Жидкий дюбель момент: принцип действия и практика использования

Автор

Содержание

Химический Анкер «Момент Крепеж»: химия на смену механике

Химический анкер «Момент Крепеж CF900» обеспечивает надежное крепление конструкций к поверхностям из однородных и пустотелых материалов, обладает способностью воспринимать нагрузку в несколько тонн, превышает прочность металла и не разрушает структуру материала-основания.

Химические анкеры благодаря своим исключительным свойствам и универсальности приходят на замену механическим креплениям.

Уникальность химических анкеров заключается в том, что по своей несущей способности они значительно превышают обыкновенные распорные анкеры. Сейчас эта технология используется, например, при строении мостов.

Химический анкер «Момент Крепеж CF900» – это быстро затвердевающая двухкомпонентная система на основе винилэфирной смолы. Продукт производится в Германии на заводе Chemofast, который является самым технологичным предприятием в мире по изготовлению систем химической анкеровки.

Принцип работы «жидкого дюбеля» «Момент» основывается на отверждении химического состава анкера в заранее просверленном перфоратором отверстии без эффекта самонапряжения и развития температурных деформаций. Затвердевший материал образует множество прочных связей с основанием за счет шероховатости внутренней поверхности отверстия и молекулярной адгезии. Время полного отверждения состава зависит от температуры окружающей среды: чем она ниже, тем дольше протекает реакция, – но не превышает 360 минут (6 часов). Химический анкер может применяться в тех же местах, где обычно используется механический дюбель. Однако, когда крепеж осуществляется близко к краю поверхности, жидкий дюбель имеет преимущество, т. к. не вызывает разрушения материала-основы.

Химический анкер «Момент Крепеж CF900» обладает рядом особенностей, которые делают его незаменимым на строительной площадке: высокой прочностью для тяжелых конструкций, способностью применяться во влажных условиях и под водой, устойчивостью к агрессивным средам и различным температурным режимам. Он удобен в работе, поскольку используется со стандартным строительным пистолетом, дает возможность изготовления анкера любой длины непосредственно на объекте и возможность применения металлических резьбовых элементов диаметров от М8 до М30, не требует применения специальных комплектных резьбовых шпилек, позволяет произвести точную корректировку положения анкера в отверстии в период отверждения состава.

Химический анкер«Момент Крепеж CF900» не содержит стирола, а потому при соблюдении условий эксплуатации безопасен для человека. Для повторного использования еще не закончившегося картриджа «Момент Крепеж CF900» необходимо всего лишь сменить прилагаемый миксер. Продукт внутри картриджа будет сохраняться благодаря надежной крышке.

Химический анкер можно применять для крепежа различных конструкций в бетоне, натуральном и искусственном камне, газобетоне, кирпиче. Для надежного соединения в пустотелых материалах, где механическая фиксация почти бесполезна из-за низкой прочности поверхности, химический анкер используется вместе с ниппелями, имеющими специальные отверстия и обеспечивающими хорошую фиксацию. Крепеж с применением химического анкера герметичен и долговечен – он не нарушает гидроизоляцию, а срок его эксплуатации достигает 50 лет.

Химический анкер «Момент Крепеж CF900» может применяться со всеми классами углеродистой, гальванизированной и нержавеющей стали. Используется для соединения арматуры, стальных опор и балок, крепления генераторных распределительных блоков и постаментов, прокладки кабелей вдоль потолков и стен, фасадных панелей. Химический анкер – незаменимый материал для отделки помещений и реставрации. Работы по навесу указателей и знаков, обустройству бассейнов и металлических ворот, лестниц и балюстрад – всё это легче и быстрее выполнить, применяя достижения современной строительной химии.

что это такое, особенности применения и установка крепежа


Анкер в традиционном понимании — металлическая деталь, предназначенная для закрепления какого-либо элемента к несущей конструкции. Много лет его применяли для строительства и ремонта сооружений из бетона, кирпича или камня. Недостаточная прочность крепежа приводила порой к катастрофам — обрушениям кровель, фасадов или потолков.

Научная мысль, просчитав ошибки при применении механических элементов для крепления, нашла средство увеличить несущую способность и надежность креплений. Немногим более 20 лет назад в технологии строительства возникло новое явление — химический анкер. Чем он отличается от обычного и как его применять — вопросы, интересующие многих, кто связан с сооружением зданий или ремонтом.

Определение

Химический анкер – двухкомпонентная синтетическая смола, что используется для соединения и фиксации металлических материалов с материалом основания. Он появился не так давно на рынке, но в силу своих свойств успел завоевать своего покупателя. Чаще всего такие химические анкеры используются тогда, когда обычные металлические или пластиковые дюбеля не справляются с удерживанием конструкции. Чаще всего они используются при работе с:

  1. Пустотостроительными материалами: эффективным кирпичом, поризованной керамикой.
  2. Пористыми материалами: ячеистый бетон, керамзитобетон, ракушечник, известняк, песчаник.
  3. Плотным бетоном.

Вернуться к оглавлению

Правила выбора

Основной момент, который нужно учитывать при выборе материала, – тип основания, для которого будет использован продукт. Этот момент каждый производитель указывает на упаковке или в прилагаемой инструкции.

На упаковке также можно посмотреть следующую информацию:

  • Приемлемое размещение крепежей.
  • Габариты шурупов.
  • Варианты крепления.
  • Температуры, при которых можно использовать материал.

Помимо этого, необходимо учитывать следующие моменты:

  • Условия использования средства.
  • Скорость отвердевания состава.

Преимущества и недостатки использования


Химические анкера для бетона состоят их химической смолы и отвердителя. Несмотря на то, что они считаются одним из самых надежных видов крепления, у них есть как преимущества, так и недостатки.

Начнем из плюсов в применении этих химических анкеров:

  • Это высокопрочные крепления.
  • Множество компаний производит клеящую смесь без такого токсического компонента, как стирол. Это делает его химически безопасным.
  • Применяются для внутренних и внешних работ.
  • Отсутствие запаха.
  • Применяются в работе со многими материалами.
  • При установке такого крепления не возникает растягивания.
  • Для установки анкера не требуется много навыков, просты в использовании.
  • Большая прочность.
  • Выдерживают большое растягивающее напряжение.
  • Отверстие, в которое помещается анкер, герметически запечатывается.
  • Возможна установка при сильной влажности или под водой (не все).
  • Долгий срок службы, больше 50 лет.
  • Расширение крепления происходит примерно в тех же температурах, что и основного материала, с которым используется.
  • Материал, из которого его производят, стойкий к химическому, атмосферному и коррозийному воздействию.

Как и у любого другого материала, у жидкого дюбеля есть минусы:

  • Цена. Этот вид крепления значительно выше в цене, чем обычный дюбель.
  • Срок хранения как в открытой упаковке, так и в закрытом виде (до 1 года).
  • Срок твердения зависит от температуры. 20 — 20 — 40 минут, -5 – 5-6 часов, при температуре ниже минус 5 по Цельсию полимеризация может не произойти. Данные температуры приведены примерно так как затвердевание еще зависит от фирмы производителя и вида вклеивающего дюбеля.

Вернуться к оглавлению

Последовательность действий

Рассмотрим, как пользоваться химическими анкерами, чтобы обеспечить надежную фиксацию:

  • выполните отверстие цилиндрической формы, используя дрель;
  • сформируйте расположенное в глубине полости коническое углубление;
  • очистите отверстие от остатков материала;
  • установите, при необходимости, втулку для центрирования, называемую анкерной гильзой;
  • введите с помощью пистолета химический состав или вставьте ампулу;
  • ввинтите резьбовую шпильку;
  • обеспечьте неподвижность анкера до полного твердения раствора.

При использовании стеклянных капсул, наполненных полиэфирным составом, его твердения происходит после разрушения шпилькой оболочки ампулы. Стеклянные осколки обеспечивают дополнительное армирование. Анкер для газобетона может состоять из двух компонентов и обеспечивать эффективное соединение с ячеистым материалом, который эксплуатируется при повышенной влажности, например, в бассейнах.

При введении клеящего состава из картриджа применяются различные крепежные элементы (болты, шпильки, шурупы, прутки арматуры), использование которых определяется конкретными задачами. Инструкция по применению твердеющей смеси регламентирует продолжительность твердения состава.

Виды химических анкеров, монтаж анкеров

Существует два вида химических анкеров:

  1. Ампульные: однокомпонентные, двухкомпонентные.
  2. Инъекционные или капсульные (в картриджах и тубах).

Вернуться к оглавлению

Монтаж ампульных анкеров


Ампульный химическии анкер.
Жидкий дюбель-ампула имеет вид стеклянного цилиндра, внутри которого смола, что при контакте с воздухом затвердевает. Сверлят отверстие — помещается в отверстие ампула, наполненная полиэрфной смолой – потом туда вкручивают металлический стержень (анкер-шпилька) – ампула разбивается – вытекает клей, который находится в анкерах — клей схватывается. При этом кусочки стекла выполняют функцию армирования. Клей может смешиваться со стиролом, если он двухкомпонентный (2 ампулы). Схватывание смолы зависит от марки химического анкера и температуры воздуха.

Двухкомпонентные жидкие дюбели надежно закрепляют конструкцию с пористыми материалами, особенно, в тех случаях, если их эксплуатация будет проходить во влажной среде (например, в бассейне), так как их класс прочности 5.8.

Минусом ампульных вариантов есть то, что одна ампула приходится на одно отверстие, и если оно большое, то смола не полностью заполняет отверстие, отчего крепость конструкции ненадежна.

Картриджи – это небольшие емкости с носиком, через который выдавливают клей. Тубы – это большие резервуары, объемом 400-800 мл, для работы с которыми используют строительный пистолет. Их стоимость намного ниже, чем ампульных. Также намного шире выбор смольного наполнителя. Они могут иметь в составе не только синтетические смолы, но и быть изготовленными с использованием акрилатов, полиуретанов, и других составов, которые также широко распространены на рынке.

Вернуться к оглавлению

Монтаж инъекционных анкеров


Инъекционные анкера Ischebeck TITAN.
В бетоне сверлят дырку — хорошо ее очищают — выдавливают туда клей анкера — вставляют крепежный элемент — клей затвердевает, заполняя все неровности, поры и т. д. При этом из одного картриджа или тубы можно заполнить как одно отверстие, как и полностью закрепить конструкцию, в зависимости от их глубины и размеров.

Они больше подходят для работы с пустотостроительными материалами. В таких видах анкера дюбеля, как такового нет. В них перед выдавливанием клея вставляют перфорированные гильзы из металла или пластика, чтоб смола не растекалась слишком в пустоту. Это самое надежное крепление для таких материалов, аналогов пока не существует.

Вернуться к оглавлению

Установка

1) Подготовка отверстия – диаметр отверстия для химического анкера должен превышать сечение шпильки в 1.5-2 раза. Место нужно сначала отметить, потом просверлить и очистить от пыли. Если анкер устанавливается в полость пористого монолита, нужно в отверстие вставить сетчатую втулку.

2) Закладка клея в тубу с насадкой-миксером, установка тубы в строительный пистолет, выдавливание клея в отверстие с заполнением на две трети.

3) Установка крепежа в отверстие до упора.

Химические анкера по бетону – качественный и прочный крепеж, который соответствует всем установленным требованиям и стандартам. Может использоваться в самых сложных условиях эксплуатации, подходит для работы с пустотелыми и пористыми монолитами. При соблюдении технологии и использовании качественных материалов появляется возможность выполнить надежный крепеж, который будет служить более 50 лет.

Советы по использованию

Исходя из свойств жидких дюбелей, рассмотрим несколько примеров, где целесообразней всего использовать химический анкер для бетона:

  1. Установка ограждений на готовое дорожное полотно.
  2. Для установки напольных ограждений, лестничных маршей.
  3. Крепление инженерных сетей, если их крепление не было предусмотрено заранее.
  4. Монтаж арматурных выпусков в уже готовых бетонных сооружениях.
  5. Установка монолитных конструкций, кронштейнов на фасадах готовых зданий.

Химическим анкером можно закрепить и замонолитить еще много чего другого, всех его свойств и сфер применения не перечесть.

Вернуться к оглавлению

Порядок пользования

Для получения прочного и долговечного соединения, необходимо соблюдать простые правила монтажа:

  1. В строительной конструкции, состоящей из любых строительных материалов, делается отверстие, диаметром большего размера, чем поперечное сечение устанавливаемого болта (но не менее 2 мм).
  2. Очистка отверстия от строительной пыли выполняется водой и специальным ершиком соответствующего диаметра.
  3. В подготовленную полость устанавливается капсула либо клеевая смесь выдавливается из картриджа. В случае с картриджем необходимо следить, чтобы количество клея немного превышало внутренний объем отверстия.
  4. По окончании наполнения жидким составом, в отверстие устанавливается металлический стержень.
  5. После отвердения клеевой смеси получается прочное соединение дюбеля со строительной конструкцией. Для того чтобы его разрушить придется приложить немало усилий и без механического способа не обойтись.

Как сделать химический анкер самому?

Если цена химического анкера слишком высока, можно попробовать сделать его самостоятельно. Для этого можно использовать эпоксидную смесь. Она хорошо монтируется в строительные материалы, обладает большой прочностью, адгезией к бетону. Такие смеси обычно состоят из следующих компонентов:

  • эпоксидная смола (ЭД-20) — x;
  • отвердитель (УП-583) — y;
  • наполнитель (цемент, гипс) — z;
  • пластификаторы и другие добавки (ДБФ, ДЭГ-1) – w, w2.

Порядок действий: x w (5-10%) = хорошо смешать Z = хорошо смешать y (в соотношении 1:8 – 1:10) = необходимый клеящий состав.

Характеристики такой смеси:

  • Имеет высокую прочностью.
  • Твердеет 3-4 часа, полностью застывает до 12 часов.
  • Работает только в сухой среде.
  • Выделение фенола в процессе эксплуатации.
  • Температурный режим работы -10 о С- 30 о С.

Вернуться к оглавлению

Рейтинг лучших материалов

Профессионалы составили рейтинг лучших материалов.

Титан

Это материал универсального типа, основу которого составляют полиэфирные смолы. Такое средство имеет широкую сферу использования. Его можно применять для установки тяжелых конструкций, а также для восстановления различных механизмов и изделий и во время проведения ремонтных работ.

Застывание состава происходит примерно за полчаса при комнатной температуре и за полтора часа при минусовых показателях.

Sormat

Это средство от финского производителя на основе полиэстеровой смолы. Оно рекомендовано к применению для установки конструкций средней тяжести. Материал используют для монтажа крепежей в пористых основаниях.

BIT

Данный продукт, который можно использовать даже при низких температурах. Материал можно использовать даже при температуре воздуха -180С. Основу средства составляет эпоксиакрилатная смола. Материал отличается простотой применения, поскольку имеет низкую вязкость. У средства отсутствует резкий запах, поэтому его можно использовать даже внутри помещений.

Момент

Такие материалы рекомендованы к применению для установки конструкций с большим весом. Их можно использовать на различных типах основания, в том числе на пористых материалах. Продукт отличается высокой скоростью застывания и повышенной прочностью. В смеси нет стирола, а значит, во время работы не будет токсичных выделений и резкого запаха.

Hilti

Такой состав можно использовать как при пониженных температурах до -40°C, так и при повышенных до +70°C. Данные материалы рекомендованы к применению, в том числе в агрессивной среде.

Химический анкер – материал, который отличается простотой применения и высокой степенью надежности. Главное – правильно выбрать и использовать средство, согласно инструкции, предоставленной производителем.

Химический анкер что это такое. Бетон и строительные технологии — помощь.


Что такое химический анкер?

Понятие  анкера

В сущности, анкер представляет собой простое приспособление, предназначенное для крепления в однородном массиве основания. Принцип действия прост: анкер контактирует с материалом, а крепежный элемент с анкером, причем система «крепеж-анкер-материал» является гораздо более надежной, нежели просто «крепеж-материал» или «крепеж-анкер». Как правило, прочность достигается за счет того, что крепеж, вкручиваемый или вбиваемый внутрь полого анкера, раздвигает его стенки. Стенки, в свою очередь, имеют внешнюю насечку, которая и фиксирует анкер, а, следовательно, и крепеж в материале.

Следует отметить, что описанный выше принцип справедлив лишь для одного типа анкеров — механического, между тем существует другой, гораздо более интересный тип — анкеры химические, обеспечивающие систему «крепеж-анкер-материал основания».

Что такое химический анкер?

Связующее — химическая клеящая масса — между металлическим крепежным элементом и материалом основания.

Европейская организация технических стандартов EOTA определяет его как вклеивающийся анкер. На практике используются несколько названий определяющих такой набор: инжекционная масса, жидкий анкер, система вклеиваемых анкеров, жидкий дюбель.

В строительной практике распространился термин «химический анкер».

Принцип его действия заключается в том, что крепление в виде стержня из металла и синтетической смолы глубоко проникает в поры соединяемого основания. Там эта масса затвердевает и надежно соединяет анкер с основанием. Как правило, химический анкер представляет собой капсулу или картридж с клеящим составом — смесью синтетических смол и других органополимеров.  Капсула стеклянная, одноразовая. Картридж аналогичен картриджу для силиконовых герметиков.

Методика фиксации крепежа при помощи химического анкера чрезвычайно проста: капсула просто помещается в заранее подготовленное углубление, после чего туда вставляется крепеж.

Крепеж разрушает стенки капсулы, и ее содержимое намертво скрепляет его с материалом стены или перекрытия. В том случае, если химический анкер находится в картридже, клеящий состав просто выдавливают внутрь отверстия, после чего монтируют крепеж.

Такие анкерные соединения по своим несущим способностям на порядок выше традиционных распорных анкеров, а в области высоких нагрузок не имеют аналогов. Именно эта характеристика и стала причиной растущей популярности химических анкеров. Соединение с помощью них настолько прочно и надежно, что химический анкер широко используются даже при возведении мостов, балконов и козырьков зданий. Различные составы имеют разную продолжительность схватывания, однако в целом она составляет от нескольких часов до суток.

Преимущества химических анкеров:

1. Допускают использование на различных основаниях, в том числе на мокрых и даже под водой.

2. Обеспечивают высокую (максимальную) прочность после затвердения.

3. Не вызывают механических напряжений, особенно актуально для пористых и легких бетонов.

4. Обладают высокой химической стойкостью.

5. Идеально подходят для монтажа в краях конструкций.

6. Герметизируют соединение.

7. Простая технология монтажа, возможность фиксации в любом основании простой арматуры.

8. Крепление с помощью химического анкера долговечно. Срок эксплуатации такого крепежа достигает пятидесяти лет.

strprofi.ru

виды, преимущества, сфера применения, монтаж

Дата: 1 марта 2017

Просмотров: 1948

Коментариев: 0

Что такое химический анкер?

Широко используются при строительстве зданий ячеистые бетоны, хрупкость и пористость которых создает трудности с монтажом бытовых устройств и инженерных сетей. Повышенная концентрация воздушных полостей пористого массива снижает прочностные характеристики газобетона, в котором не фиксируется традиционный механический крепеж. Получившие широкое распространение химические анкера для бетона, обеспечивают надежное крепление кондиционеров, вентиляторов, навесной мебели и воздушных магистралей.

Химический анкер для ячеистых бетонов – это специальная масса на основе органических полимеров и смол, которая обеспечивает прочную фиксацию металлического крепежного элемента. Связующий химический состав одновременно с металлической резьбовой шпилькой вводится в полость газосиликата, пенобетона или газобетона. После затвердевания достигается монолитное соединение, характеризующееся высокой прочностью, герметичностью и невозможностью демонтажа.

Меньше двадцати лет назад крепление с использованием техники соединения синтетическими смолами был дорогой новинкой и использовался как эксперимент в области строительства

Рассмотрим подробно особенности анкерного соединения на основе синтетических смол, которое еще пару десятков лет назад было новинкой, требовало значительных затрат, а сегодня активно применяется в строительной отрасли.

