словах, почему он отличается от предыдущего ответа. f) Повторите анализ для n = 20. Каковы 95% доверительные интервалы для ju, не предполагая и не предполагая нормальности? g) Сравните результат (f) с результатом (e). Интервалы шире или уже? Кратко объясните почему.з) Кратко предскажите, каким был бы CI, если бы у вас был большой набор данных, например n = 105. Поскольку интервал определяется нижней и верхней границей, качественно предскажите, какими будут эти границы.
Критерии приемлемости прочности бетона IS: 456-2000
Автор
KAUSHAL KISHORE
Инженер по материалам, Рурки
Прочность бетона обычно считается его наиболее ценным свойством, хотя во многих практических случаях другие характеристики, такие как долговечность и проницаемость, на самом деле могут быть более важными.Тем не менее, прочность бетона почти всегда является жизненно важным элементом конструкции и указывается в целях соблюдения нормативных требований.
Таблица 1: Частота (IS: 456-2000, пункт 15.2.2)
Минимальная частота отбора проб бетона каждой марки должна соответствовать следующему:
Количество бетона в работе, м 3 | Количество образцов |
1–5 | 1 |
6–15 | 2 |
16-30 | 3 |
31-50 | 4 |
51 и выше | 4 плюс одна дополнительная проба на каждые дополнительные 50 м 3 или их часть |
ПРИМЕЧАНИЕ : По крайней мере, один образец должен быть взят из каждой смены, если бетон производится на непрерывном производственном предприятии, таком как завод товарного бетона, частота отбора образцов может быть согласована между поставщиками и покупателями. |
КРИТЕРИИ ПРИЕМКИ
(A) Прочность на сжатие
Считается, что бетон соответствует требованиям прочности, если выполняются оба следующих условия:
a) Средняя прочность, определенная из любой группы из четырех неперекрывающихся последовательных результаты испытаний, соответствует установленным ограничениям кол. 2 таблицы 2.
b) Результат каждого отдельного теста соответствует предельным значениям, указанным в столбце. 3 Таблица 2.
Объявления
(B) Прочность на изгиб
Если соблюдены оба следующих условия, бетон соответствует указанной прочности на изгиб.
a) Средняя прочность, определенная по любой группе из четырех последовательных результатов испытаний, превышает указанную характеристическую прочность не менее чем на 0,3 Н / мм 2
b) Прочность, определенная по любому результату испытаний, не меньше указанной характеристической прочности за вычетом 0,3 Н. / мм 2
Количество бетона, представленное группой из четырех последовательных результатов испытаний, должно включать партии, из которых были взяты первый и последний образцы, вместе со всеми промежуточными партиями.
Из каждого образца должны быть изготовлены три образца для испытаний через 28 дней. Для прочности в течение 7 дней могут потребоваться дополнительные образцы. Во всех случаях только 28-дневная прочность должна быть критерием для принятия или отклонения бетона.
Результаты испытания образца должны быть средним значением прочности трех образцов. Индивидуальная вариация не должна превышать +15 процентов от среднего. Если больше, результаты тестирования образца недействительны.
Таблица 2: Требования соответствия характеристической прочности на сжатие
IS: 456-2000 с поправками Таблица 11 (пункт 16.1 и 16.3)
Специфицированная марка | Среднее значение группы из 4 неперекрывающихся последовательных результатов испытаний в Н / мм 2 Минимум | Результаты индивидуальных испытаний в Н / мм 2 Минимум |
(1) | (2) | (3) |
M15 и выше | f ck + 0,825 X установленное Стандартное отклонение (округлить до ближайшего 0,5 Н / мм 2 или f ck + 3 Н / мм 2 в зависимости от того, что больше | f ck — 3 Н / мм 2 |
ПРИМЕЧАНИЕ 1: При отсутствии установленного значения стандартного отклонения можно принять значения, приведенные в таблице 8 (IS: 456-2000), и следует попытаться получить результаты 30 образцов как можно раньше, чтобы установить значение стандартного отклонения. ПРИМЕЧАНИЕ 2: Для количества бетона до 30 м 3 (если количество отбираемых образцов меньше четырех) в соответствии с частотой отбора образцов, указанной в 15.2.2, среднее значение результатов испытаний всех таких образцов должно быть f ck + 4 Н / мм 2 , минимум, а требование минимальных индивидуальных результатов испытаний должно быть f ck — 2 Н / мм 2 , минимум. Однако, когда количество образцов равно одному согласно 15.2.2, требование должно быть f ck + 4 Н / мм 2 , минимум. |
(значения столбцов 2 и 3 равны или больше)
Критерии приемки лучше всего иллюстрируются следующими примерами:
Марка бетона: М25
Лабораторное проектирование средней силы цели для
Контроль хорошего качества: 25 + (1,65 x 4) = 31,6 Н / мм 2 в возрасте 28 дней
Во всех случаях необходимо взять в среднем три куба диаметром 150 мм.