Сфера использования

Анкер химический обеспечивает повышенную несущую способность соединения и актуален для следующих ячеистых материалов, характеризующихся уменьшенной плотностью:

  • Блоков из пенистого бетона.
  • Ракушечника.
  • Газобетонных изделий.
  • Кирпича на клинкерной основе.
  • Пустотелых бетонных блоков.

Также, обеспечивается высокая прочность соединения с:

  • армированным бетоном;
  • кирпичом;
  • камнем;
  • бетонными конструкциями.

Его часто называют жидкий или вклеивающий дюбель

Анкер химический незаменим для обеспечения надежной фиксации. Он применяется:

  1. В ветхих стенах.
  2. Во влажной среде.
  3. В пористых массивах.

Затвердевший состав с металлической арматурой может устанавливаться вблизи от края конструкции. Он позволяет обеспечить крепление:

  • подвесных потолков;
  • осветительных конструкций;
  • расположенных на фасадах зданий рекламных баннеров;
  • конструктивных элементов бассейнов.

Анкер для пеноблоков, как и других видов ячеистых бетонов, обеспечивает гидроизоляцию и надежно сохраняет тепло.

Преимущества

Химический анкер для ячеистых бетонов обладает множеством достоинств:

  • Позволяет выполнить установку массивного оборудования.

Химический анкер – двухкомпонентная синтетическая смола, что используется для соединения и фиксации металлических материалов с материалом основания

  • Используется для крепления внутри помещения и с уличной стороны.
  • Формирует монолит, имеющий высокую адгезию с основным материалом.
  • Быстро твердеет.
  • Применяется для единичного и массового крепления.
  • Стойкостью к вибрационным процессам.
  • Устойчивостью к повышенной температуре.
  • Универсальностью, позволяющей применять состав для различных строительных материалов.
  • Экологичностью, связанной с безопасностью для здоровья людей и отсутствием вредных соединений.

Специфика применения химического крепежа требует соблюдения технологической дисциплины, наличия специального оборудования (дрели, пистолета).

Разновидности анкеров

Анкер химический представляет серьезную альтернативу механическим анкерным креплениям. Он способен обеспечить повышенную несущую способность и обеспечить надежную фиксацию без возникновения в ячеистом массиве деформационных напряжений.

Химические анкера для бетона состоят их химической смолы и отвердителя

Анкер для газобетона предлагается производителями в различной расфасовке, представляющей:

  • индивидуальные капсулы или ампулы, предназначенные для однократного использования;
  • картриджи увеличенного объема, которые могут комплектоваться специальным пистолетом, и применяются многократно.

Химический анкер для ячеистых бетонов обладает различными свойствами, зависящими от используемых составов, которыми заполняется высверленное отверстие. Применяются:

  • Смолы на эпоксидной основе.
  • Составы из винилэстера.
  • Полиэстерные связующие.
  • Эпоксиакрилатные наполнители.

Остановимся детально на характеристиках смол.

Смолы на эпоксидной основе используются для обеспечения фиксации элементов технологического оборудования и крепления балок. Они характеризуются:

  • возможностью применения в среде с повышенной влажностью;
  • продолжительностью твердения, составляющей от 8 часов до 2 суток;
  • отсутствием внутренних напряжений газобетона при твердении состава.

Множество компаний производит клеящую смесь без такого токсического компонента, как стирол. Это делает его химически безопасным

Винилэстеровые составы применяются для обеспечения фасадного крепления. Отличительные особенности:

  • Устойчивость к влиянию отрицательной температуры.
  • Эффективное крепление резьбовых элементов и гладкой арматуры.
  • Отсутствие вредных веществ, позволяющих безопасно выполнять работы.
  • Затвердевание происходит на протяжении суток.

Крепеж на базе полиэстера обеспечивает надежное крепление конструкций ограждения, элементов фасадов и инженерных коммуникаций. Основные свойства:

  • обеспечение крепления только резьбовой арматуры, установленной в конические отверстия;
  • обеспечение эффективного крепления анкера в отверстиях, имеющих шероховатость;
  • ускоренное твердение, позволяющее эксплуатировать крепеж на протяжении 3 часов.

Химические наполнители на основе эпоксиакрилата применяются для различных целей и отличаются:

  • Повышенным уровнем огнестойкости, обеспечивающим отсутствие деформаций крепежа на протяжении 2 часов при воздействии открытого огня.
  • Возможностью применения при температуре не ниже -5 градусов Цельсия.
  • Достижением эксплуатационных характеристик на протяжении суток.

Материал, из которого его производят, стойкий к химическому, атмосферному и коррозийному воздействию

Остановимся на особенностях использования.

Последовательность действий

Рассмотрим, как пользоваться химическими анкерами, чтобы обеспечить надежную фиксацию:

  • выполните отверстие цилиндрической формы, используя дрель;
  • сформируйте расположенное в глубине полости коническое углубление;
  • очистите отверстие от остатков материала;
  • установите, при необходимости, втулку для центрирования, называемую анкерной гильзой;
  • введите с помощью пистолета химический состав или вставьте ампулу;
  • ввинтите резьбовую шпильку;
  • обеспечьте неподвижность анкера до полного твердения раствора.

При использовании стеклянных капсул, наполненных полиэфирным составом, его твердения происходит после разрушения шпилькой оболочки ампулы. Стеклянные осколки обеспечивают дополнительное армирование. Анкер для газобетона может состоять из двух компонентов и обеспечивать эффективное соединение с ячеистым материалом, который эксплуатируется при повышенной влажности, например, в бассейнах.

При введении клеящего состава из картриджа применяются различные крепежные элементы (болты, шпильки, шурупы, прутки арматуры), использование которых определяется конкретными задачами. Инструкция по применению твердеющей смеси регламентирует продолжительность твердения состава.

Заключение

Химические анкера для бетона – перспективное направление. Профессиональные строители подтверждают, что такое соединение обеспечивает удобство крепления с различными материалами, сокращает продолжительность выполнения работ и отличается высокой нагрузочной способностью.

pobetony.ru

Что такое химический анкер? — Легкое дело

Что такое химический анкер?

Понятие анкера

Анкер представляет собой простое приспособление, предназначенное для крепления в однородном массиве основания. Принцип действия прост: анкер контактирует с материалом, а крепежный элемент с анкером, причем система «крепеж-анкер-материал» является гораздо более надежной, нежели просто «крепеж-материал» или «крепеж-анкер». Как правило, прочность достигается за счет того, что крепеж, вкручиваемый или вбиваемый внутрь полого анкера, раздвигает его стенки. Стенки, в свою очередь, имеют внешнюю насечку, которая и фиксирует анкер, а, следовательно, и крепеж в материале.

Следует отметить, что описанный выше принцип справедлив лишь для одного типа анкеров — механического, между тем существует другой, гораздо более интересный тип — анкеры химические, обеспечивающие систему «крепеж-анкер-материал основания».

Что такое химический анкер?

Химический анкер — это связующее (химическая клеящая масса) между металлическим крепежным элементом и материалом основания.

Европейская организация технических стандартов EOTA определяет его как вклеивающийся анкер. На практике используются несколько названий, определяющих такой набор: «химический анкер», «инжекционная масса», «жидкий анкер», «система вклеиваемых анкеров», «жидкий дюбель».

В российской строительной практике распространился термин «химический анкер» — его используют в Москве, Санкт-Петербурге, Екатеринбурге и других городах.

Принцип его действия заключается в том, что крепление в виде стержня из металла и синтетической смолы глубоко проникает в поры соединяемого основания. Там эта масса затвердевает и надежно соединяет анкер с основанием, образуя монолит. Химический анкер представляет собой картридж с клеящим составом — смесью синтетических смол и других органополимеров. Картридж аналогичен тубе для силиконовых герметиков.

Методика фиксации крепежа при помощи химического анкера чрезвычайно проста. С помощью пистолета клеящий состав из картриджа выдавливают внутрь заранее подготовленного отверстия, после чего вставляют металлический элемент.

Такие анкерные соединения по своим несущим способностям на порядок выше традиционных распорных анкеров, а в области высоких нагрузок не имеют аналогов. Именно эта характеристика и стала причиной растущей популярности химических анкеров. Соединение с помощью них настолько прочно и надежно, что химический анкер широко используются даже при возведении мостов, балконов и козырьков зданий. Различные составы имеют разную продолжительность схватывания, однако в целом она составляет от нескольких часов до суток.

Преимущества химических анкеров:

  1. Обеспечивают максимальную прочность фиксации, значительно надежней металлических анкеров,
  2. Незаменимы для «слабых», пористых оснований (пенобетон, газобетон). Прочность фиксации в разы больше механических анкеров
  3. Используются в различных минеральных основаниях, в том числе мокрых и даже под водой,
  4. Не вызывают механических напряжений на стенки отверстия (нет распирания), идеально подходят для монтажа в краях конструкций (перила, парапеты)
  5. Обладают высокой химической стойкостью, даже к высоко агрессивным средам (вода, щелочи)
  6. Герметизируют соединение,
  7. Химические анкеры подходят для закрепления даже простых арматурных стержней,
  8. Крепление с помощью химического анкера, в сравнении со стальным, более долговечно. Срок эксплуатации такого крепежа более пятидесяти лет.

http://himtex.su

legkoe-delo.ru

Что такое химический анкер? | Химический анкер HIMTEX

В сущности, анкер представляет собой простое приспособление, предназначенное для крепления в однородном массиве основания. Принцип действия прост: анкер  контактирует с материалом, а крепежный элемент с анкером, причем система «крепеж-анкер-материал» является гораздо более надежной, нежели просто «крепеж-материал» или «крепеж-анкер». Как правило, прочность достигается за счет того, что крепеж, вкручиваемый или вбиваемый внутрь полого анкера, раздвигает его стенки. Стенки, в свою очередь, имеют внешнюю насечку, которая и фиксирует анкер, а, следовательно, и крепеж в материале. Следует отметить, что описанный выше принцип справедлив лишь для одного типа анкеров — механического, между тем существует другой, гораздо более интересный тип — анкеры химические, обеспечивающие систему «крепеж-анкер-материал основания».

Что такое химический анкер?

Связующее — химическая клеящая масса — между металлическим крепежным элементом и материалом основания.Европейская организация технических стандартов EOTA определяет его как вклеивающийся анкер. На практике используются несколько названий определяющих такой набор: инжекционная масса, жидкий анкер, система вклеиваемых анкеров, жидкий дюбель.В строительной практике распространился термин «химический анкер».Принцип его действия заключается в том, что крепление в виде стержня из металла и синтетической смолы глубоко проникает в поры соединяемого основания. Там эта масса затвердевает и надежно соединяет анкер с основанием. Как правило, химический анкер представляет собой капсулу или картридж с клеящим составом — смесью синтетических смол и других органополимеров. Капсула стеклянная, одноразовая. Картридж аналогичен картриджу для силиконовых герметиков.Методика фиксации крепежа при помощи химического анкера чрезвычайно проста: капсула просто помещается в заранее подготовленное углубление, после чего туда вставляется крепеж. Крепеж разрушает стенки капсулы, и ее содержимое намертво скрепляет его с материалом стены или перекрытия. В том случае, если химический анкер находится в картридже, клеящий состав просто выдавливают внутрь отверстия, после чего монтируют крепеж.Такие анкерные соединения по своим несущим способностям на порядок выше традиционных распорных анкеров, а в области высоких нагрузок не имеют аналогов. Именно эта характеристика и стала причиной растущей популярности химических анкеров. Соединение с помощью них настолько прочно и надежно, что химический анкер широко используются даже при возведении мостов, балконов и козырьков зданий. Различные составы имеют разную продолжительность схватывания, однако в целом она составляет от нескольких часов до суток.

himtex.su

Химический анкер: подробная инструкция применения и выбора

Недавно мы рассказывали вам о химических анкерах, после чего получили от вас просьбы рассказать о них более подробно. Сегодня мы расскажем о том, как выбирать химический анкер, о способах его применения, принадлежностях. Ведь не секрет, что во многом надёжность крепежа зависит от правильности подбора под те или иные несущие конструкции и соблюдения правил применения.

Что такое химический (жидкий) анкер

В строительство химические анкеры пришли из горнодобывающей отрасли. Именно там особенно остро стояла необходимость разработать качественную и простую систему анкерной крепи для поддержки кровли в устойчивых породах. Сквозные анкеры с распорными элементами слишком сложны и недостаточно надёжны, а вот идея вклеить металлический стержень внутри отверстия прижилась очень даже прочно.

Естественно, в строительстве химические анкеры используют по несколько иному назначению. В основном необходимость их применения диктуется структурой строительных конструкций. Такие материалы, как пустотелый керамический блок, ракушечник и пористый бетон не обладают достаточной плотностью и твёрдостью для обеспечения уверенной фиксации отделочных подконструкций, мебели и оборудования. Но если поры материала заполняются жидким составом, который со временем затвердевает, на момент принятия нагрузки штифт имеет практически монолитную сцепку со строительным материалом.

Современные химические анкеры — это не просто шпилька и тюбик с клеем, производители разрабатывают всю технологию крепления с нуля и предоставляют рынку комплексные решения. Так, для более технологичной работы могут использоваться специальные ерши и скребки для зачистки шпуров, дозаторы клея, смесители двухкомпонентных составов и даже оборудование для сверления. Сам клеевой состав подбирается индивидуально под конкретные условия применения, включая материал стен. Естественно, всё это прямым образом сказывается на стоимости: разница в цене анкеров разных систем и торговых марок может быть и 10-кратной.

Виды и область применения

Для использования в гражданском строительстве наибольшее распространение получили 3 типа химических анкеров. Каждый из них включает по 15–20 наименований различных торговых марок, иногда в устройстве и технике применения могут наблюдаться достаточно серьёзные отличия.

Первая группа — анкеры для вклейки в бетон арматуры и шпилек. Клеевые составы используют разные: для арматуры практикуется включение ингибиторов коррозии и раскислителей, консистенция клея обычно густая. Резьбовая шпилька ввиду наличия большого числа мелких рёбер требует более текучего полимерного комплекса с высокой степенью твердения. Химические анкеры для бетона отличаются наиболее высокой технологичностью: в арсенале специнструмента могут присутствовать химсредства для обработки шпуров и арматуры, а также механические приспособления для вдавливания шпильки.

Вторая группа — ампульные анкеры. Обычно их применяют там, где можно гарантировать высокую точность сверления и чистоту шпура. Ампула лучше инъекционного состава в том плане, что нет нужды контролировать степень заполнения. Незначительная погрешность в свободном объёме шпура и капсулы компенсируется способностью клея расширяться при отверждении. Как правило, составы в капсулах — двухкомпонентные, отвердитель перемешивается со смолой при закручивании резьбовой шпильки специальной конструкции. Распределение отвердителя очень равномерное, в то время как при инъекции клея обязательно применение смесителей. Ампульные анкеры не получится применять в кладочных материалах типа ПКБ, то есть с крупными ячейками вертикальной ориентации: состав попросту будет стекать вниз.

Третья группа — инъекционные анкеры. Их популярность обусловлена универсальностью применения: нет нужды сопоставлять количество капсул и шпилек, следить за их сохранностью. Ручное введение смеси оптимально для крепления анкеров в конусных отверстиях, расширяющихся к забою. Есть и недостатки: кроме невозможности контролировать полноту заполнения, клей подвергается стеканию под воздействием силы тяжести. Уменьшить расход и добиться более рационального распределения во все стороны можно с помощью сетчатых втулок.

Главный вопрос — как гарантировать полное соответствие характеристик анкера имеющимся условиям и задачам? Самый простой способ — изучить аннотацию к отдельно взятому продукту, где указываются допустимые материалы и виды конструкций, размеры отверстий, расположения точек и способ крепления, диапазоны температуры и влажности, а самое главное — таблицы допустимых нагрузок для разных материалов. Правда, столь обстоятельный подход необходим в основном лишь в строительном проектировании. Чтобы повесить накопительный водонагреватель на стену из шлакоблока будет вполне достаточно универсального анкера. Также обращаем внимание наших читателей на ограниченный срок службы, что особенно важно для клеевых составов атмосферного твердения.

Правила бурения и подготовки шпуров

Существует три способа изготовления отверстий под химические анкеры, два из них пригодны для крепления ответственных конструкций и узлов. Основная разница в том, что отверстие под ответственный крепёж делается с высокой точностью, таким образом гарантируется минимальный расход клея и его тщательное распределение по отверстию. В общем случае диаметр шпура в 1,5–2 раза превышает толщину шпильки, однако у некоторых производителей на этот счёт есть иные рекомендации.

Неответственный крепёж применяют в материалах несущих стен, марка прочности которых находится на отметке М100 или ниже. Прочностные характеристики самого материала не позволяют выполнять ответственный крепёж, поэтому максимум, на что способен химический анкер в таких условиях — выдерживать статическую нагрузку навесной системы. Сверление отверстий выполняется обычным перфоратором и буром требуемого размера. Поскольку большинство материалов такого рода имеет крайне высокую пористость, очистка шпура от пыли производится нагнетанием воздуха под давлением — пыль попросту забивается в самые глубокие поры, сокращая глубину растекания клея. Для продувки будет достаточно и обычной резиновой груши, хотя многие мастера с успехом используют баллоны со сжатой углекислотой или специальные ручные насосы.

Ответственный крепёж применяется для соединения частей несущей конструкции: крепления каркасных стен к бетонному основанию, либо при установке консолей навесной системы со значительной сосредоточенной, иногда динамической нагрузкой. Бурение шпуров проводят преимущественно безударным методом с использованием различных приспособлений:

  1. Прямой кондуктор — позволяет исключить биение бура и обеспечивает перпендикулярное его расположение относительно поверхности.
  2. Качающийся кондуктор: после прохода пилотного отверстия специальным сверлом шпур расширяют до конуса. Таким образом усилие на отрыв воспринимает уже не сам клеевой шов, значительная часть нагрузки перекладывается на материал стены.
  3. Полые буры — облегчают подчистку шпура и выход мусора из него.

Важнейший критерий, влияющий на качество крепления химическим анкером — чистота шпура. Наличие пыли категорически неприемлемо, за счёт плохой смачиваемости она препятствует контакту клея с монолитным слоем. Так, если клеевой состав рассчитан на заполнение мелких пор в материалах с закрытой системой ячеек, продувка может только усугубить ситуацию. Предварительно нужно прочистить отверстие металлическим ершом, после чего газом под давлением выдуть остатки мелкой пыли. Таким образом исключается вероятность, что пыль забьётся в поры, которые должны заполняться клеем.

Отверстия также могут подвергаться промывке, что обычно практикуется при подготовке особенно глубоких шпуров в материалах с закрытой формой ячеек. Для промывания используются водные растворы ПАВ, обеспечивающие интенсивное образование пены, удаляемой из отверстий сжатым воздухом. Обращаем ваше внимание, что для некоторых видов анкеров отверстие считается пригодным для крепления только ограниченное время после прочистки.

Последовательность фиксации

Как уже говорилось, наиболее просто пользоваться ампульными анкерами: при вкручивании шпильки специальный выступ на её конце быстро перемешивает смолу с отвердителем до полной однородности. А вот при ручном введении существует ряд тонкостей:

  1. Для материалов с крупными порами (ПКБ, шлакоблок) применение сетчатой втулки категорически обязательно. Она вставляется в отверстие до введения клея, после чего вводимый клей равномерно распределяется во все стороны.
  2. При инъектировании двухкомпонентного клея обязательно использование смесителя. Это тонкая трубка, разделённая перегородкой на два канала, по которым основа и отвердитель подаются в строго установленной пропорции. Для каждого состава следует использовать свой вид смесителя.
  3. Для качественного заполнения шпура или втулки следует использовать специальные дозаторы. Они выдавливают клей со значительным усилием, за счёт чего воздух полностью вытесняется из шпура. Заполнение клеем обязательно проводить в полный объём отверстия.

Вставка шпильки при инъекционном способе введения клея производится вручную, при длине свыше 500 мм рекомендуется пользоваться специальными кондукторами с механической подачей шпильки под большим усилием. Для ампульных анкеров шпильку зажимают в патрон дрели и медленно вводят в шпур на средних оборотах.

После вставки шпильки происходит твердение клея, в этот момент сердечник должен оставаться неподвижным. Среднее время застывания при температуре 15–20 ºС составляет 30–40 минут, при слабых отрицательных температурах процесс может длиться 8–10 часов. В общем случае нижний порог температуры для применения химических анкеров составляет -5 ºС, в более холодных условиях отверждения может вовсе не произойти. В то же время существуют и специальные анкеры, способные застывать при температурах и -20 ºС.

Отдельное внимание стоит обратить на то, что не все химические анкеры обеспечивают стягивающее крепление. При этом ввиду отсутствия предварительной напряжённости штифта может проявляться остаточная деформация. Таким образом, при закреплении навесного элемента он должен располагаться вплотную к плоскости строительной конструкции, чтобы не оставалось растягивающейся «шейки», поверхность которой не связана прочным клеем. Это не вызывает критического снижения прочности всей конструкции, тем не менее, при наличии дистанционных проставок лучше поставить их сразу и подтянуть шпильку усилием в половину предела упругой деформации.

 

oblvoin.ru

Применение химических анкеров для ремонта в доме, это просто и надежно | Бетон и строительные технологии

admin 21.01.2015

 

 

 

 

 

 

 

 

 

 

 

Привет всем коллегам и читателям моего сайта, сегодня расскажу вам о том  как осуществляется применение химических анкеров для домашних условий и технология их установки.

 

[note] В принципе так уж закрепился этот термин «химический анкер», но он  не совсем корректный.

Вообще анкер в переводе с английского обозначает якорь.

То есть анкер это предмет, который нам нужно вставить и укрепить,  допустим в кирпичной стене.

А химический обозначает, что крепить его мы будем с помощью определенных химических связывающих веществ. [/note]

 

Так что сказать простыми словами, мы вводим например в стены дома крепежный предмет, а замоноличиваем его там используя химические вяжущие, склеивающие компоненты, об этом и пойдет  речь далее.

Вы можете также более скрупулезно почитать вообще о крепеже с помощью химических вяжущих и не только.

Применение химических анкеров для дома, что для этого нужно

 

 

 

 

 

 

Рассмотрим с вами варианты применение химических анкеров для внутренних и наружных стен выложенных из ячеистых бетонов.

Попробуйте ввернуть шуруп или саморез в такую стену и повесить на него, что то потяжелее, правильно он держаться он там не будет.

Особенно это касается внутренних стен, они как правило изготавливаются из пеногипса, это еще менее плотный материал.

[tip] Поэтому анкера (шурупы, саморезы, болты или другой крепежный материал) нужно обязательно укреплять в стене  и делать это лучше всего на химическом вяжущем. [/tip]

Что для этого нужно иметь (на фото выше указано), но все таки перечислю:

  • Электродрель;
  • Пылесос, он в доме всегда есть;
  • Пистолет для выдавливания и заполнения отверстия химическим вяжущим составом;
  • Химическое вяжущее, можете купить на любом строительном рынке, лучшими являются химичекие компоненты фирмы Hilti;
  • Можно посмотреть на фирмах под брендами – Сормат, Фишер и так далее;
  • Все это конечно стоит не дешево, но это зависит от того, что вам нужно крепить.

Я предлагаю некоторые простые средства, которые и сам использую и рекомендую вам, для не очень ответственного крепления:

  • Обыкновенный клей «Момент»;
  • Эпоксидная смола;
  • Можно испльзоват цементно песчаный раствор, только схватывается дольше;
  • А самое простое, это гипс разведенный на клее ПВА.
  • Подумайте, может быть и еще что то предложите.
Технология и инструкция по установке химического анкера в домашних условиях 

 

Дать картинку большую где все этапы этой работы

Применение химических анкеров в домашних условиях целесообразно использовать для закрепления крепежных деталей и элементов:

  1. Резьбовые шпильки;
  2. Анкера;
  3. Шурупы;
  4. Саморезы;
  5. Анкера;
  6. Небольшого диаметра арматуру, не более 10,0мм
  7. И так далее.
Где их лучше всего использовать в домашних условиях?

 

Ниже перечень материалов стен:

Как это лучше делать?

 

 

 

Вот этапы этой работы, кстати на фото выше все наглядно показано: 

  1. Сверлим отверстие в стене либо другом месте, где будем крепить анкер, диаметром на 2 -3мм больше чем крепеж;
  2. Пылесосом высасываем пыль после сверления;
  3. Готовим баллончик или картридж с хим составом для анкеровки;
  4. Через носик – апликатор  выдавливаем химическое вяжущее в отверстие, заполняя его на 2/3;
  5. Это можно сделать гораздо удобнее с помощью инъекционного пистолета через трубку;
  6. С небольшим усилием вдавливаем нужную деталь в отверстие, оставляем на поверхности отверстия небольшую его часть 2-3мм;
  7. В течение 20-30 минут можно подкорректировать положение анкера;
  8. Через 2-3 часа (для разных составов оно может колебаться) состав окончательно затвердеет и можно проводить монтажные работы.
  9. Вот и весь процесс, как осуществляется применение химических анкеров.

Посмотрите очень хороший видео фильм, для закрепления всего прочитанного выше.

Дам еще один простой и полезный совет.

[important] Если вы намотаете на шуруп, болт или саморез тонкую проволоку слоем 5-6мм и вставите в отверстие заполненное химическим составом.

Этот анкер будет как бы со втулкой и после отвердения, вы его всегда свободно можете вывернуть.

И потом всегда можно снова заделать это отверстие, если оно вам в этом месте больше не нужно. [/important]

Пожалуй это и все по этому вопросу, если что непонятно пишите и предлагайте свои варианты.

Посмотрите и другие статьи на моем сайте. 

Желаю успехов, с уважением Николай Пастухов.

 

Рекомендую прочесть похожие посты!

www.helpbeton.ru

Надежность Химических Анкеров

 

Химические анкера появились в системах монтажа вентилируемых фасадов относительно недавно. За это время они стали неотъемлемой и надежной составляющей полноценных креплений. Компания «Вира» предлагает своим покупателям полноценный ассортимент химии BIT и Koelner, которая отличается невероятной прочностью и надежностью.  Все товарные единицы химических анкеров можно посмотреть в каталоге химии BIT и Koelner,  компании «Вира».

Принцип действия химического анкера

Химический анкер работает по принципу сцепления крепежа и основания. В качестве крепежа используется шпильки, арматура (для фундамента или бетонной стяжки).  Еще недавно стоял вопрос о том, как осуществлять монтаж вентилируемого фасада, если основанием является пустотелый или пористый материал, например пенобетон, пустотелый кирпич или керамический кирпич. Теперь, если купить химический анкер, эта проблема полностью исчезает. Также следует отметить, что анкера BIT и Koelner не оказывают негативного воздействия ни на один вид стали, из которого изготовлена шпилька (углеродистый, гальванизированный, нержавеющий).

Почему нужно купить химический анкер BIT и Koelner

У химических анкеров, которые поставляет компания «Вира», есть масса преимуществ перед другими производителями.

  • Прочность фиксации крепления в химическом анкере в несколько раз выше, чем в металлическом анкере;
  • Химический анкер является самым надежным средством фиксации крепления в пористой поверхности, такой как пенобетон или газобетон;
  • Химические анкера BIT и Koelner можно применять в любых погодных условиях, когда поверхность материала соприкосновения влажная;
  • Химические анкера идеально подходят для монтажа в краевых поверхностях, где нельзя, чтобы образовывался эффект распирания. Например, это перила или парапеты;
  • За счет своего химического состава анкера BIT и Koelner спокойно реагируют на щелочные и кислотные среды.
  • В отверстии, куда помещается химический анкер, образуется полная герметизация;
  • В качестве креплений для химического анкера можно применять простую арматуру или шпильку, что дает возможность сэкономить на расходном материале;
  • Срок службы химического анкера не ограничен, чего нельзя сказать о металлических анкерах;
  • Продажа химических анкеров компанией «Вира» осуществляется по наиболее выгодной цене.

Применение химических анкеров BIT и Koelner

Монтировать химические анкера очень просто. Для этого необходимо просверлить в основании  отверстие, после чего почистить ершиком и продуть, чтобы не осталось пыли. В комплект анкеров входит специальный смеситель, который смешивает два компонента смолы, также нужен  пистолет, которым осуществляется впрыскивание анкера в отверстие. После того, как состав анкера впрыснут в отверстии, туда помещается шпилька, если основание пустотелое, то перед впрыскиванием химии в отверстие помещается сетчатая гильза. Время ее введения (монтажа химии) зависит от температуры воздуха и основания. Если в это время остатки анкера слегка выходят за поверхность, то это значит, что было введено достаточно материала. Сетчатая втулки изготавливаются из металла или пластика российского и иностранного производства. Компания «Вира» может предложить оба варианта, причем Российская металлическая сетка будет в разы дешевле. Как выбрать химический анкер

Купить химический анкер лучше всего тот, который обладает уникальным соотношение «цена\качество». Именно это может предложить компания «Вира», поставляя своим клиентам высококлассные  крепежные элементы. Прайс 

 

Если Вам показалась полезной информация статьи или Вы уже пользовались услугами компании «Вира», то Вы можете оставить свой отзыв или пожелания в специальном разделе сайта! Нам важно Ваше мнение!!!

vira-nso.ru

инструкция по применению, особенности, расход и виды

В наше время благодаря инновационным технологическим разработкам появляются постоянно новые материалы, способные облегчить и ускорить строительные работы, значительно повысить прочность и долговечность создаваемых конструкций. Одной из таких новинок является химический анкер, не так давно появившийся в свободной продаже.

Итак, химический анкер — что это такое, и как его применять? Подобный вопрос наверняка возникает у многих домашних мастеров, тех, кто впервые столкнулся с такой «диковинкой» или просто услышало ней. Материал относительно новый, и пока еще не завоевал широкой популярности, но, наверняка, в большей степени — только из-за недостаточности информации. Поэтому в данной публикации постараемся хоть в какой-то мере заполнить этот пробел, рассмотрим разновидности и характеристики химических анкеров, основные технологические приемы их использования.

Что такое химический анкер?

Химический анкер по своей сути представляет собой двухкомпонентную клеящую массу, изготовленную на основе синтетических смол. В технической литературе и в разговорном сленге строителей он имеет немало других наименований — «вклеивающий анкер», «инжекционная масса», «система, вклеивающая анкер», «жидкий дюбель или анкер», ну и «химический анкер».

Впервые этот тип крепежа был применен в горнодобывающей отрасли – для монтажа конструкций с крепление к рыхлым породам. Со временем – распространился на всю строительную отрасль.

В отличие от традиционных анкеров с распорными элементами, химические материалы способны обеспечить высокую надежность фиксации на неустойчивом, малопрочном или сложном по своей структуре материале.

Химические анкеры — это не просто обычная туба с клеем, а высокотехнологичная крепежная система. Обычно в дополнение к составам в продажу поставляются приборы для сверления шпуров, пистолеты-смесители, дозаторы массы, специальные скребки и ерши для очистки отверстий и другие необходимые инструменты и приспособления.

Составы химических анкеров подбирают под конкретную задачу, учитывая условия применения, в том числе, безусловно, специфику материала, из которого возведена основа.

Пропорции различных веществ, используемых в изготовлении химических анкеров, являются коммерческой тайной каждого из производителей. Единственное, что можно сказать с некоторой долей уверенности — это то, что в состав входят такие компоненты, как:

  • Синтетические смолы, производимые на основе полиуретана, акрила или полиэфира.
  • Кварцевый мелкофракционный песок.
  • Цементный состав — используется в качестве наполнителя и вяжущего компонента, обеспечивающего прочностные характеристики клеящего состава.
  • Отвердитель.

Принцип работы химического анкера заключается в креплении металлического стержня (шпильки) с помощью синтетического клеящего состава в бетонных (в том числе в пористых бетонах), кирпичных и многих других конструкциях. Химическая масса глубоко проникает в материал основания, заполняя его поры. Затем синтетические смолы отвердевают, образуя монолит, надежно удерживающий анкерную деталь в основании.


Технология фиксации с помощью химического анкера проста — клеящей массой (с помощью специального пистолета-дозатора или установкой особой капсулы) заполняется подготовленное отверстие. После этого в него вставляется металлический элемент (чаще всего – шпилька, но может быть и просто рифленый арматурный прут). Химический состав как бы обволакивает металл, заполняя даже узкие зазоры между витками резьбы.

Эти анкерные соединения по способности выдерживать выдергивающую нагрузку стоят значительно выше обычных анкеров или дюбелей. А при очень высоких нагрузках — вообще не имеют аналогов.

Необходимо отметить, что прочность соединений, осуществленных с помощью химических анкеров, настолько высока, что материал применяется даже при , козырьков зданий, мостов, причём — в подводной их части, и т.п.

Особенно актуально применение данного материала в тех случаях, когда традиционные анкерные крепления и дюбели не способны обеспечить надежное соединение крепежа и основания. Например, если металлические элементы необходимо закрепить в «слабом» основании — это может быть пустотный кирпич, ракушечник, известняк, песчаник, керамзитобетон, или ячеистый бетон. Поэтому в последнее время популярность этого материала неуклонно растет.

Различные клеящие составы имеют разный период схватывания и полного отвердевания. Он может варьироваться от нескольких часов до суток.

Разновидности химических анкеров

Как уже было сказано выше, химические анкеры обычно являются двухкомпонентными составами. Их составляющие смешиваются между собой непосредственно перед применением. Они производятся и поступают в продажу в трех видах: ампульный вариант, составы, упакованные в два картриджа, а также в один картридж, разделенный внутри на два отделения.

Материалы, упакованные в картриджи, имеют один принцип действия. Однако, для разных типов таких упаковок требуется и различный инструмент, предназначенный для дозированной полдачи состава в просверленные отверстия (шпуры).


  • Ампульные анкеры — выпускаются под определенный диаметр шпура. Для каждой точки крепления приобретается одна ампула. Этот тип анкеров, как правило, применяется для крепления в основании, которое может гарантировать высокую точность и чистоту при сверлении шпура.

Капсульный вариант удобнее в применении в том отношении, что нет необходимости контролировать уровень заполнения отверстия. Незначительная разница в диаметре шпура и капсулы хорошо компенсируется за счет расширения клеевой массы при ее отвердевании.

Ампула состоит из двух капсул — с клеевой массой и отвердителем, которые соединяются при вкручивании резьбового металлического элемента, например, шпильки. При этом смешивание отвердителя и основного вещества происходит более равномерно, нежели при использовании картриджей.

Однако, этот вариант химического анкера не подходит для применения на ячеистом основании вертикальной расположенной конструкции, так как масса будет стекать вниз, не успев отвердеть.


  • Два картриджа, имеющие разный объем и соединенные между собой на выходном отверстии, содержащие клеевой состав и отвердитель. Этот вариант химического анкера требует для работы специальный пистолет для одновременной порционной подачи компонентов в направляющий носик-смеситель. Кстати, хорошо видно, что внутри этого смесителя установлена специальная спираль, обеспечивающая максимально равномерное смешение компонентов еще до подачи их пробуренное отверстие.

  • Один картридж, но тоже состоящий из двух отделов, в которых также находится клеевая масса и отвердитель. Они соединяются между собой и свешиваются в аналогичном направляющем носике во время выдавливания. Но для работы можно использовать обычный строительный шприц-пистолет, что удобно именно для домашнего применения.

Последние две разновидности подразделяются на универсальные и предназначенные для вклейки металлических деталей в бетонные основания. Как первый, так и второй вариант называют инъекционными анкерами.

Особой популярностью пользуются универсальные варианты анкеров. Это можно объяснить тем, что нет необходимости предварительно рассчитывать количество капсул. Кроме этого, такие анкеры удобны для применения при заполнении конусовидных шпуров, расширяющихся в глубину основания.

Анкеры, предназначенные для вклеивания шпилек или арматурного прута в бетонное основание, имеют, как правило, густую консистенцию. Они включают в себя ингибиторы коррозии и раскислители, что особенно важно при монтаже арматурных деталей в бетон.


Некоторые анкеры, предназначенные для бетона, требуют специальных химических средств для обработки арматурных изделий и просверленных шпуров, а также наличия приспособлений для вдавливания шпилек или прутов в отверстия.

У химических анкеров, расфасованных в картриджи, существует общий недостаток — это немалая сложность контроля за заполнением шпура. Часто масса начинает стекать под влиянием силы тяжести, если основание пустотное или пористое.


Сократить расход материала и добиться равномерного его распределения во все стороны шпура вполне возможно, использовав сетчатые втулки. Эти элементы могут иметь разные размеры, и подбираются в каждом случае индивидуально.

О стоимости химических анкеров говорить сложно – цена различных изделий может отличаться буквально в десятки раз. Во многом это зависит от комплектации системы и, конечно же, от производителя.

Каждая из упомянутых разновидностей материала представлена в продаже весьма немалым количеством наименований, так как производятся химические анкеры многими компаниями. Поэтому необходимо учитывать, что и технологии применения могут значительно различаться между собой.

На что обратить внимание при выборе химического анкера?

Важной задачей является добиться гарантированного соответствия химического анкера его характеристикам и условиям его применения. Чтобы выбрать правильный материал, перед его приобретением необходимо внимательно изучить инструкцию, расположенную на упаковке ли прикладываемую к нему.


Производитель указывает в своих рекомендациях типы конструкций и материалы их изготовления, рекомендуемое расположение шпуров и их размеры, способы крепления, диапазон влажности и температуры, а также допустимые нагрузки для разных оснований. Кроме этого, необходимо обратить внимание на возможные ограничения по условиям эксплуатации, по скорости застывания состава — это особенно важно для химических анкеров атмосферного отвердевания.

Преимущества и недостатки химических анкеров.

Химические анкеры, как, собственно и все строительные материалы, имеют свои положительные и негативные особенности. О них необходимо иметь информацию, чтобы не столкнуться с неприятными моментами при применении крепежа и в ходе эксплуатации готовой конструкции.


К достоинствам этого специфического материала можно отнести следующее:

  • Герметичность закупорки отверстия после установки анкера.
  • Отсутствие растягивающего напряжения в бетонном основании.
  • Широкая сфера применения.
  • Простота монтажных работ, которые не требуют опыта и специальной подготовки.
  • Высокая прочность анкера при его отвердевании, существенно превышающая этот параметр у традиционных распорных элементов.
  • Способность выдерживать большие нагрузки и растягивающее напряжение, то есть высокая несущая способность.
  • Химический анкер является материалом, устойчивым к внешним атмосферным воздействиям, к коррозии процессам, инертен к химическим влияниям.
  • Существуют специальные анкерные составы с характеристиками, позволяющими их применение в условиях высокой влажности и на переувлажненных поверхностях, а также вообще для конструкций, создаваемых под водой.
  • Срок эксплуатации такого соединения сопоставим с долговечностью самого основания и обычно составляет не менее пятидесяти лет.
  • Производителями производятся клеящие составы, не содержащие токсичных веществ. Эти варианты выбираются для внутренних работ. Поэтому при выборе материала на этот фактор необходимо обратить особое внимание.
  • Коэффициент теплового расширения анкеров расположен в том же диапазоне, что и материалов основания. Благодаря этому качеству при эксплуатации конструкций не возникает ненужных внутренних напряжений при температурных перепадах.