Объявления
Таблица 3: Приемка бетона на площадке.
В одну смену 4 м. 3 Выполнено бетонирование фундамента.
Сдвиг | Результаты испытаний куба Н / мм 2 | Среднее fav Н / мм 2 | 0,85 fav Н / мм 2 | 1,15 fav Н / мм 2 | Приемка 25 + 4 = 29 Н / мм 2 (Мин.) |
1. | 19, 26, 16 | 20,3 | 17,3 | 23,3 | Отклонено из-за: a) Минимальная прочность 29 Н / мм 2 не достигнута b) Колебания в кубах прочности 26 и 16 вне диапазона +/- 15% от среднего значения |
ПРИМЕЧАНИЕ: Из-за сомнительного бетона работы были остановлены.Бетон был испытан отбойным молотком и просверленными кернами. По результатам испытаний бетон для фундамента признан марки М25. Работа была начата только после того, как были приобретены новые кубические формы, правильно откалиброванная машина для испытаний на сжатие и персонал лаборатории был обучен всем работам по испытаниям на месте. |
Таблица 4: Приемка бетона на площадке. В 3 смены 27 м. 3 Выполнено бетонирование фундамента.
Сдвиг | Результаты испытаний куба Н / мм 2 | Среднее fav Н / мм 2 | 0.85 fav Н / мм 2 | 1,15 fav Н / мм 2 | Приемка f ck + 4 Н / мм 2 25 + 4 = 29 Мин. Индивидуальный f ck — 2 Н / мм 2 25 — 2 = 23 Н / мм 2 (Мин.) |
1. | 33, 29, 32 | 31,3 | 26,6 | 36,0 | Av = 31,3 |
2. | 24, 32, 28 | 28,0 | 23,8 | 32.2 | Av = 28,0 |
3. | 25, 29, 32 | 28,7 | 24,4 | 33,0 | Av = 28,7 |
Среднее значение = 29,3 Н / мм 2 | |||||
Примечания (1) Прочность всех кубиков в пределах + 15% от среднего значения (2) Из смен 1, 2 и 3 прочность всех кубов> 23 Н / мм 2 . (3) Средняя прочность куба на сдвиг 1, 2 и 3 составляет 29,3 Н / мм 2 , что составляет> 29 Н / мм 2 . Фундаментный бетон принимается марки М25. |
Таблица 5: Приемка бетона на площадке. В 6 смен выполнено 75 м 3 перекрытия кровли.
Сдвиг | Результаты испытаний куба Н / мм 2 | Среднее fav Н / мм 2 | 0,85 fav Н / мм 2 | 1.15 fav Н / мм 2 | Приемка 25 + 0,825 × 4 = 28,3 Н / мм 2 Округленная до 28,0 Н / мм 2 Отдельная |
1. | 22, 28, 26 | 25,3 | 21,5 | 29,1 | Av = 25,3 |
2. | 26, 24, 28 | 26,0 | 22,1 | 29,9 | Av = 26,0 |
3. | 31, 35, 33 | 33.0 | 28,1 | 38,0 | Av = 33,0 |
4. | 32, 31, 33 | 32,0 | 27,2 | 36,8 | Av = 32,0 |
5. | 31, 32, 33 | 32,0 | 27,2 | 36,8 | Av = 32,0 |
6. | 26, 25, 24 | 25,0 | 21,3 | 28,0 | Av = 25,0 |
Примечания: (2) Среднее количество кубиков смены 1, 2, 3, 4 равно 29.1 Н / мм 2 , что> 28,0 Н / мм 2 . (3) Среднее значение сдвига 2, 3, 4, 5 кубов составляет 30,8 Н / мм 2 , что составляет> 28,0 Н / мм 2 . (4) Среднее значение сдвига 3,4, 5, 6 кубов составляет 30,5 Н / мм 2 , что составляет> 28,0 Н / мм 2 . (5) Прочность всех кубов> 22 Н / мм 2 Сделан вывод, что бетон перекрытия крыши соответствует требованиям прочности на сжатие марки М25. |
Образец состоит из трех кубиков / образцов.Лучше для одного и того же бетонного образца отлить более трех кубов, чтобы не подвергать испытанию любой дефектный куб или любые сомнения в том, что полный результат испытания из-за тестирования может быть отклонен и не включен в среднее значение трех кубов.
ССЫЛКИ
1.