Особое внимание необходимо уделить недостаткам химических анкеров, так как именно они доставляют большое количество неприятностей:

  • В отличие от традиционных анкерных элементов, химические составы требуют достаточно длительного срока до достижения полной готовности установленного крепежного элемента к восприятию нагрузки. Период готовности крепления зависит от температуры окружающей среды:

При температуре +20 градусов срок отвердевания составит 25÷40 минут;

При 5 градусах — 5,5÷6 часов;

Если температура более низкая, то отвердевание (полимеризация) составов практически не происходит.

  • Маленький срок хранения закрытой упаковки. Как правило, он составляет не более одного года.
  • Небольшой срок жизни состава после вскрытия картриджа. Поэтому, если упаковка вскрывается, она должна быть сразу использована.
  • Высокая стоимость материала, что отпугивает многих потенциальных потребителей.

Производители химических анкеров

На российском рынке свои изделия представляет немалое количество как отечественных, так и зарубежных производителей. На практике безупречно себя зарекомендовали материалы, произведенные известными европейскими компаниями.

В таблице, расположенной ниже, представлены ведущие производители и небольшой обзор их ассортиментного ряда. На самом деле разнообразие производимой ими продукции — намного шире.

Логотип компании Тип анкера Объем и особенности химического анкера
Производитель «Fischer» (Германия)
RM «Reaktionsanker» — ампула с клеевой массой, внутри которой находится отсек с отвердителем. Производитель изготавливает ампулы разных размеров — М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170), М30 (30×280).
FHP «Hammerpatrone» — ампула с клеем и отвердителем для установки металлических элементов в бетонное основание. Производятся в следующих размерах — 10 (13×90), 12 (15×110), 16 (18×125), 20 (24×180).
FIS V 360S «Injections-Mortel» Двойной картридж, для работы требуется специальный пистолет. Основной картридж объемом 360 мл и два смесителя.
FIS V S 150 C «Injections-Mortel» Один картридж стандартного размера. Для работы потребуется обычный строительный пистолет для стандартных картриджей. В комплект входит картридж объемом 150 мл, два смесителя и адаптер.
Производитель «Hilti» (Лихтенштейн)
HVU «Adhisive Capsule Anchor». Ампула с метаакриловой полиуретановой смолой, кварцевым песком и отвердителем. Капсулы имеют следующий объем: М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170), М30 (30×280), М33 (37×300), М36 (40×330), М39 (42×360).
HIT-HY150 «Fast Curinq Injection System». Это два сдвоенных картриджа с акриловой смолой и отвердителем. Для работы требуется специальный пистолет. Объем картриджа 330 мл и два отвердителя, HIT-HY20 имеет один отвердитель.
HIT-HY50
HIT-HY20
Производитель «Mungo» (Швейцария)
MSP «Schlagpatrone». Ампулы со смолой и отвердителем. Объем капсул: М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170).
MYA «Verbunanker». Ампулы с двумя компонентами. Объем: М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170), М30 (30×280).
MIT-P Один картридж. Для работы применяется стандартный строительный пистолет. Объем картриджа 150 мл, два смесителя.
MIT-P Двойной картридж. Комплект: 235 мл и два смесителя.
MIT-SF Двойной картридж. Объем 380 мл и два смесителя.
MIT-EA Двойной картридж. Объем 825 мл и два смесителя.
Производитель «Sormat» (Финляндия)
KEM «Kemiallinen ankkuri» — ампулы с полиэфирной смолой и отвердителем, объемом М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170), М30 (30×280).
KEMLA «Kemiallinen lyontiampulli»- ампулы с полиэстерной смолой и отвердителем, объемом М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170).
ITH «Injektointitekniika». Картридж с инжекционной массой на основе полиэфирной смолы, объемом в 380 и 150 мл
Производитель «TOX» (Германия)
TVA «Verbund-Anker». Ампулы со смолой и отвердителем, имеющие объем М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170), М30 (30×280).
THP «Hammerpatrone». Ампулы со смолой и отвердителем, объемом М8 (10×80), М10 (12×90), М12 (14×110), М16 (18×125), М20 (24×170).
TVM-K «Verbundmortel». Картридж с инжекционной массой, объемом в 380 и 150 мл.

В маркировке капсульных изделий указываются их размерные параметры. Например, М10 (12×90): буква «М» — метрическая резьба шпильки, «12» — диаметр шпильки в сечении, «12 и 90» — диаметр шпура и глубина посадки металлического крепежного элемента в основание.

Особо можно выделить химические капсульные анкеры «Hilti» — это модифицированный материал, адаптированный к температурному диапазону при проведении монтажа от -18 до +40 градусов. Производитель поставляет изделия для отверстий от 8 до 30 мм в диаметре, поэтому их можно использовать для установки в основание мощных арматурных прутов.

Можно ли изготовить химический анкер самостоятельно?

Готовые химические анкеры имеют довольно высокую стоимость, а также небольшой срок хранения после открытия картриджа. Поэтому у многих начинающих строительство мастеров возникает вопрос о самостоятельном изготовлении подобного состава.

Действительно, сделать аналог химического анкера — вполне возможно. Смесь изготавливается на основе эпоксидной смолы. Физико-технические характеристики этого компонента вполне способны обеспечить отличное сцепление материалов. Эпоксидная смола обладает повышенными адгезионными способностями с такими материалами основания, как бетон, кирпич, ракушечник и т.п., поэтому вполне может служить основой для создания состава собственного производства.

Изготовления самодельного химического анкера потребуется:


  • Эпоксидная смола — ЭД-20.
  • Отвердитель к ней — УП-583.
  • Цемент или гипс, можно добавить немного мелкофракционного песка, в качестве наполнителя.
  • Пластификатор ДБФ или ДЭГ-1.

Изготавливая такую смесь, следует придерживаться следующей инструкции:

  • В эпоксидную смолу необходимо добавить пластификатор, 5÷10% от общего объема смолы, а затем тщательно перемешать.
  • Далее, в массу засыпается и хорошо перемешивается наполнитель — гипс, цемент. Его количество также небольшое, и должно составлять 5÷10%.
  • Отвердитель запускается в смесь в последнюю очередь, он берется в пропорции 1:10 или 1:8 от общего объема.

После тщательного перемешивания, получится готовый к применению состав, который необходимо использовать сразу. Время его отвердевания составляет один-два часа, в зависимости от температуры окружающей среды. Поэтому самодельный анкер необходимо готовить порционно, чтобы успеть его выработать. Сохнет эпоксидный анкер долго — 12÷24 часа, но реакция смолы и отвердителя начинается сразу после смешивания компонентов. Увеличивает срок жизни состава пластификатор. Если в массу в качестве наполнителя добавляется гипс, то срок схватывания и застывания сокращается.

Самодельные эпоксидные имеют свои достоинства и недостатки

К преимуществам можно отнести следующие его качества:

  • Высокие прочностные характеристики отвердевшего состава.
  • Минимальная усадка при отвердевании.
  • Хорошие адгезионные способности.
  • Возможность применения при температуре от -10 до +35 градусов.

Недостатками этих состав можно считать:

  • Достаточно длительный срок отвердевания.
  • Возможность использования массы только для сухих и хорошо очищенных отверстий.
  • При эксплуатации конструкции возможно выделение из эпоксидного анкера небольшого количества фенола.

Подготовка отверстий и применение химических анкеров

Чтобы химический анкер «работал» должным образом, следует не только правильно пользоваться этими составами, но и тщательно готовить шпуры для монтируемых крепежных элементов.

Правила сверления и подготовки отверстий

Для обустройства шпуров под установку металлических деталей с помощью химических анкеров используется три способа. Два из них применяются для крепления несущих элементов и сложных узлов конструкции. Разница между методами бурения основания заключается в более точном сверлении отверстий, предназначенных под ответственный крепеж. Точность обустройства дает гарантию сокращения расхода химического анкера и равномерного распределения его по стенкам отверстия. Понятно, что диаметр отверстия должен превышать диаметр шпильки или арматуры. И при изучении инструкции от производителя необходимо обратить внимание на его рекомендации, так как они для разных составов могут отличаться.

К ответственным крепежам относят соединения частей несущих конструкций, например, фиксация каркасных стен к основанию из бетона. Или же монтаж консольных каркасов навесных систем, на которые предполагается значительная статическая или динамическая нагрузка.


Третий способ бурения предназначен для неответственного крепежа в несущих стенах строения, выведенных из материалов с маркой прочности М100 и меньше. Несущие способности таких материалов не дают возможности обустроить в них ответственный крепеж. Поэтому и химический анкер в созданных условиях может выдержать только статистическую нагрузку навесной системы определенного веса.

Бурение шпуров осуществляется , на который устанавливается сверло необходимого размера. В любом случае, независимо от типа материала, готовое отверстие требует качественной очистки от пыли. Процесс очистки лучше всего осуществлять воздухом, подаваемым под давлением. Необходимо тщательно освободить поры материала внутри отверстия, чтобы при растекании состава анкера он проник и в них.

Для продувки используются специальные насосы или баллоны с углекислотой. Если же этих приспособлений под рукой нет, то очистку в домашних условиях можно провести, применив резиновую грушу. При этом не ограничиваются только одной продувкой. Рекомендуется операции очистки, посменно – щеткой-ершиком и сжатым воздухом, произвести не менее трех – четырех раз.


  • Прямой кондуктор — это приспособление исключает биение бура и обеспечивает идеально перпендикулярное расположение отверстия к поверхности стены.

  • Качающийся кондуктор позволяет расширить внутреннее пространство шпура до конусообразной формы, сохранив диаметр отверстия на входе.

При обустройстве такого шпура часть нагрузки с анкера, удерживающего металлический элемент, переносится на материал основания (стены). То есть крепление получается более надежным, что особо актуально для стен из материалов с невысокой прочностью.


  • Удобны для сверления полые буры – они способствуют более легкой очистке отверстий от строительной пыли.

Тщательная очистка шпура — это необходимое условие при использовании химического анкера, так как от этого зависит адгезия между материалами. Пыль, оставшаяся в порах, будет серьезным препятствием качественному контакту клеевой массы с материалом основания.


Чтобы пыль с применением продувки была удалена качественно, сначала необходимо обработать шпур специальным металлическим ершом, который сможет освободить поры материала. После этого, ее легко будет удалить продуванием отверстия.


Если шпуры пробуриваются в материалах с закрытыми ячейками, то они подвергаются промывке. Для этой цели применяются специальные растворы ПАВ (поверхностно-активные вещества) на водной основе. При промывании ими отверстий образуется большое количество пены, которую, затем удаляют из отверстий с помощью сжатого воздуха.

Необходимо сразу же отметить, что практически для всех видов химических анкеров подготовленные отверстия пригодны для произведения крепления только сразу же после очистки.

Последовательность выполнения работ при вклеивании анкера

Как уже было сказано выше, проще всего работать с химическим анкером, изготовленным в капсульном исполнении. После установки ампулы в подготовленное отверстие необходимого диаметра, вкручивается шпилька. При проведении этой процедуры, смола равномерно перемешивается с отвердителем.

При введении же массы с помощью пистолета, необходимо учитывать некоторые тонкости:

  • Если монтаж металлических элементов планируется вести на основание, возведенное из пористого или пустотного материала, то для отверстий необходимо использовать сетчатую втулку. Этот элемент устанавливается в шпур до введения клея и способствует равномерному распределению состава по всем поверхностям.

  • При использовании двухкомпонентного химического анкера, необходимо использование смесителя. По этому направляющему носику составы подаются в установленной производителем пропорции, одновременно перемешиваясь между собой. Для каждого из химических составов используется специальный смеситель, идущий в комплекте с картриджем.

  • Для того чтобы отверстие было заполнено качественно, следует применить специальный пистолет-дозатор. Этот элемент позволяет выдавливать массу под давлением, за счет этого, из отверстия хорошо вытесняется воздух, в то время, как его место занимает клеевая масса.

  • Если вставка в отверстие арматуры или шпильки длиной больше 500 мм будет производиться вручную, то рекомендуется применить для этой цели специальный кондуктор, способный механически подавать металлический элемент под определенным давлением и с соблюдением перпендикулярности положения.

  • Если выбраны ампульные анкеры, то после их установки в отверстие арматуру или шпильку часто зажимают в патрон электродрели и вводят в шпур, включив средние обороты.
  • Когда металлический крепежный элемент будет установлен в отверстие, он должен оставаться неподвижным до полного отвердевания химического состава. Время застывания у разных составов свое, но при температуре не ниже 15÷20 градусов оно в среднем составляет 35÷40 минут. При отрицательных температурах процесс может проходить в течение 8÷12 часов. Поэтому монтажные работы рекомендуется производить при температуре не ниже -5 градусов. Если работы должны проходить при более низких температурах, то следует выбирать специальные составы, которые также можно найти в продаже.
  • Заметим еще один нюанс. Химические анкеры не всегда обеспечивают должную стягивающую фиксацию вдавленного прута или шпильки. В связи с отсутствием начальной напряженности металлического элемента, может произойти деформация крепления. Поэтому при навешивании или закреплении на внешней конструкции или какого-либо прибора (тяжеловесного предмета мебели и т.д.), его необходимо располагать вплотную к несущей конструкции. Таким образом, не останется растягивающейся «шейки» кронштейна, находящейся вне зоны действия химического анкера, то есть выступающей из стены. В любом случае что штифт должен быть углублен в основание как минимум на половину своей длины.

Чтобы не перегружать читателя словесной информацией, предлагаем ему посмотреть видеосюжет, в котором рассказывается о химическом анкере картриджного типа «Hilti HFX» и показывается процесс его применения.

Видео: Назначение химического анкера «Hilti HFX» и порядок работы с ним

Приложение: Как просчитать расход химического анкера?

Уже говорилось, что материал – весьма дорогостоящий, и требует рачительного расходования. А как хотя бы примерно просчитать, сколько потребуется состава для крепления одной шпильки (прута)? И сколько уйдет на весь предстоящий объем работ?

Для этого предлагаем воспользоваться возможностями размещенных ниже онлайн-калькуляторов.

Калькуляторов – два.

  • Первый из них рассчитывает расход состава при прямом цилиндрическом шпуре, который обычно используется на конструкциях с высокой несущей способностью материала.
  • Второй – для шпура конической, расширяющейся вглубь формы, высверливаемого с помощью качающегося кондуктора. Такой подход характерен для стен из материалов с невысокой прочностью (менее М100).

Можно сравнить, насколько выше становится расход клеевого состава во втором случае, при всех остальных равных параметрах (глубине шпура, диаметре отверстия на входе в стену, диаметре шпильки).

В последнее время для крепления строительных элементов, конструкций и оборудования к бетону все чаще применяются химические анкера. Их популярность обусловлена рядом преимуществ перед механическими аналогами. Они отличаются более высокой несущей способностью, не создают напряжений в базовом материале и дают возможность надежно закрепиться в материалах с порами и пустотами.

Принцип работы химанкера?

Химический анкер-крепеж состоит из стального стержневого элемента и связующего клеевого состава, с помощью которого он удерживается в отверстии и образует единое целое с материалом основы. «Жидкий анкер» проникает глубоко в поры, в результате чего создается прочная связь с основанием. К выступающему концу стержня затем крепятся конструкции. Демонтировать стальной элемент уже не представляется возможным, разве что вырвать вместе с куском строительного основания.

Для достижения требуемой прочности крепления химический состав должен полностью заполнять полость между металлическим элементом и стенками отверстия. В соответствии с техническим регламентом отверстие заполняется инжекционной массой на 2/3 своего объема. При правильной дозировке состава после введения стержня излишки клея должны выступить на поверхность.

Расход инъекционного анкера на одно крепление зависит от размера отверстия (диаметра и глубины), диаметра стержня и типа основания (с пустотами или без). Для удобства подсчета объема клеевой смеси компания «Крепком» рекомендует воспользоваться калькулятором химического анкера https://krepcom.ru/calc/kalkulyator-raskhoda-ankerov/ .


Чтобы узнать расход инжекционной массы для создания химических анкерных креплений, необходимо сначала выбрать тип основания (полнотелое, пустотелое), а затем заполнить всего два поля онлайн-калькулятора:

  • диаметр используемого метиза
  • количество точек крепления

Геометрические параметры отверстия уже внесены в программу. Они взяты из технической документации к металлическим изделиям. Так, например, для шпильки М12 рекомендован диаметр отверстия 14 мм (d шпильки + 2 мм), а глубина 120 мм (d шпильки х 10).

Калькулятор инжекционной массы позволит моментально рассчитать необходимое для монтажа количество картриджей, причем всех стандартных объемов (300, 345, 400, 410 мл), а также позволит узнать, на какое количество отверстий хватит одного картриджа. Полученный результат применим ко всем химическим анкерам, изготовленным на основе синтетических смол и отвердителя.

О составе

Химические анкера, используемые при монтаже каких-либо конструкций, имеют состав, о котором мы поговорим ниже.


Итак, состав:

  1. Специальный клей.
  2. Металлическая крепежная вставка. Она представляет собой втулку, у которой внутри имеется резьба, шпилька и арматурный стержень. Делают вставку из оцинкованной или нержавеющей стали.

Сам клеевой состав должен быть очень прочным. Ведь химические анкера применяют при работе с бетонными элементами, к примеру. Естественно, фиксирующая сила анкеров должна быть значительной.

Как правило, клеевой состав готовят с использованием следующих компонентов:

  1. Искусственные смолы, основой которых является полиуретан, полиэфир или акрил.
  2. Кварцевый песок и вяжущие смеси типа цемента. Они используются как наполнители и дополнительно обеспечивают характеристики прочности клея.
  3. Отвердитель. Нужен для того, чтобы клей быстро высыхал и сохранял свои свойства на протяжении долгого времени.

Теперь, когда с составом химических анкеров все понятно, стоит разобраться в том, какие виды анкеров бывают.


О видах

Все клеящие составы для анкеров производятся в качестве двухкомпонентных. Готовить их нужно непосредственно перед тем, как начнется процесс монтажа самих анкеров.

В большинстве случаев клеевой состав поступает в продажу в двух видах:

  1. В ампулах, которые используют под определенный размер отверстия.
  2. В картриджах и тубах, которые бывают разного объема. Они состоят из двух отсеков. В одном отсеке находится клей, а в другом специальный отвердитель.

Если анкера монтируются с помощью ампул, то вначале необходимо вставить ее в отверстие. После этого можно вставлять стержень. Он раздавливает ампулу, содержащую клеевой состав. За счет этого клей полимеризируется, обеспечивая прочное соединение анкера с конструкцией.

Когда монтаж анкера производится с помощью картриджа или тубы, то происходит это следующим образом. Вначале в предварительную камеру выдавливается клей и отвердитель в равных пропорциях. Там они перемешиваются, а затем выдавливаются в подготовленное отверстие. После этого в него вставляется анкер.


Картриджи и тубы удобно использовать в тех случаях, когда анкера крепятся на пористую или пустотелую поверхность. Это может быть пенобетон, пустотелый кирпич, керамический блок с повышенной пористостью и так далее. Только в этом случае в поверхность нужно предварительно вставить перфорированные гильзы. Они не позволят клею вытекать наружу через пустоты. В целом же крепеж пустотелых конструкций с применением химических анкеров получается прочным и надежным. Аналогов такому методу пока не придумали.

Стоит отметить, что клеящий состав химических анкеров не обладает действием распирающего и расклинивающего типа. Поэтому их рекомендуют применять с материалами, у которых незначительное поперечное сечение.

О достоинствах и недостатках

Как и любой другой материал или крепежный элемент, используемый в строительстве, химические анкера имеют свои достоинства и недостатки.

К достоинствам можно отнести то, что химические анкера не вызывают напряжение растягивающего типа в бетонной поверхности в процессе монтажа крепежного элемента. Когда же анкер будет установлен, то отверстие под него будет герметично закрыто клеем.

В целом же процесс монтажа отличается простотой. С поставленной задачей может справиться даже начинающий строитель. Больше того, для установки крепежного элемента не требуется какое-либо специальное оборудование. Весь процесс выполняется вручную.


Область применения химических анкеров довольно большая, так как данный крепежный элемент отличается повышенной прочность и способностью выдерживать высокое растягивающее напряжение. Другими словами химические анкера отличаются значительной несущей способностью. При этом их клеевой состав обладает такими свойствами, как:

  • химическая стойкость;
  • коррозионная стойкость;
  • атмосферостойкость.

Отдельно стоит сказать, что есть анкера, которые предназначены для монтажа на поверхность с повышенным уровнем влажности. Больше того, есть даже такие крепления, которые можно использовать под водой. В общем же химические анкера имеют срок службы до пятидесяти лет и больше.

Что же касается недостатков, то к ним можно отнести высокую стоимость химических анкеров. Кроме того, срок хранения открытой упаковки с клеящим составом совсем небольшая. Даже в закрытой упаковке клей можно хранить не дольше двенадцати месяцев.


Что касается времени, которое требуется на затвердение, то здесь все зависит от температуры окружающей среды. При температуре в двадцать градусов клей будет застывать до сорока минут. Если же температура опустится до пяти градусов мороза, то клей будет застывать до шести часов. Если же температура будет ниже, то процесс твердения вообще не будет происходить.

Видео. Как выбрать химический анкер | ЦКИ

Анкерные крепления — один из самых надежных способов фиксации закладных элементов в железобетонных фундаментах, стенах, кирпичной кладке и других конструкциях. Таким образом крепятся колонны, стойки, оборудование, рамы ворот, дверей, фиксируются консоли, навесы, козырьки, светильники и так далее. Основные виды используемых анкерных креплений — это механические и химические.

При подборе анкеров учитывается характеристика основания, в которое они монтируются, выполняется статический и динамический расчеты по заданным нагрузкам, принимаются во внимание тип и форма шпилек, зона установки, краевые и осевые расстояния. При использовании химического анкера — дополнительно учитывается характеристика полимерной его основы.

Документы, регламентирующие установку анкерных деталей — это СНиП 2.09.03-85 «Сооружения промышленных предприятий», пособие к данному СНиПу, Еврокод ETAG 001 «Metal Anchors For Use In Concrete», а также стандарты предприятий, разработанные ведущими производителями механических и химических анкеров. Например, стандарт «Анкерные крепления к бетону», разработанный НИЦ «Строительство» совместно со специалистами компании «Хилти» и ряд других рекомендательных указаний.

Кроме этого, в помощь инженерам-проектировщикам производители анкерных систем разрабатывают фирменные калькуляторы, позволяющие в кратчайшие сроки подобрать необходимые крепежные системы с учетом конкретных условий монтажа и нормативных требований. Некоторые расчетные программы могут использоваться онлайн, другие работают только в desktop-режиме и требуют установки на компьютер.

Рассмотрим наиболее популярные программные комплексы:

  1. Программа для расчета анкеров Hilti Profis Anchor
  2. Онлайн калькулятор расхода химического анкера Tech-KREP
  3. Калькулятор объёма химических анкеров fischer
  4. Расчет объема химического анкера HIMTEX online
  5. Desktop-программа для расчета анкеров Mungo
  6. Desktop-программа для расчета анкеров МКТ
  7. Калькулятор веса фундаментных болтов

1. Программа для расчета анкеров Hilti Profis Anchor

Desktop программа Profis Anchor разработана компанией Hilti для выполнения расчетов и подбора механических и химических анкеров, производимых под этой торговой маркой. Программа позволяет рассчитать анкеры различных типов, форм и размеров.

В основе работы расчетного комплекса заложены инновационные проектные решения, учитывающие все уникальные параметры анкерных систем Хилти. Используя данный сервис, пользователь получает доступ ко всем продуктам компании, а также возможность быстрого и корректного применения соответствующего технического решения для любого конкретного случая.

Программа требует установки на компьютер. Скачать установочный файл можно по этой ссылке .

2. Онлайн калькулятор расхода химического анкера Tech KREP

На российском сайте известного производителя Tech-KREP (Великобритания) в онлайн режиме доступна фирменная расчетная программа. Калькулятор позволяет определить расход химического анкера для следующих позиций:

  • анкер Eco Stirol — для всех видов оснований;
  • Easf — для бетонных конструкций всех видов;
  • Persf — для заделки в кирпич пустотелый и подобные конструкции;
  • Arctic — используется для работы при температурах ниже нуля;
  • Pure Epoxy Solvent Free — используется при повышенных нагрузках на анкер.

3. Калькулятор объёма химических анкеров fischer

Компания fischer — всемирно известный производитель химических анкеров по уникальной рецептуре собственной разработки. Технология fischer исключает возможность серьезной усадки состава в процессе отвердевания. Процесс набора прочности может протекать в широком диапазоне температур. Опыт применения химических анкеров fischer в климатических условиях России насчитывает более 10 лет.

Для удобства расчета своих изделий компания предоставляет бесплатную desktop-программу. Для ее использования необходимо скачать установочный файл по этой ссылке и инсталлировать его на компьютер.

4. Расчет объема химического анкера HIMTEX online

Бесплатная программа по расчету объема химических анкеров производства HIMTEX представлена на сайте компании .

Расчет химического анкера HIMTEX выполняется согласно монтажному регламенту. При этом заполнение отверстия производится на 2/3 объема.

Корректная установка подразумевает, что полимерный состав при заливке должен немного выступить из отверстия. В случае монтажа в пустотелое основание с применением гильзы сетчатого типа она заполняется полностью, поэтому объем состава увеличивается на 30%.

5. Desktop-программа для расчета анкеров Mungo

Компания Mungo предлагает воспользоваться бесплатной desktop-программой для расчета фирменных анкеров. Сервис Mungo обладает следующими преимуществами:

  • дружелюбный интуитивно понятный интерфейс;
  • работа с программой основывается на последовательности понятных действий при наличии подсказок;
  • ввод данных может осуществляться как в соответствии в цифровом, так и в графическом виде;
  • доступна мультиязычная поддержка;
  • наличие плоского и трехмерного режимов отображения, удобное переключение видов;
  • персональные данные можно сохранить в сервисе с возможностью доступа к ним при последующих расчетах;
  • простой и удобный способ печати, возможность отображения нужной информации;
  • периодическое обновление программы.

Для того чтобы скачать и установить программу расчета анкеров необходимо перейти по ссылке и зарегистрироваться на сайте Mungo .

6. Desktop-программа для расчета анкеров МКТ

Компания МКТ , известный немецкий производитель анкеров, представляет бесплатную программу для расчета параметров своей продукции.

Результатом работы desktop-программы является готовый установки анкерных креплений МКТ , как механического, так и химического типов. Интерфейс интуитивно понятен. Расчет производится для всех продуктов МКТ , утвержденных к применению в соответствии с нормативными регламентами, действующими в Европе.

Программа отличается наличием исчерпывающей информации при выдаче результатов, а также удобством ее вывода на печать. Для того чтобы скачать и установить программу необходимо перейти по ссылке на официальный сайт компании.

7. Калькулятор веса фундаментных болтов

Отличный бесплатный онлайн-калькулятор выполняющий расчет веса анкерных болтов для фундамента. Программа по заданным параметрам болтов (диаметр, длина) и их требуемому количеству определяет вес всех элементов (гайки, шайбы, анкерные плиты, шпильки), а также болтов в сборе различных типов для заполнения спецификации в чертежах. Имеется также возможность обратного перевода веса болтов в штуки. Все расчеты выполняются согласно ГОСТ 24379.1-2012.

, чтобы не ошибиться с количеством картриджей.

2. Буром сверлим отверстие, диаметр которого соответствует размеру выбранной шпильки (как правило, диаметр отверстия на 2…4 мм больше, чем диаметр шпильки). Стенки, просверленные алмазным сверлом, должны быть сделаны шероховатыми.

3. Тщательно прочищаем отверстие стальной щёткой , продуваем насосом . Следует воздержаться от использования для продувки непрофессиональных приспособлений, таких как аптекарская клизма — так как ее объем и сила воздушного потока недостаточны для удаления бетонной крошки из отверстия, особенно при монтаже в пол. Повторяем прочистку — строительная пыль, осевшая на стенках высверленного отверстия, способна снизить прочность соединения до 80%. Не рекомендуем промывать отверстие, так как это удваивает время отвердения.

4. С картриджа с инжекционной массой снимаем колпачок и одеваем сопло Рекомендуем использовать профессиональный пистолет , чтобы работа не встала из-за не вовремя сломавшегося некачественного пистолета для силиконового герметика. Необходимо выдавить не менее 10см до равномерного смешивания двухкомпонентной химической крепежной массы и заполнить отверстие более чем на 2/3.

5. Вставляем в отверстие крепежный элемент, при этом инжекционная масса в небольшом количестве должна выдавиться из отверстия. Делаем 2-3 оборота шпилькой и фиксируем в нужном положении на 3…50 минут. После, фиксацию можно снять, но дать связующему затвердеть окончательно, не нагружая анкер 30…90 мин. Время схватывания и отвердения варьируется в зависимости от температуры материала основания.

6. Нагружаем шпильку, закрепляем прикрепляемый материал, затягиваем гайку.

Важно учесть при установке в пустотелые материалы:

  • Для просверливания необходимо выбирать на перфораторе режим вращательного бурения. При сверлении в кирпиче ударная функция должна быть выключена.
  • Чтобы инжекционная масса не растекалась по полостям пустотелого материала основания, необходимо вставить в отверстие металлический рукав или пластиковую гильзу .
  • Отверстие полностью заполняется инжекционной массой.

Везде по анкерам пишется условия эксплуатации «сухое внутри помещения», а как быть с фасадами?

Анастасия222

24 Октября 2014 в 07:54 Покупались на стройку для строительства магазина. Применялись для установки ферм. Материал качественный, надежный. Цена приятная-не кусается. Магазин порадовал своим ассортиментом и невысокими ценами.

Анастасия22

24 Октября 2014 в 07:50 Покупались на стройку для строительства магазина. Применялись для установки ферм. Материал качественный, надежный.Цена приятная.

Мы решили немного преобразить нашу дачу, а именно перед входом поставить колонны. искал в интернете анкера, в итоге остановился на химическом анкере Хилти. Отличная вещь, нет запаха, удобно монтируется, прочно держится. Спасибо также вашему магазину за отличную цену! у конкурентов значительно дороже!

22 Октября 2014 в 09:05 Что тут скажешь? Товаров много, на разные нужды, цены и возможности. Мне, конечно, тут все непонятно, кроме крепежа и некоторых других известных деталей. Но зато я смогла найти по поиску в Google этот самый анкер Хилти. Меня сын попросил, чтобы время сэкономить. В магазинах нет, решили в Интернете поискать. Так что, теперь довольны все. Сын нашел с моей помощью нужную вещь, а я получила удовольствие от шопинга, хотя и не истратила на себя ни копейки. Оказывается, удовольствие от шопинга можно получить и в интернет-магазине стройинструментов! 21 Октября 2014 в 08:22 Мой муж редко пользуется интернетом. Но ему понадобился анкер хилти. Он попросил меня его найти, чтобы было недорого. Нашла ваш сайт, показала мужу. Заказал, всё устроило: и цена, и качество. Теперь постоянно вашим сайтом пользуется. 20 Октября 2014 в 07:13

Наверно, лучшее решение для пенобетона. Да и не только… Причем советую брать именно от хилти так как качество точно не подкачает. Удобно, просто и намертво. Да и цена неплохая. 19 Октября 2014 в 13:36 Строимся, случайно в инете наткнулась на ваш сайт, очень интересный сайт, скажем так нужный! Думаю муж оценит мою находку. 18 Октября 2014 в 09:11 Безопасность — самая важная критерия при строительстве разных домов/участков. В данный момент идет идет полным ходом строительство дачи. Архитектура такая, что стоят пару колон у фасада здания. Без анкера не обойтись. Очень надежный инструмент, советую брать, иначе всплывет немало камней при строительстве.

17 Октября 2014 в 20:46 Провожу реконструкцию дома, случайно наше Вашу страничку. Почитал, подумал, решил попробовать химический анкер. Цены очень приемлемые, сервис на высшем уровне. Товар забрал очень быстро. Работать одно удовольствие, главное запаха нет. Спасибо магазину за качественный товар и обслуживание

Провожу реконструкцию дома, случайно наше Вашу страничку. Почитал, подумал, решил попробовать химический анкер. Цены очень приемлемые, сервис на высшем уровне. Товар забрал очень быстро. Работать одно удовольствие, главное запаха нет. Спасибо магазину за качественный товар и обслуживание

Провожу реконструкцию дома, случайно наше Вашу страничку. Почитал, подумал, решил попробовать химический анкер. Цены очень приемлемые, сервис на высшем уровне. Товар забрал очень быстро. Работать одно удовольствие, главное запаха нет. Спасибо магазину за качественный товар и обслуживание

Химический анкер — достоинства и недостатки, изготовление своими руками: tvin270584 — LiveJournal

В наше время благодаря инновационным технологическим разработкам появляются постоянно новые материалы, способные облегчить и ускорить строительные работы, значительно повысить прочность и долговечность создаваемых конструкций. В данной статье мастер сантехник расскажет об одной из таких новинок, не так давно появившейся в свободной продаже. Химический анкер обеспечивает надежную фиксацию различных элементов за счет сил адгезии и когезии. Соединения, полученные при помощи химических анкеров, по своим прочностным характеристикам и надежности значительно превосходят те, для формирования которых использовались обычные анкерные болты.
Сферы использования

Химический анкер является оптимальным вариантом в тех случаях, когда необходимо надежно зафиксировать различные конструкции в «рыхлых» строительных материалах – газобетоне, пустотелом и пористом кирпиче, пенобетоне и др.

Объясняется это тем, что жидкая клеевая масса, используемая при монтаже такого анкера, проникает во все поры газобетона и пенобетона, внутренние полости пустотелого кирпича, а когда полимеризуется, формирует надежное соединение металлического болта с материалом, из которого изготовлена стена, пол или потолок строительной конструкции. Анкеру химического типа практически нет альтернативы, если необходимо обеспечить надежное крепление габаритных и тяжелых предметов на строительных конструкциях из пустотелых материалов.

За счет того, что клей, используемый в таких крепежных элементах, не расширяется при затвердевании и, соответственно, не вызывает расклинивающих и распирающих нагрузок, химический анкер может быть эффективен для крепления различных предметов на конструкциях из бетона, газобетона и других материалов, которые имеют небольшое поперечное сечение.

О том, что соединения, полученные с использованием химических анкеров, обладают высочайшей надежностью, красноречиво свидетельствует тот факт, что такие крепежи успешно применяют для монтажа мостов, балконов и других ответственных конструкций из бетона и других строительных материалов.

Состав химического анкера

Химический анкер по своей сути представляет собой двухкомпонентную клеящую массу, изготовленную на основе синтетических смол. В технической литературе и в разговорном сленге строителей он имеет немало других наименований — «вклеивающий анкер», «инжекционная масса», «система, вклеивающая анкер», «жидкий дюбель или анкер», ну и «химический анкер».

Впервые этот тип крепежа был применен в горнодобывающей отрасли – для монтажа конструкций с крепление к рыхлым породам. Со временем – распространился на всю строительную отрасль.

В отличие от традиционных анкеров с распорными элементами, химические материалы способны обеспечить высокую надежность фиксации на неустойчивом, малопрочном или сложном по своей структуре материале.

Химические анкеры — это не просто обычная туба с клеем, а высокотехнологичная крепежная система. Обычно в дополнение к составам в продажу поставляются приборы для сверления шпуров, пистолеты-смесители, дозаторы массы, специальные скребки и ерши для очистки отверстий и другие необходимые инструменты и приспособления.

Составы химических анкеров подбирают под конкретную задачу, учитывая условия применения, в том числе, безусловно, специфику материала, из которого возведена основа.

Пропорции различных веществ, используемых в изготовлении химических анкеров, являются коммерческой тайной каждого из производителей. Единственное, что можно сказать с некоторой долей уверенности — это то, что в состав входят такие компоненты, как:


  • Синтетические смолы, производимые на основе полиуретана, акрила или полиэфира;

  • Кварцевый мелкофракционный песок;

  • Цементный состав — используется в качестве наполнителя и вяжущего компонента, обеспечивающего прочностные характеристики клеящего состава;

  • Отвердитель.

Принцип работы химического анкера заключается в креплении металлического стержня (шпильки) с помощью синтетического клеящего состава в бетонных (в том числе в пористых бетонах), кирпичных и многих других конструкциях. Химическая масса глубоко проникает в материал основания, заполняя его поры. Затем синтетические смолы отвердевают, образуя монолит, надежно удерживающий анкерную деталь в основании.

Технология фиксации с помощью химического анкера проста — клеящей массой (с помощью специального пистолета-дозатора или установкой особой капсулы) заполняется подготовленное отверстие. После этого в него вставляется металлический элемент (чаще всего – шпилька, но может быть и просто рифленый арматурный прут). Химический состав как бы обволакивает металл, заполняя даже узкие зазоры между витками резьбы.Эти анкерные соединения по способности выдерживать выдергивающую нагрузку стоят значительно выше обычных анкеров или дюбелей. А при очень высоких нагрузках — вообще не имеют аналогов.

Необходимо отметить, что прочность соединений, осуществленных с помощью химических анкеров, настолько высока, что материал применяется даже при строительстве балконов, козырьков зданий, мостов, причём — в подводной их части, и т.п.

Особенно актуально применение данного материала в тех случаях, когда традиционные анкерные крепления и дюбели не способны обеспечить надежное соединение крепежа и основания. Например, если металлические элементы необходимо закрепить в «слабом» основании — это может быть пустотный кирпич, ракушечник, известняк, песчаник, керамзитобетон, или ячеистый бетон. Поэтому в последнее время популярность этого материала неуклонно растет.

Различные клеящие составы имеют разный период схватывания и полного отвердевания. Он может варьироваться от нескольких часов до суток.

Разновидности химических анкеров

Как уже было сказано выше, химические анкеры обычно являются двухкомпонентными составами. Их составляющие смешиваются между собой непосредственно перед применением. Они производятся и поступают в продажу в нескольких видах:

  • Ампульный химический анкер — выпускается под определенный диаметр шпура. Для каждой точки крепления приобретается одна ампула. Этот тип анкеров, как правило, применяется для крепления в основании, которое может гарантировать высокую точность и чистоту при сверлении шпура;

  • Капсульный химический анкер — вариант удобнее в применении в том отношении, что нет необходимости контролировать уровень заполнения отверстия. Незначительная разница в диаметре шпура и капсулы хорошо компенсируется за счет расширения клеевой массы при ее отвердевании.

  • Химический анкер в картридже — состоит из двух емкостей, имеющие разный объем и соединенные между собой на выходном отверстии, содержащие клеевой состав и отвердитель. Этот вариант химического анкера требует для работы специальный пистолет для одновременной порционной подачи компонентов в направляющий носик-смеситель. Кстати, хорошо видно, что внутри этого смесителя установлена специальная спираль, обеспечивающая максимально равномерное смешение компонентов еще до подачи их пробуренное отверстие;

  • Химический анкер в тубе — находится в емкости состоящий из двух отделов, в которых также находится клеевая масса и отвердитель. Они соединяются между собой и свешиваются в аналогичном направляющем носике во время выдавливания. Но для работы можно использовать обычный строительный шприц-пистолет, что удобно именно для домашнего применения.

Последние две разновидности подразделяются на универсальные и предназначенные для вклейки металлических деталей в бетонные основания. Как первый, так и второй вариант называют инъекционными анкерами.

Особой популярностью пользуются универсальные варианты анкеров. Это можно объяснить тем, что нет необходимости предварительно рассчитывать количество капсул. Кроме этого, такие анкеры удобны для применения при заполнении конусовидных шпуров, расширяющихся в глубину основания.

Анкеры, предназначенные для вклеивания шпилек или арматурного прута в бетонное основание, имеют, как правило, густую консистенцию. Они включают в себя ингибиторы коррозии и раскислители, что особенно важно при монтаже арматурных деталей в бетон.

Некоторые анкеры, предназначенные для бетона, требуют специальных химических средств для обработки арматурных изделий и просверленных шпуров, а также наличия приспособлений для вдавливания шпилек или прутов в отверстия.

У химических анкеров, расфасованных в картриджи, существует общий недостаток — это немалая сложность контроля за заполнением шпура. Часто масса начинает стекать под влиянием силы тяжести, если основание пустотное или пористое.

Сократить расход материала и добиться равномерного его распределения во все стороны шпура вполне возможно, использовав сетчатые втулки. Эти элементы могут иметь разные размеры, и подбираются в каждом случае индивидуально.

О стоимости химических анкеров говорить сложно – цена различных изделий может отличаться буквально в десятки раз. Во многом это зависит от комплектации системы и, конечно же, от производителя.

Каждая из упомянутых разновидностей материала представлена в продаже весьма немалым количеством наименований, так как производятся химические анкеры многими компаниями. Поэтому необходимо учитывать, что и технологии применения могут значительно различаться между собой.


Статья на сайте полностью не поместилась, продолжить чтение вы сможете по ссылке: https://santekhnik-moskva.blogspot.com/2019/09/Khimicheskiy-anker.html

(PDF) Распределение нагрузки в многожильных деревянных соединениях при моментной нагрузке

подтверждено экспериментальными измерениями деформаций дюбелей

в многодюбельных соединениях при изгибающих моментах

, представленных в [1,3].

3.3.2 РАСПРЕДЕЛЕНИЕ НАГРУЗКИ В МУЛЬТИ-ДУБЕЛЕ

СОЕДИНЕНИЯ с КВАДРАТНЫМ ДЮБЕЛЕМ

РАСПОЛОЖЕНИЕ

По сравнению с круглым расположением дюбелей, квадрат

или прямоугольное расположение в целом дает

непостоянных распределение нагрузки уже из-за отклонений

в расстоянии отдельных дюбелей до центра вращения

.Обычно считается, что дюбеля, расположенные дальше от центра вращения

, воспринимают более высокие нагрузки.

Для конкретного соединения с несколькими дюбелями, исследованного здесь

, угловые дюбели имели расстояние; то есть плечо рычага,

квадратного корня из двух больше, чем внутренние штифты.

Тот же коэффициент применялся для деформации сдавливания,

, который был больше для угловых дюбелей, чем для внутренних

дюбелей.Следовательно, один градус относительного вращения

соответствует 2,09 мм и 2,96 мм деформации сдавливания

для внутренних и внешних дюбелей, соответственно.

Рис. 8: Распределение нагрузки в многопозиционных дюбелях с квадратным дюбелем

.

Модельные расчеты, основанные на изотропной теории, т. Е.

Уравнение (8) с изотропной жесткостью, проиллюстрированы красными линиями

на рисунке 8. Эти траектории можно интерпретировать как

, основанное на непрерывно меняющемся, но изотропном

Модуль скольжения.Угловые штифты, нагруженные под углом примерно 45 °

к волокну (сплошные красные линии на Рисунке 8), будут тогда загружены значительно выше

, чем штифты, расположенные ближе к центру вращения

(пунктирные красные линии на Рисунке 8).

Однако, принимая во внимание ортотропную природу древесины

с точки зрения зависимости нагрузки от волокон, кривые скольжения

, представленные на Рисунке 3, иллюстрируют более сложную ситуацию

и дают другой вывод

.До относительного поворота 0,5 °, что

соответствует деформациям дробления 1,05 и

1,48 мм внутреннего и углового дюбеля соответственно, угловые дюбели

передавали высокие нагрузки, которые, однако, были на

меньше, чем дюбели, нагруженные параллельно волокну. . Это

объясняется высокой жесткостью одинарных дюбелей

, нагруженных параллельно волокну. Уже на этой стадии нагружения

соответствующие усилия дюбеля были

занижены из-за изотропного подхода примерно на 35%,

, в то время как силы в угловых дюбелях и дюбелях, нагруженных перпендикулярно волокнам

, были немного завышены.

Увеличение относительного вращения не изменило эту картину

, но нагрузки, параллельные волокну, были еще больше

занижены до 50%.

4 ВЫВОДЫ

Понимание распределения нагрузки в многопозиционных соединениях

Можно получить

соединений, а нагрузки можно оценить

количественно с помощью комплексной и иерархически организованной экспериментальной кампании

. Было продемонстрировано, что анизотропное поведение материала

LVL и

древесины в целом приводит к неравномерному распределению нагрузки

между дюбелями в многопозиционных соединениях

.Это было хорошо видно в соединениях с несколькими дюбелями

с дюбелями в круговом расположении,

, где каждый дюбель имел одинаковое расстояние до центра

, относительное вращение и, следовательно, можно было ожидать равномерного распределения нагрузки

. Дюбели, загруженные параллельно волокну

, оказались наиболее нагруженными, а

дюбелей, загруженных перпендикулярно волокну, были наименьшей нагрузкой

.

Более сложное распределение нагрузки в многопозиционных соединениях

с квадратным расположением дюбелей

стало очевидным из-за различий в деформации дробления

и плеча рычага между дюбелями. Расчеты по модели

подчеркивают неэффективность упрощенного подхода к расчету

, основанного на полярном моменте инерции

, т. Е. На основе изотропной теории. Нагрузки на дюбели

, нагруженные параллельно волокну, оказались заниженными на

почти на 50%, а нагрузки на угловые дюбели

были завышены.Нагрузки на дюбели, нагруженные перпендикулярно волокну

, были частично завышены, а частично занижены

, в зависимости от относительного вращения.

Расчеты показали, что распределение нагрузок

изменялось с увеличением относительного вращения.

Функция регрессии для секущей жесткости, приведенная в

Еврокод 5 для предельных состояний, оказалась для

завышает жесткость дюбельных соединений 12 мм,

, в то время как жесткость дюбельных соединений 20 мм была описана разумно

.Однако предположение о линейной упругости

и идеальной пластичности оказалось в

противоречащем экспериментально наблюдаемым нелинейным кривым скольжения

как одинарных, так и многополюсных соединений

.

Посредством иерархически организованной экспериментальной кампании

, используя метод измерения деформации в полном поле

, эффекты распределения нагрузки могут быть связаны с

ортотропным поведением материала древесины, выраженным в

терминах зависимости угла нагрузки от волокон. Кривые скольжения

одинарных дюбелей, включая смещение

Эффекты упрочнения

при нагружении под углом или

перпендикулярно волокну.Характеристика компонентов

дополнила экспериментальную кампанию и раскрыла

Поведение дюбелей арматурных стержней в небольших бетонных блоках для скользящих перекрытий на железнодорожных мостах

В последние годы было проведено несколько исследований, посвященных изучению скользящих плитных путей для железнодорожных мостов. При проектировании направляющих для скользящих плит одним из наиболее важных факторов является оценка прочности на сдвиг боковых опорных бетонных блоков, в которые заделаны дюбельные стержни.Прогнозы поведения дюбелей арматурных стержней по существующим моделям значительно отличаются. Таким образом, в этом исследовании фактическое поведение стержней арматуры, встроенных в небольшой бетонный блок, было тщательно исследовано с помощью экспериментов. Переменными испытаний были прочность бетона на сжатие, диаметр дюбеля арматурного стержня и предел текучести, толщина образца и расстояние между дюбелями арматурного стержня. Прогнозы существующей модели значительно отличались от результатов испытаний. Максимальное усилие дюбеля увеличивалось по мере увеличения прочности бетона на сжатие и диаметра дюбеля, в то время как оно не увеличивалось значительно с другими параметрами испытаний.В отличие от существующих моделей, сдвиговое скольжение при максимальной силе дюбеля уменьшалось по мере увеличения диаметра арматурного стержня дюбеля. Существующие модели значительно занижали максимальное усилие на дюбели для дюбелей малого диаметра и завышали его для дюбелей большого диаметра. Эта работа может быть полезна для разработки более рациональной модели, отражающей фактическое поведение стержней арматуры, встроенных в небольшие бетонные блоки.

1. Введение

Современные железнодорожные мосты оснащены непрерывно сварными рельсами (CWR) без каких-либо швов для повышения комфорта движения и высокоскоростного движения поезда.В таких железнодорожных мостах на рельсы могут возникать дополнительные осевые напряжения из-за расширения и сжатия конструкции моста из-за изменения температуры. Такое поведение называется взаимодействием путевого моста. Для подавления этого эффекта обычно используются железнодорожные мосты с простой опорой и короткими пролетами. Эффект взаимодействия следует тщательно контролировать с помощью специальных типов креплений или рельсовых компенсаторов в случае длиннопролетных мостов. Однако эффективность этих методов ограничена, и они могут вызвать дополнительные проблемы, такие как проблемы с обслуживанием.

Недавно Lee et al. [1] провели предварительные исследования по конструкции скользящего пути плиты, в котором слой скольжения с низким коэффициентом трения помещается между нижней частью дорожки плиты и верхней частью настила моста в качестве альтернативного метода уменьшения взаимодействия между путями и мостами. Система скользящих плит перекрытия разделяет продольное поведение пути бетонных плит и настила моста, чтобы предотвратить передачу продольного смещения из-за температурного расширения и сжатия моста на CWR через путь плиты.Ли и др. [2, 3] сообщили, что дополнительное осевое напряжение вдоль рельса из-за эффекта взаимодействия рельсового пути с мостом было уменьшено на 80–90%, когда была принята система скользящих рельсов, по сравнению с традиционной системой рельсовых плит.

Поскольку мосты и пути из бетонных плит отделены друг от друга слоями скольжения, необходимо реализовать опорные конструкции для противодействия поперечной нагрузке, которая возникает из-за силы удара поезда, бокового ветра, центробежных нагрузок на изогнутых железных дорогах и изменения температуры. в изогнутых рельсах.На рис. 1 представлен концептуальный чертеж направляющей для плиты скольжения, включающей настил моста, слой скольжения и боковые опорные бетонные блоки. Как показано на рисунке, несколько арматурных стержней устанавливаются в боковые опорные бетонные блоки, чтобы они могли выдерживать боковую нагрузку, возникающую из-за поведения стержней дюбеля.


Для проектирования боковых опорных бетонных блоков Lee et al. [4] использовали существующую модель [5, 6], чтобы учесть боковую нагрузку, которой может противостоять поведение дюбеля арматурных стержней.Несмотря на то, что структурное поведение дюбелей арматурных стержней является основной проблемой при проектировании, экспериментальная проверка относительно ограничена в отношении поведения дюбелей арматурных стержней в небольшом бетонном элементе, таком как боковой поддерживающий бетонный блок. В нескольких исследованиях экспериментально изучалось поведение арматурных стержней в дюбелях; однако только одна сторона арматурных стержней была залита бетоном [7, 8] или поведение дюбеля не было полностью определено из-за трения сдвига вдоль поверхности раздела бетона [9, 10]. Кроме того, в литературе представлено несколько моделей [5, 11, 12]; тем не менее, предсказания поведения дюбелей арматурных стержней этими моделями значительно различаются.

Таким образом, в данном исследовании фактическое поведение дюбелей арматурных стержней в небольшом бетонном элементе исследуется с помощью обширной экспериментальной программы, в которой основное внимание уделяется поведению дюбелей по отношению к бетонному ядру [5], в котором преобладает несущая способность бетона, а не против бетонного покрытия, включающего трещины раскола [6]. Влияние тестовых переменных на поведение дюбеля исследуется на основе экспериментальных результатов. Кроме того, применимость существующих моделей исследуется путем сравнения экспериментальных результатов с прогнозами модели.

2. Существующие модели поведения дюбелей арматурных стержней

Существующие модели [5, 11, 12], используемые для теоретического исследования поведения дюбелей арматурных стержней, залитых в бетон, приведены в таблице 1. Следует отметить, что только модели, которые описывают рассмотрено поведение дюбелей арматуры по отношению к бетонной сердцевине. Как показано в таблице, MC10 [12] и Soroushian et al. [5] описал реакцию дюбеля на сдвиг и скольжение, в то время как Randl [11] проанализировал только максимальную силу дюбеля. Основными параметрами, рассматриваемыми в моделях, были прочность бетона на сжатие, предел текучести дюбельной арматуры и диаметр дюбельной арматуры.Модель, представленная в MC10, очень похожа на простую модель Рэндла, в то время как модель, предложенная Сорушианом и др. отличается, потому что он основан на несущей способности бетона под дюбельной арматурой [13]. Подробная модель Рэндла также учитывает несущую способность бетона; тем не менее, это в основном основано на деформированной форме дюбельной арматуры, залитой в бетон.


Модель Уравнения

Soroushian et al.[5]
,
где,, и

Randl [11] 3 902 902 902 902
(ii) Простая модель
, где — прочность бетонного куба на сжатие

MC10 [12]
, где для бетона C20∼2C50 — умноженное на диаметр стержня дюбеля

На рис. 2 показано максимальное усилие на дюбель, оцененное с использованием существующих моделей для исследования влияния двух основных параметров (прочности бетона и арматуры) на поведение стержней в дюбелях.Следует отметить, что значение 1,6 использовалось для учета верхнего предела, указанного MC10 [12]. Как видно на рисунках, модели, предложенные MC10 [12] и Randl [11], обеспечивают аналогичные прогнозы максимальной силы дюбеля и ее изменения в зависимости от прочности бетона на сжатие или предела текучести дюбеля. Напротив, максимальная сила дюбеля, предсказанная моделью Сорушяна и др., Ниже, чем предсказанная другими моделями. Эта тенденция становится более очевидной при увеличении прочности бетона на сжатие.Поскольку проверки, проводимые в литературе, обычно сосредоточены на материалах нормальной прочности [5, 11], необходимо провести дополнительные эксперименты для изучения поведения дюбелей арматурных стержней, залитых в бетон, особенно когда бетон с высокой прочностью на сжатие (более 50 МПа) или дюбель используется арматура с высоким пределом текучести (более 400 МПа).

3. Программа испытаний дюбелей арматурных стержней в бетоне

В этом исследовании была проведена обширная экспериментальная программа для изучения поведения дюбелей арматурных стержней в небольшом бетонном элементе.В программе учитывались следующие параметры испытаний: прочность бетона на сжатие, предел текучести арматуры, диаметр арматуры, толщина образца бетона и расстояние между арматурными стержнями. В этом разделе представлен обзор программы.

3.1. Сводка образцов для испытаний
3.1.1. Параметры испытаний

Прочность бетона на сжатие, предел текучести арматуры и диаметр стержня были рассмотрены в качестве основных параметров испытаний, поскольку они обычно рассматривались в литературе [5, 11, 12]. Были рассмотрены две целевые значения прочности на сжатие для бетона, то есть 30 и 60 МПа, поскольку прочность на сжатие бетона 30 МПа была принята для плит в направляющих скользящих плит, где будет установлен бетонный анкерный блок с дюбелями.Кроме того, 60 МПа было рассмотрено, потому что в будущем будет применяться высокопрочный бетон. Для дюбельной арматуры учитывались пределы текучести 400 МПа и 600 МПа. Были рассмотрены три вида номинальных диаметров арматуры: 12,7, 19,1 и 25,4 мм. В дополнение к основным параметрам испытаний были рассмотрены эффекты толщины образца бетона и расстояния между дюбелями арматурных стержней.

Испытательные образцы были разработаны на основе образцов, использованных в предыдущих исследованиях [5]. В испытательных образцах было рассмотрено несколько случаев для расстояния между дюбелями в соответствии с расположением арматуры в бетонных настилах железнодорожных мостов.Следовательно, учитывая, что продольные и поперечные расстояния между арматурными стержнями в бетонном настиле обычно составляют 150 мм, толщина образца и расстояние между дюбелями арматурных стержней в образцах были установлены равными 150, 200 или 250 мм.

Подробная информация об испытательных переменных представлена ​​в таблице 2 и на рисунке 3.

диаметр арматуры (мм)

Образец Прочность бетона на сжатие (МПа) Предел текучести дюбеля (МПа) Расстояние между дюбелями арматуры (мм) Толщина образца (мм)

NC-N13-200 30 400 12.7 200 150
NC-N19-150 30 400 19,05 150 150
NC-N19-200 30 30 30 200 150
NC-N19-250 30 400 19,05 250 150
NC-N25-200 30 400 150
NC-h23-200 30 600 12.7 200 150
NC-h29-200 30 600 19,05 200 150
NC-h352-200 30 30 30 200 150
HC-N13-200 60 400 12,7 200 150
HC-N19-200 60 400 150
HC-N25-200 60 400 25.4 200 150
HC-h23-200 60 600 12,7 200 150
HC-h29-150 60 60 60 150 150
HC-h29-200 60 600 19,05 200 150
HC-h29-250 60 600 150
HC-h35-200 60 600 25.4 200 150
NC-N19-200-2 30 400 19,05 200 200
NC-N19-200-2,5 30 400 19,05 200 250


3.1.2. Подробная информация об образцах для испытаний

С учетом переменных испытаний, форма образца, включая расположение дюбелей арматурных стержней, представлена ​​на рисунке 4.Как показано на рисунке, чтобы исключить влияние трения бетона вдоль поверхности раздела бетона, в образцы устанавливают гладкую тонкую пластину толщиной 0,2 мм в направлении приложенной нагрузки. Через тонкую пластину проходят два стержня с дюбелями, так что только стержни могут противодействовать приложенной нагрузке.


Расстояние между двумя дюбелями было установлено равным 150, 200 или 250 мм, чтобы имитировать расстояние между дюбелями арматуры в направлении приложенной силы сдвига.Чтобы учесть влияние эффективной ширины бетона, окружающей арматурные стержни дюбелей в поперечном направлении, толщина образцов в большинстве случаев была установлена ​​равной 150 мм, поскольку расстояние между стержнями в мостовых настилах обычно составляет 150 мм. Кроме того, учитывались еще две толщины 200 и 250 мм.

Относительно большое количество арматурных стержней D19 было заделано рядом с зоной загрузки для предотвращения нежелательного местного разрушения из-за непреднамеренного обрушения бетона.

3.1.3. Контрольно-измерительные приборы

На рис. 5 показаны детали контрольно-измерительных приборов, используемых для измерения поведения стержней арматуры во время испытания.Как показано на рисунке, к поверхности образца прикреплены четыре LVDT; два LVDT прикреплены вдоль направления приложенной нагрузки для измерения сдвига вдоль границы раздела между бетонными блоками, а еще два LVDT прикреплены вдоль дюбелей арматурных стержней для измерения раскрытия границы раздела во время испытания. Поскольку два LVDT используются как один комплект, среднее скольжение при сдвиге и раскрытие границы раздела фаз можно оценить по данным измерений. Помимо LVDT, на дюбельную арматуру перед заливкой бетона крепятся два электрических тензодатчика.Когда образец изготовлен, электрические датчики размещаются на границе раздела так, чтобы можно было измерить деформацию стержней дюбелей во время испытания.


3.2. Свойства материала

Чтобы измерить фактическую прочность бетона на сжатие, были изготовлены цилиндры ϕ 100 × 200, когда бетон заливался в образцы. Фактическая прочность бетона на сжатие была измерена во время испытания поведения арматуры на дюбель. Следует отметить, что испытания бетона на прочность на сжатие и поведение дюбелей были проведены по крайней мере через 28 дней после заливки бетона.В испытании на сжатие с цилиндрами средняя прочность бетона на сжатие для серий NC и HC составила 32,1 МПа и 67,6 МПа соответственно.

Для измерения предела текучести дюбелей были проведены испытания на прямое растяжение с арматурными стержнями, которые использовались в образцах в качестве дюбелей. Испытания проводились в соответствии с процедурой, представленной в ISO 6892-1: 2009 [14]. Предел текучести арматурных стержней был оценен с помощью метода смещения 0,2% с использованием зависимости напряжения от деформации стержней, и они суммированы в таблице 3.Как показано в таблице, дюбельные стержни, использованные в испытательных образцах, демонстрируют предел текучести, превышающий номинальный предел текучести в 400 или 600 МПа.

Предел текучести (МПа) 9022 9018 25,0 4

Обозначение Номинальный диаметр (мм) Номинальный предел текучести (МПа) Измеренный
Предел текучести (МПа)
N13 12.7 400,0 510,9 624,8
N19 19,1 400,0 549,5 617,0
N25 12,7 600,0 715,8 740,3
h29 19,1 600,0 686,9 778,2
h35 600,0 668,6 822,6

3.3. Процедура испытания

Чтобы исследовать поведение стержней арматуры в виде штифта, нагрузка была приложена в направлении по границе раздела к опорным плитам, размещенным на образцах для испытаний. Для приложения нагрузки использовалась машина мощностью 1000 кН. Практически трудно достичь сдвигового трения вдоль границы раздела из-за многократного нагружения от поездов. Таким образом, перед проведением испытания нагрузка, соответствующая 5–20% расчетной допустимой нагрузки для максимального усилия дюбеля, прикладывалась 25 раз, чтобы устранить трение сдвига из-за адгезии между тонкой пластиной и бетонной матрицей.Процесс циклической предварительной нагрузки был отнесен к стандартной процедуре испытаний соединителей со сдвигом шпильки, предусмотренной в Еврокоде 4, B.2 [15]. Затем было проведено испытание на статическую нагрузку при скорости контроля смещения 1 мм в минуту. На рисунке 6 показана испытательная установка до приложения нагрузки.


4. Результаты испытаний и исследования
4.1. Виды отказа и поведение дюбелей арматуры
4.1.1. Режим отказа

Образцы трещин наблюдались во время испытания, чтобы исследовать типичный режим отказа для поведения дюбелей арматурных стержней.Ни один из образцов не показал трещин раскалывания до достижения максимального усилия дюбеля. После достижения максимального усилия дюбеля приложенное усилие значительно уменьшилось, так как трещины раскола бетона возникли под арматурными стержнями дюбеля. Типичные рисунки трещин, наблюдаемые после испытания, показаны на рисунке 7.

Из этих рисунков можно сделать вывод, что на сопротивление сдвигу, обусловленное поведением арматурных стержней, значительно влияет прочность на сжатие бетона, который поддерживает стержни. , а не предел текучести стержней.В соответствии с режимом разрушения, наблюдаемым в ходе испытания, максимальное усилие на дюбели арматурных стержней может быть увеличено за счет управления трещинами раскола бетона за счет эффекта удержания, который может быть достигнут путем ограждения бетона рядом с дюбелями арматурных стержней с помощью арматурных стержней.

4.1.2. Реакция на сдвиговое усилие проскальзывания дюбеля

Репрезентативные реакции сдвигового выскальзывания дюбеля представлены на рисунке 8. Эти реакции были получены в результате испытаний образцов NC-N13-200, NC-N19-200 и NC-N25-200.Для подробного анализа результаты испытаний сравнивали с поведением дюбелей, предсказанным Сорушианом и др. [5] и MC10 [12], которые оценили максимальную силу дюбеля в дополнение к отклику сдвиговой силы скольжения дюбеля. Следует отметить, что MC10 предсказал сдвиговое скольжение, соответствующее максимальной силе дюбеля, составляющей от 0,1 до 0,2 диаметра арматурного стержня дюбеля. Следовательно, в этом исследовании для прогнозирования отклика сдвиговой силы скольжения дюбеля было выбрано 0,15 диаметра дюбеля арматурного стержня.

Как показано на Рисунке 8 (а), в образце NC-N13-200 максимальное усилие на дюбель, измеренное в ходе испытания, составляет 39.3 кН, что значительно выше, чем максимальные усилия на дюбелях 21,1 и 26,4 кН, предсказанные Сорушианом и др. [5] и MC10 [12] соответственно. В первую очередь это произошло из-за небольшого диаметра дюбелей арматуры. Из-за малого диаметра эффект перегиба после деформации дюбелей в арматурных стержнях значительно увеличивал силу дюбелей до того, как испытательный образец показал трещины раскалывания под дюбелями арматурных стержней. Об этом явлении также можно судить по силе отклика на сдвиговой штифт.Жесткость при сдвиговом скольжении, превышающем 0,15 номинального диаметра стержней дюбелей, была значительно меньше, чем на более раннем этапе. В целом, существующие модели [5, 12] не учитывают эффект перегиба дюбелей при оценке максимального усилия на дюбелях. Следовательно, когда поведение дюбеля при относительно низкой жесткости исключено, способность сопротивления сдвигу из-за поведения дюбеля арматурных стержней, измеренная в ходе испытания, лишь незначительно отличается от прогнозов существующих моделей.Однако прогнозируемая жесткость выше, чем результаты испытаний, когда проскальзывание при сдвиге не превышает 0,15 номинального диаметра дюбелей арматурных стержней.

На рис. 8 (б) показаны отклики дюбеля на сдвиг и сдвиг для образца NC-N19-200, которые были измерены с использованием дюбелей с номинальным пределом текучести 400 МПа в бетоне с номинальной прочностью на сжатие 30 МПа. Как показано на рисунке, двухфазный отклик перед максимальным усилием дюбеля, который наблюдается в результатах испытаний дюбелей N13, не наблюдается в результатах испытаний дюбелей N19.Это указывает на то, что образец, в котором использовались дюбели арматурных стержней N19, показал максимальное усилие на дюбели до того, как эффект перегиба стал очевидным. Поскольку эффект перегиба не наблюдается в испытании с дюбелями арматурных стержней N25, как показано на рисунке 8 (c), только стержни с дюбелями малого диаметра демонстрируют значительные перегибы перед тем, как в образце бетона наблюдаются трещины раскола.

Кроме того, сдвиговое скольжение, соответствующее максимальной силе дюбеля, уменьшается по мере увеличения диаметра арматурного стержня дюбеля (Рисунок 8).Как показано в Таблице 4, этот результат значительно отличается от результатов существующих моделей, таких как MC10 [12] и Soroushian et al. [5], которые прогнозируют увеличение сдвигового скольжения при максимальной силе дюбеля с диаметром дюбеля арматурного стержня. Общая жесткость дюбеля арматурного стержня до достижения максимального усилия дюбеля переоценена существующими моделями. Следовательно, необходимы дальнейшие теоретические исследования поведения стержней арматуры в небольшом бетонном элементе.

250

9022 9028 902 902 1

Образец Тест Soroushian et al. Randle (подробный) Randle (простой) MC10

NC-N13-200 39,3 21,1 26,4 902 18 NC 272 182 N19-150 47,4 48,3 60,3 58,2 63,2
NC-N19-200 51,2 48,3 60,3 58,2 58,2 56.0 48,3 60,3 58,2 63,2
NC-N25-200 70,6 84,7 107,1 101,4 112.2 NC 26,5 31,3 29,3 32,8
NC-h29-200 55,6 57,3 67,4 64,0 70,7 3
100,9 119,2 111,6 125,0
HC-N13-200 65,8 24,6 38,0 44,1 40,2 53,9 87,6 95,9 91,8
HC-N25-200 99,8 92,4 155,4 164,1 162,9 6022 902 902,9
30,0 45,4 47,9 46,2
HC-h29-150 81,6 62,9 97,9 102,1 102,6 62,9 97,9 102,1 102,6
HC-h29-250 77,5 62,9 97,9 102,1 102,6
108,7 173,1 175,1 181,5
NC-N19-200-2 54,5 48,3 60,3 58,2 -218 NC NK 62,7 48,3 60,3 58,2 63,2

Единица измерения: кН.

4.1.3. Отверстие сопряжения и деформация стержня дюбеля

Реакция на размыкание сопряжения с усилием дюбеля представлена ​​на Рисунке 9.Открытие интерфейса рассчитывается как среднее значение, полученное с помощью LVDT, прикрепленных перпендикулярно границе раздела между бетонными блоками. Как показано на рисунке, межфазное отверстие для всех образцов чрезвычайно мало, пока не будет достигнуто максимальное усилие на дюбель, после чего межфазное отверстие быстро увеличивается. MC90 сообщил, что максимальное усилие при установке дюбелей может быть уменьшено за счет большого отверстия в интерфейсе [16]; таким образом, важно, чтобы отверстие интерфейса оставалось маленьким во время испытания, чтобы измерить фактическое максимальное усилие на дюбель.Следовательно, результаты испытаний, полученные в этом исследовании, являются надежными для измерения максимального усилия дюбеля при небольшом межфазном отверстии.

На рис. 10 показаны реакции на деформацию дюбеля и дюбеля для образцов из бетона нормальной прочности (серия NC) и дюбелей (серия N). Рассмотрены три диаметра дюбеля арматурных стержней для исследования влияния диаметра на отклик. Следует отметить, что деформации стержней дюбелей были измерены с помощью двух электронных тензодатчиков, прикрепленных к стержням на границе раздела.Как видно на рисунках, деформации образцов с дюбелями арматуры N19 или N25 существенно не увеличиваются до тех пор, пока не будет достигнуто максимальное усилие на дюбели. Напротив, деформации образцов с дюбельной арматурой N13 значительно увеличиваются до того, как будет достигнута максимальная сила дюбеля. Кроме того, усилие дюбеля в этих образцах значительно увеличивается даже после деформации стержней дюбеля, в первую очередь из-за эффекта перегиба.

4.2. Влияние параметров испытаний на поведение дюбелей
4.2.1. Влияние прочности бетона на сжатие и прочности дюбелей арматурных стержней

Влияние прочности бетона на сжатие и прочности дюбелей на максимальное усилие дюбелей показано на рисунке 11. Каждая точка на рисунке представляет собой среднее значение трех результатов испытаний при тех же переменных испытания. Максимальное усилие дюбеля увеличивается с увеличением прочности бетона на сжатие; среднее увеличение максимального усилия дюбеля составляет 40,5% для среднего увеличения прочности бетона на сжатие на 110,9%. Этот результат согласуется с предыдущими моделями [5, 11, 12], которые показали, что максимальная сила дюбеля пропорциональна квадратному корню из прочности бетона на сжатие.Напротив, влияние предела текучести дюбельных стержней не так существенно, как влияние прочности бетона на сжатие; среднее увеличение максимального усилия дюбеля составляет всего 6,7% при среднем увеличении предела текучести дюбельной арматуры на 29,7%. Этот результат указывает на то, что существующие модели [11, 12] склонны переоценивать вклад предела текучести дюбельной арматуры в максимальное усилие на дюбель. Из рисунка видно, что прочность бетона на сжатие сильнее влияет на максимальное усилие дюбеля по сравнению с пределом текучести дюбель-арматуры.Другими словами, несущая способность бетона под дюбельной арматурой сильно влияет на максимальное усилие дюбеля.


4.2.2. Влияние диаметра дюбельной арматуры

На рис. 12 показано влияние диаметра дюбельной арматуры на максимальное усилие дюбеля. Как показано на Рисунке 12 (a), максимальное усилие на дюбель увеличивается с увеличением диаметра дюбеля. Эта тенденция согласуется с существующими моделями [5, 11, 12]; однако существует значительная разница в том, насколько сильно влияние увеличения диаметра дюбеля арматурного стержня на максимальное усилие дюбеля.Для более подробного исследования максимальная сила дюбеля нормализуется с использованием номинальной площади и квадратного корня из предела текучести дюбеля арматурного стержня, как показано на Рисунке 12 (b). Существующие модели обычно переоценивают вклад диаметра дюбельной арматуры в максимальное усилие дюбеля. Поскольку на деформацию дюбельной арматуры при максимальной нагрузке на дюбель в значительной степени влияет диаметр дюбельной арматуры, как видно из сравнения результатов, показанных на Рисунке 8, требуется более рациональная модель прогнозирования.

4.2.3. Влияние толщины образца бетона и расстояния между дюбелями и арматурными стержнями

Влияние толщины образца бетона и расстояния между дюбелями арматурных стержней исследовано с использованием рисунков 13 и 14. Как показано на рисунке 13, максимальная сила дюбеля не зависит существенно от толщины образца бетона более чем 150 мм. Как показано на Рисунке 14, максимальное усилие дюбеля увеличивается на 6,4 и 22,4%, поскольку расстояние между стержнями дюбеля увеличивается на 33,3 и 66,7% соответственно. Следовательно, на максимальное усилие дюбеля не сильно влияет расстояние между дюбелями арматуры более 150 мм.Следовательно, можно сделать вывод, что максимальная сила дюбеля слабо зависит от толщины образца бетона и расстояния между дюбелями арматурных стержней в диапазонах, рассмотренных в этом исследовании.



5. Сравнение с проектной спецификацией и предыдущими моделями

Максимальное усилие на дюбель, измеренное в ходе испытаний, приведено в таблице 4. Каждое значение является средним из трех результатов испытаний для данной переменной испытания. Кроме того, в таблице представлены максимальные усилия дюбеля, предсказанные несколькими существующими моделями [5, 11, 12].В существующих моделях фактическая прочность бетона на сжатие и предел текучести дюбеля учитываются при расчете максимального усилия дюбеля. На рис. 15 показаны максимальные усилия дюбеля для более подробного сравнения результатов испытаний и прогнозов, а отношения результатов испытаний к прогнозам представлены в таблице 5 и на рис. 16, как указано в JCSS [17] и Holický et al. [18].

902 0,6 9022 результаты теста MC10 [12] и Randl [11], чем результаты Soroushian et al. [5]. В результатах прогноза Сорушиан и др., Максимальное усилие на дюбель обычно завышается для образцов с большим диаметром дюбеля арматурного стержня (см. Образцы NC-N25-200, NC-h35-200 и HC-h35-200).Это говорит о том, что вклад номинальной площади дюбелей арматуры завышен. Напротив, максимальная сила дюбеля значительно занижена для образцов с малым диаметром дюбеля арматуры (см. Образцы NC-N13-200, NC-h23-200, HC-N13-200 и HC-h23-200). Это в первую очередь потому, что Сорушиан и др. [5] рассмотрел только несущий отказ бетона под дюбелями арматурных стержней [13] и не включил эффект перегиба, наблюдаемый в образцах с небольшими диаметрами дюбелей арматурных стержней.

В отличие от Сорушиана и др., Максимальная сила дюбеля в некоторых случаях завышена в результатах прогнозов MC10 [12] и Randl [11]. Эта тенденция более очевидна для образцов с большим диаметром арматуры, таких как NC-N25-200, NC-h35-200, HC-N25-200 и HC-h35-200. Для этих образцов отношение прогнозов к результатам испытаний максимального усилия дюбеля превышает 1,50. Максимальное усилие на дюбель значительно занижено только для образцов с малым диаметром арматуры, таких как NC-N13-200, NC-h23-200, HC-N13-200 и HC-h23-200, поскольку эффект перегиба не учитывается. .

Следовательно, для всех переменных испытаний результаты испытаний максимального усилия дюбеля для бетона нормальной прочности и диаметра арматурного стержня 19 мм хорошо согласуются со всеми существующими моделями, рассматриваемыми в этом исследовании. Прогнозы существующих моделей становятся более разбросанными по мере изменения диаметра дюбельной арматуры или прочности материала бетона или дюбельной арматуры. Следовательно, необходимы дальнейшие исследования для разработки более рациональной модели, точно отражающей фактическое поведение дюбеля в небольшом бетонном элементе.

6. Выводы

В этом исследовании была проведена обширная экспериментальная программа для изучения поведения дюбелей арматурных стержней, встроенных в небольшой бетонный элемент. В рамках экспериментальной программы изготовлено и испытано 54 образца. Переменными испытаниями были прочность бетона на сжатие, предел текучести и диаметр дюбеля арматуры, толщина образца бетона и расстояние между дюбелями арматуры. Результаты испытаний сравнивались с прогнозами трех существующих моделей, чтобы исследовать применимость моделей.Результаты, полученные в этом исследовании, можно резюмировать следующим образом: (i) Несмотря на то, что в трех существующих моделях одновременно учитывались прочность бетона на сжатие, предел текучести дюбельной арматуры и диаметр дюбельной арматуры, прогнозируемые максимальные усилия дюбелей были значительно разными, особенно при высоком был использован прочный материал. (ii) Во всех образцах трещины раскола в результате разрушения произошли в бетоне под дюбелями арматурных стержней независимо от переменных испытаний. Из режима разрушения, наблюдаемого в ходе испытаний, можно сделать вывод, что раскалывающиеся трещины сильно влияют на поведение дюбелей арматурных стержней, встроенных в небольшой бетонный элемент.(iii) В образцах с дюбелями малого диаметра (серии N13 и h23) эффект перегиба был сильным, и податливость дюбелей произошла до того, как было достигнуто максимальное усилие на дюбели. Напротив, образцы с дюбелями большого диаметра не показали ни текучести дюбелей, ни сильного эффекта перегиба. (Iv) Результаты испытаний показали, что максимальное усилие на дюбель увеличивалось с увеличением прочности бетона на сжатие и диаметра дюбеля, в то время как эффект Предел текучести дюбель-арматуры не был очевиден.(v) Не наблюдалось значительного влияния толщины образца и расстояния между дюбелями арматурных стержней на максимальное усилие дюбеля. (vi) В отличие от MC10 и Soroushian et al., которые предсказали, что сдвиговое скольжение, соответствующее максимальной силе дюбеля, увеличивается с увеличением диаметра дюбеля арматурного стержня, результаты испытаний показали, что сдвиговое скольжение при максимальной силе дюбеля уменьшалось по мере увеличения диаметра арматурного стержня дюбеля. (vii) Прогнозы существующих моделей значительно отличались от максимальных усилий дюбеля, измеренных в ходе испытаний. Существующие модели значительно занижали максимальные усилия на дюбели арматурных стержней малого диаметра (серии N13 и h23), так как эффект перегиба не учитывался.Напротив, MC10 и Randl значительно переоценили максимальное усилие дюбеля для дюбелей большого диаметра (серии N25 и h35). (Viii) Результаты, представленные в этой статье, будут полезны для оценки фактической прочности на сдвиг боковых опорных блоков. в которые заделываются дюбель-арматура. Для более разумной конструкции боковых опорных блоков требуется более рациональная модель, чтобы представить поведение дюбелей арматурных стержней, встроенных в небольшой бетонный элемент.

Обозначения

Образец Soroushian et al. Randl (подробный) Randl (простой) MC10

NC-N13-200 1.86 1.52 1.42 1.49 9022 NC 0,98 0,81 0,75 0,79
NC-N19-200 1,06 0,88 0,81 0,85
9022-N96 0,89 0,93
NC-N25-200 0,83 0,70 0,63 0,66
NC-h23-200 1,75 9022 9022 1,75 9022 902
NC-h29-200 0,97 0,87 0,79 0,82
NC-h35-200 0,73 0,66 0,59 0,62 0,62 902 2.68 1,49 1,64 1,73
HC-N19-200 1,23 0,69 0,72 0,75
HC-N25-2003 0,64
HC-h23-200 2,03 1,27 1,28 1,34
HC-h29-150 1,30 0,80 9018 0,80 h29-200 1.35 0,83 0,83 0,87
HC-h29-250 1,23 0,76 0,76 0,79
HC-h352 0,93 9022 9022 9018 0,5 0,57
NC-N19-200-2 1,13 0,94 0,86 0,90
NC-N19-200-2,5 1,30 1,03
Среднее значение 1.31 0,95 0,91 0,95
CoV 0,36 0,33 0,34 0,34

результаты теста немного лучше
прочность дюбеля арматуры (МПа)
: Площадь поперечного сечения дюбельной арматуры (мм 2 )
: Длина зоны дробленого бетона под дюбелем (мм)
Усилие дюбеля (Н) для заданного скольжения (мм)
: Диаметр стержня дюбеля (мм)
: Максимальное усилие на дюбель (Н)
: Модуль упругости стержня дюбеля ( МПа)
: Прочность бетона на несущую способность (МПа)
: Прочность бетона на сжатие (МПа)
: Кубическая прочность бетона (МПа) 24
: Второй момент инерции дюбеля (мм 4 )
: Модуль упругости бетонного основания (МПа / мм )
: Характерная длина дюбеля (мм)
: Максимально возможное давление бетона под дюбелем (МПа)
: Проскальзывание (мм) : 902 Осевая сила дюбеля (Н)
: Осевое усилие натяжения дюбеля (Н)
: Коэффициент взаимодействия для сопротивления изгибу при.
Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Благодарности

Это исследование было поддержано грантом (17RTRP-B071566-05) Программы исследований железнодорожных технологий, финансируемой Министерством земли, инфраструктуры и транспорта правительства Кореи.

Speed ​​Plate Dowel »Canzac

Новый и экономически разумный выбор для систем плоских дюбелей.

Система Speed ​​Plate — это экономически разумный выбор для систем плоских дюбелей.Speed ​​Plate уменьшает количество требуемых дюбелей по сравнению с обычными системами крепления дюбелей. Меньшее количество дюбелей и более простой монтаж означает снижение затрат на установку.

Интегрированная запатентованная втулка устраняет поперечное ограничение между панелями перекрытия и обеспечивает надлежащее выравнивание, а большие стальные пластины обеспечивают большую общую площадь поверхности, что снижает нагрузку на подшипник.

Неконусный профиль обеспечивает постоянные опорные нагрузки на стыке и на всю глубину дюбеля.

ПРЕИМУЩЕСТВО СКОРОСТИ

Система SPEED PLATE уменьшает количество требуемых дюбелей по сравнению с обычными системами установки дюбелей. Меньшее количество дюбелей и более простой монтаж означает снижение затрат на установку. В приведенной ниже таблице преобразования приведен пример эквивалентного размера и шага дюбелей SPEED PLATE при замене обычных гладких круглых дюбелей.

РАЗМЕР ДУБЕЛЯ

РАССТОЯНИЕ

РАССТОЯНИЕ

РАССТОЯНИЕ

РАЗМЕР
ЭКВИВАЛЕНТЫ

Гладкий круглый дюбель 16 мм

300 мм

400 мм

600 мм

6×100 мм (ширина) x 150 мм (глубина) Speed ​​Plate

450 мм

500 мм

600 мм

РАЗМЕРЫ ЭКВИВАЛЕНТЫ

Гладкий круглый дюбель 20 мм

300 мм

400 мм

600 мм

10×100 мм (ширина) x 150 мм (глубина) Диск скорости

450 мм

500 мм

600 мм

ОПИСАНИЕ

SPEED PLATE — это запатентованная система дюбелей втулки и стальной пластины.SPEED PLATE обеспечивает передачу нагрузки по строительным швам и немедленно компенсирует поперечное и осевое перемещение, вызванное усадкой бетона и дифференциальным перемещением плиты. Конструкция с большой неконусной пластиной снижает нагрузку на бетон и обеспечивает постоянную нагрузку на бетон на поверхности стыка и глубину заделки дюбеля.

ГДЕ ИСПОЛЬЗОВАТЬ

Бетонные плиты на земле, требующие эффективной передачи нагрузки через стыки.

Типичные конструкции включают:

  • Склад / центры распределения
  • Производственные мощности
  • Торгово-промышленные комплексы
  • Развлекательные центры
  • Оздоровительные комплексы
  • Парковочные места и мощение

СООБРАЖЕНИЯ ПРИ ВЫБОРЕ ДУБЕЛЬНИКА

Исторически отраслевым стандартом был круглый дюбель, половина которого была обернута плотной пленкой.

Теперь у вас есть выбор, подходящий для правильного применения, конструкции перекрытия, а также простоты конструкции.сейчас является отраслевым стандартом.

Все дюбели не равны, и не верьте тому, кто говорит, что один размер и центр дюбелей подойдут для всех плит. При выборе дюбеля мы учитываем влияние грунтовых условий, толщины плиты, прочности бетона и ожидаемых динамических и статических нагрузок на дюбель.

Canzac — единственный поставщик в стране, предлагающий нашу программу расчетных нагрузок, разработанную инженером для инженеров, единственный поставщик пластинчатых дюбелей, который провел какие-либо независимые испытания наших систем пластинчатых дюбелей.Другие поставщики пластин показали ограничение скорости пластины на 6 мм при сравнении ее с пластиной 10 мм, и мы полностью согласны с этим, поэтому у нас есть 10 мм и даже 20 мм, так зачем использовать дюбель пластины 10 мм, если вы можете использовать 6 мм, Кроме того, наш рукав представляет собой единое целое, а не два, две части будут разделены.

Мы знаем, что у пластинчатого дюбеля есть свои ограничения, и можем посоветовать альтернативы из нашего обширного ассортимента.

ВЫБОР ТОЛЩИНЫ ДУБЛИКА

Выбор тарелки, над которой мы работаем, чтобы дать вам краткое описание, будет таким, как показано ниже

Плиты на грунте толщиной до 150 мм Диск скорости 6 мм
Плита толщиной от 175 до 200 мм на сплаве Диск скорости 10 мм
плита толщиной 225 мм — 300 мм на сплаве Диск скорости 20 мм

ДРУГИЕ СИСТЕМЫ

Ознакомьтесь с производимой нами линейкой Speedbasket, которая может включать пластинчатый дюбель и позволяет вам заливать и пропиливать, а не гвоздить ваш бокс.

ТОВАР ТОЛЬКО КРАСНЫЙ ВТУЛКА 6мм ТОЛЬКО СКОРОСТНАЯ ПЛАСТИНА 6x100x150 мм Втулка СКОРОСТНОЙ ПЛАСТИНЫ 6 мм И ПЛАСТИНА 6x100x150 ТОЛЬКО ЖЕЛТАЯ СКОРОСТНАЯ ПЛАСТИНА 10 мм ТОЛЬКО ПЛАСТИНА 10x100x150 мм ВТУЛКА С СКОРОСТНОЙ ПЛАСТИНОЙ 10 мм И ПЛАСТИНА 10x100x150 мм ТОЛЬКО ВТУЛКА С СКОРОСТНОЙ ПЛАСТИНОЙ 20 мм ТОЛЬКО СКОРОСТНАЯ ПЛАСТИНА 20x100x150 мм
КОД КАНЗАКА 10 002 11 000 12 000 10 005 11 0005 12 005 10 007 11 010
ДЛЯ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ, ПОЖАЛУЙСТА, ЗАГРУЗИТЕ НАШУ БРОШЮРУ ИЛИ
СВЯЗАТЬСЯ С НАМИ

Влияние колебаний температуры на преждевременное растрескивание бетонных покрытий с шпоночным соединением

% PDF-1.7 % 1 0 объект > / Metadata 2 0 R / Outlines 6 0 R / Pages 3 0 R / StructTreeRoot 7 0 R / Type / Catalog / Viewer Preferences >>> эндобдж 5 0 obj > / Шрифт >>> / Поля [11 0 R] >> эндобдж 2 0 obj > поток application / pdf

  • Gergis W. William
  • Влияние колебаний температуры на преждевременное растрескивание бетонных покрытий с шпоночным соединением
  • Гражданское строительство
  • Prince 12.5 (www.princexml.com) AppendPDF Pro 6.3 Linux 64 бит 30 августа 2019 Библиотека 15.0.4 Гражданское строительствоAppligent pdfHarmony 2.02020-03-09T11: 49: 17-07: 002020-03-09T11: 49: 16-07: 002020-03-09T11: 49: 17-07: 001uuid: 527c7d34-addd-11b2-0a00- 102e48020000uuid: 527c9fd8-addd-11b2-0a00-b0c0fc6dff7fpdf Harmony 2.0 Linux Kernel 2.6 64bit 13 марта 2012 Библиотека 9.0.1 конечный поток эндобдж 6 0 obj > эндобдж 3 0 obj > эндобдж 7 0 объект > эндобдж 29 0 объект > эндобдж 19 0 объект > 30 0 R] / P 7 0 R / S / Ссылка >> эндобдж 37 0 объект > / P 28 0 R / S / Ссылка >> эндобдж 20 0 объект > 1] / P 7 0 R / Pg 40 0 ​​R / S / Ссылка >> эндобдж 33 0 объект > 8] / P 24 0 R / Pg 40 0 ​​R / S / Ссылка >> эндобдж 35 0 объект > 14] / P 26 0 R / Pg 40 0 ​​R / S / Ссылка >> эндобдж 36 0 объект > 22] / P 27 0 R / Pg 40 0 ​​R / S / Ссылка >> эндобдж 27 0 объект > эндобдж 40 0 объект > / MediaBox [0 0 612 792] / Parent 51 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / StructParents 0 / Tabs / S / Type / Page >> эндобдж 48 0 объект [39 0 R 42 0 R 44 0 R 45 0 R 46 0 R 47 0 R] эндобдж 49 0 объект > поток xX ێ F | W4 $ V / Ad = ^ 8 @; # Q # Ɣ) ivD {/ iD / uTUsCSeCvqwd &; U3F-fVP HC / ʸ ?.㗫 wvxUyXŏ_Lp = 2yShIu9yQG ~ S> 4; Bx185PL, p 8 # E] g! Wqf 7YST; x (ۭ Oq [4ż / -yxT *! H5i /

    Скандинавский настенный

    Давным-давно один из мастеров наткнулся на эти прекрасные маленькие работы от Totem Color Blocks. Они простые, красочные и милые, сделаны из кожи и дерева. Это действительно вдохновляющий проект! Но этот мастер по изготовлению (дам вам подсказку, это я, держу пари, вы никогда не ожидали, что это произойдет правильно?) Хотел, чтобы он был БОЛЬШЕ и металлическим. Конечно верно? Разве не этого хочет каждая девушка? Поэтому, используя остатки материалов из нескольких других проектов (лоток для спиральной веревки и кроссовки с золотым блеском), я создал свою собственную версию!

    Что вам понадобится:

    • 2 -.Квадратные дюбели 5 ″ дюймов
    • Квадратный дюбель 1–1 дюйм
    • Хлопковая веревка для бельевой веревки
    • Бронзовый жидкий лист
    • Золотой металлик
    • Соединения медных труб
    • Ручная или лобзиковая пила
    • Электродрель

    Что делать:

    1. Отшлифуйте и обрежьте дюбель диаметром 1 дюйм до ширины, которую вы хотите подвешивать. Моя в итоге оказалась шириной около 27 дюймов. Затем просверлите отверстия для вашей веревки (или кожи!), Выберите сверло, примерно соответствующее размеру вашей веревки.Я просверлил четыре отверстия для подвешивания, но если вы хотите, чтобы ваше больше походило на Памелу, вам понадобится всего два отверстия. Вот как намечался мой проект.

    2. Пока мы используем наши электроинструменты (или, в моем случае, просто инструменты), давайте также разрежем подвесные детали. Вы можете сделать столько, сколько захотите, добавив по одному дюйму к каждой паре. Вот как сломалась моя:

    • две части по 4 дюйма
    • две 5-дюймовые детали
    • два 6-дюймовых элемента
    • две 7-дюймовые детали
    • одна 8-дюймовая деталь

    3.Просверлите отверстия в дюбелях. Эти отверстия должны быть того же размера, что и отверстия в основной части, поэтому обязательно учтите это при выборе веревки. Каждое отверстие должно быть на одинаковом расстоянии от вершины, примерно полдюйма для меня.

    4. Пора продеть дюбель диаметром 1 дюйм! Примерно в 5 футах от конца веревки завяжите примерно 5 (да, пять!) Узлов, натяните латунный трос на веревку и убедитесь, что он не скользит по узлу (-ам). Свяжите еще 5 узлов прямо над медной обвязкой.Возьмите свободный конец и протяните его через дальнее правое отверстие в дюбеле диаметром 1 дюйм, двойной узел.

    5. Теперь пришло время добавить маленькие дюбели, начать с самого маленького дюбеля, завязать узел, продеть следующий по величине дюбель, завязать еще один узел (оставив примерно 2,5 сантиметра между узлами), промыть пеной, повторять, пока не будут все дюбели. находятся на веревке.

    6. Убедившись, что самый длинный дюбель находится посередине, завяжите пять узлов, добавьте латунную трубку, еще пять узлов и проденьте другой конец веревки через просверленное отверстие на дальнем левом .Завяжите два узла и протяните оба конца (веревку через крайнее левое отверстие и крайнее правое отверстие), пока они не встретятся посередине. Там, где две веревки встречаются, завяжите узел, пропустите два конца веревки через медную трубу и снова завяжите узел.

    7. Возьмите два одинаковых отрезка веревки и протяните один конец каждого из них через средние отверстия. Завяжите узел примерно в 2 дюйма от конца. Соедините две веревки посередине и завяжите двойной узел, используя обе веревки. Проденьте обе веревки через медную трубу, затем завяжите еще один двойной узел, используя обе части.Это должно выглядеть так, как показано ниже!

    8. Свяжите свободные концы каждой средней веревки на расстоянии в дюйм от последних (самых маленьких!) Дюбелей с каждой стороны. Заклейте каждый дюбель, чтобы подготовить жидкий лист.

    9. Покрасьте все под лентой жидким листом (или другим цветом!). Дайте высохнуть и удалите ленту.

    10. Оберните липкой лентой примерно на полдюйма выше жидкого листа, это то место, где пойдет металлическая золотая краска.

    11.Аккуратно нанесите кистью на золото, чтобы сохранить красивую линию, созданную лентой.

    Конечный результат будет выглядеть так!

    12. Нанесите немного клея на узлы, повесьте и наслаждайтесь!

    Связанные

    Страница не найдена «Какой ортопедический имплант

    Очевидные особенности:

    Общая форма: любой…бумерангривнутаяизогнутая, в форме банана, плоская, клиновидная, плавно изогнутая, полусферическая, прямая, прямая, коническая

    Фиксация: любой … ЦементЦементная остеоинтеграция проксимальный HA

    Конструкция (цементированная): любая … бесцементная композитная балка, конус, конус, скользящая фиксация, без цемента

    Уровень фиксации (без цемента): любой … проксимальный весь стержень

    Слот для вставки: любой… да

    Винты: любой … 0 или 5 нет

    Номер отверстия: любой … 1245 нет

    Средний воротник: любой … нос

    Боковой воротник: любой … нет

    Зоны Грун:

    Шея / Z7 Граница: любой …

    Z7 Форма: любой…вогнутая вогнутая изогнутая рукавамедленно вогнутая прямая

    Z7 Контур: любые … мягкие бордюры гладкие

    Граница Z7 / Z6: любые … средние вогнутые соединения стержней маловогнутые

    Z6 Форма: любая … медленная вогнутая прямая

    Z6 Контур: любой … гладкий

    Граница Z6 / Z5: любой … медленный конвективный переход к цилиндрическому дистальному стержню

    Форма Z5: любой…вогнутая прямая

    Контур Z5: любой … гладкий

    Граница Z5 / Z4: любой …

    Z4 Форма: любой … криволинейный

    Контур Z4: любой … тупой, по сравнению с ABG 2, который имеет форму пули, остроконечный, гладкий

    Граница Z4 / Z3: любой …

    Z3 Форма: любой…выпуклыйпрямой

    Контур Z3: любой … гладкий

    Граница Z3 / Z2: любой …

    Z2 Форма: любая … угловая выпуклая прямая

    Контур Z2: любой … гладкий

    Граница Z2 / Z1: любой … переход от цилиндрической зоны 2 к широкой зоне 1, боковой плавник и дорсальный плавник на спинке крыла и рукава крыла любой …

    Z1 Форма: любой…углово-выпуклыйбоковой плавникмалый выпуклыйпрямый

    Z1 Контур: любой … гладкий

    Z1 / граница плеча: любой … большой боковой плавник острый

    Форма плеча: любой … острый угол, угловой, тупиковый, правый угол, закругленный

    Контур плеча: любой … вставной слот вставной разъем гладкий

    Инженерные онлайн-калькуляторы, формулы и инструменты Бесплатно

    Для всех калькуляторов требуется браузер с поддержкой JAVA. Дополнительная информация

    Примечание:

    • Многие ссылки сначала открывают веб-страницу уравнений. Найдите ссылку «Калькуляторы», чтобы открыть фактическое приложение калькулятора.

    • В настоящее время не все веб-страницы открыты для калькулятора, однако соответствующий калькулятор появится в ближайшем будущем.

    • Если у вас есть предложения по инженерному калькулятору, воспользуйтесь формой обратной связи Engineers Edge -> Отзыв

    ** СОВЕТ: Для поиска на этой веб-странице выберите «ctrl + F», затем введите ключевое слово во всплывающем окне.**


    Меню структурных прогибов и напряжений

    Уравнения и калькуляторы нагружения упругих каркасов на прогиб и противодействие в плоскости для

    Формулы реакции и прогиба и калькулятор для плоского нагружения упругих рам

    Уравнения и калькуляторы прогиба и напряжения плиты

    • Калькулятор расчета консольной балки с фиксированным пальцем

    Общие инженерные приложения и математические калькуляторы

    Формулы для круглых колец, момента, кольцевой нагрузки, радиального сдвига и деформации

    • Круговой кольцевой момент, кольцевая нагрузка и уравнения и калькулятор радиального сдвига # 21 Per.Формулы Роркса для формул напряжений и деформаций для круглых колец Раздел 9, Справочная информация, условия нагружения и нагружения. Формулы моментов, нагрузок и деформаций и некоторых выбранных числовых значений. Кольцо вращается с угловой скоростью ω рад / с вокруг оси, перпендикулярной плоскости кольца. Обратите внимание на требование симметрии поперечного сечения.

    Свойства сечения Выбранные формы

    • Конструктор цилиндрических зубчатых колес и сборок Конструктор прямозубых цилиндрических зубчатых колес и сборок рассчитывает и моделирует отдельные цилиндрические зубчатые колеса и сборку зубчатых колес.Загрузки файлов доступны с премиум-аккаунтом.

    Разработка и проектирование систем зубчатых передач и зубчатых передач

    • Преобразование шага зубчатого колеса Следующие диаграммы преобразуют размерные данные шага зубчатого колеса в следующее: Модуль диаметрального шага Круговой шаг
    • Уравнение фактора Льюиса Уравнение фактора Льюиса получается, если зуб рассматривается как простой кантилевер и контакт зуба происходит на кончике, как показано выше.
    • Формула проектирования шлицевых соединений Стандарт ISO 5480 применяется к шлицевым соединениям с эвольвентными шлицами на основе контрольных диаметров для соединения ступиц и валов..
    • Теплообменная техника

    Калькуляторы для проектирования электротехники

    Уравнения и калькуляторы IEEE 1584-2018

    Производство

    Калькуляторы простых механических рычагов

    Конструкция пружины

    Уравнения и анализ трения

    Гражданское строительство

    Расчет напряжения / прочности при установке болта и резьбы

    Тензодатчик

    Анализ допусков с использованием геометрических размеров допусков GD&T и других принципов

    Дизайн управления движением

    Проектирование сосудов высокого давления и конструкции цилиндрической формы и инженерные уравнения и калькуляторы

    • Напряжение и прогиб цилиндра усеченного конуса при равномерной нагрузке на горизонтальную проекционную площадку; тангенциальная опора верхнего края.Уравнение и калькулятор. Пер. Формулы Роркса для напряжений и деформаций для мембранных напряжений и деформаций в тонкостенных сосудах высокого давления.

    Жидкости

    Допуск на изгиб листового металла

    Пластиковая защелка

    Конверсии, жидкости, крутящий момент, общие

    Решения для треугольников / тригонометрии

    Финансы и прочее.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *